
Yannis Tzitzikas
Lecture :
Date : 24-11-2005

HY351 - Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS351 - Information Systems Analysis and Design

Class and Method Design

University of Crete, Fall 2005

.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Design> Class and Method Design

High level

business requirements

described in the system request

Detailed list of more

precise requirements

Functional/Structural/Behavioral

modeling of the system

Requirements

determination

modeling
Analysis

Design

Design Models

• Class and Method Design

• Data Management Layer Design

• Human Computer Interaction Design

• Physical Architecture Layer Design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

Outline

• Why to do detailed class and method design?

• Design criteria

– coupling, cohesion

• Restructuring the design (Factoring and Optimizing)

• Mapping problem domain classes to implementation classes

• Method specification

• [Constraints and Contracts]

• Opportunities for Reuse

– Design Patterns

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

Class and Method Design: Motivation

• One of the most important steps in the design phase is the design of classes
and methods

• Analysts should create instructions and guidelines for programmers that clearly
describe what the system must do

• Some persons say that with reusable class libraries and off-the-shelf
components, low level detailed design is a waste of time, so we should
directly start coding.

• However, experience shows that detailed design is useful despite the
reusable class libraries

– even pre-existing classes and components need to be understood, organized and

pieced together properly

– the team will probably have to create its own classes for the application logic of

the system

Why to design (in more detail) classes and methods?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

What could go wrong without careful design?

• Objects will not be able to communicate correctly, so the

functioning of the system will not be correct

• A not careful use of layers may introduce communication overhead
that make the system very inefficient.

• A change at a part of the system may requires changing too many

other things

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

The importance of problem domain classes

• We have already designed the structure and
the interaction of the classes of the domain
model

• The classes of the other layers (system
architecture, HCI, data management) will be
dependent on the problem domain layer.

• So, it is important to design correctly the
problem domain classes.

Foundation Layer

Physical Architecture

Human Computer Interaction

Data Management

Problem Domain

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

What is detailed class and method design?

• Structural modeling and behavioural modeling (that we discussed
in the previous lectures) is indeed class and method design

• So what we should do more ?

• We should ask ourselves questions of the form:

– Are all of the classes necessary?

– Are there any missing classes?

– Are the classes fully defined?

– Are there any missing attributes or methods?

– Do the classes have any unnecessary attributes and methods?

– Is there any inheritance conflict?

– Is there any inefficiency in the design, and how we could fix it?

– Can we map the class diagram to the programming language that will
be used in the project?

– How we can reuse code?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Detailed Design Activities

Apart from the above we should:

• Check that nothing is missing from the domain model

• Finalize the visibility of the attributes and methods in each class

• Decide on the signature of every method in every class

• Define constraints that must be preserved by the objects

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Refresher: Object Orientation, Class Diagrams

Encapsulation

• Hiding the content of the

object from outside view

• Communication only

through object’s methods

• Key to reusability

Polymorphism

• Same message triggers different

methods in different objects

• Dynamic binding means specific

method is selected at run time

• Implementation of dynamic

binding is language specific

• Need to be very careful about run

time errors

• Need to ensure semantic

consistency

Inheritance

• Single inheritance -- one

parent class

• Multiple inheritance --

multiple parent classes

• Inheritance conflict

There are 3 perspectives for the design of a class diagram (of a conceptual model in general)

– Conceptual

• Independent of implementation. This is often called domain model.

– Specification

• Based on interfaces of the software, not the implementation

– Implementation

• Here we model the implementation classes.

Design Criteria

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Design Criteria

General Design Criteria

[A] Coupling (σύζευξη)

[B] Cohesion (συνεκτικότητα / συνοχή)

…. [C] Connascence

A good design is one that balances trade-offs to minimize the total

cost of the system over its lifetime [Yourdon’91]

We have already discussed coupling and cohesion in the context of layering/packaging (Lecture 12)

1

2

3

4

5

6

7

8

9

1

2

3

4

5 6 7

89

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Coupling and Cohesion

• Coupling: measures how interdependent are the modules

(classes, objects, methods) of the system

• Cohesion: measures how single-minded is a module (class,

object, method) within a system

– (single-minded ~ προσηλωµένος σε στόχο)

Coupling Cohesion
Interaction method

Inheritance class

generalization

Aspects of coupling and cohesion:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

[A] [A] CouplingCoupling

• The higher the interdependence the more likely changes in a part

of the design will require changing other parts of the design

• So we would like to minimize it

• Types of coupling

– Interaction coupling

– Inheritance coupling

preferred

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Coupling> Interaction

Law of Demeter [Lieberherr & Holland 89]

• minimize the number of objects that can receive messages from a given object

• an object should send a message to:

– itself

– an object that is contained in an attribute of the object (or one of its superclasses)

– an object that is passed as a parameter to a method

– an object that is created by the method

– an object that is stored in a global variable

Interaction coupling concerns message passing

preferred

calls calls

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

6 types of Interaction Coupling

• No direct coupling

• Data

• Stamp

• Control

• Common or Global

• Content or
Pathological

• The methods do not call one another

• The calling method passes a variable to the called

method. If the variable is an object, the entire object is

used by the called method to perform its function

• The calling method passes a composite variable to the

called method, but the called method only uses a

portion of the object to perform its function

• The calling method passes a control variable whose

value will control the execution of the called method

• The methods refer to a “global data area” that is outside

the individual objects

• A method of one object refers to the inside (hidden

parts) of another object. This violates the principles of

encapsulation (C++ allows this with “friends”)

Adapted from Dennis et al. 2005

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

Coupling> Interaction: Guidelines

• We should try to minimize it

• Exception:

– sometimes non-problem domain classes must be coupled with domain
classes

• e.g. UIPerson can be coupled to Person

– for optimization the UIPerson could be pathologically coupled to
Person class

• However, problem domain classes must never be coupled to non-
problem domain classes

Application Logic

Presentation Logic

Application Logic

Presentation Logic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

Coupling>Inheritance

Concerns the classes within one generalization/ specialization hierarchy

• Some developers believe that high coupling is not a bad thing. Others believe that high

coupling is not good (due to the various inheritance conflicts)

• Related questions

– should a method defined in a subclass be able to call a method of the superclass?

– should a method defined in a subclass refer to an attribute of the superclass?

• This of course depends on the PL

• Guideline:

– ensure inheritance is used only to support generalization/specialization semantics

(i.e. subset) and the principle of substitutability

superclass

subclass

superclass

subclass

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

[B] [B] CohesionCohesion

Types of Cohesion

– Method cohesion

– Class cohesion

– Generalization/specialization cohesion

• Cohesion: measures how single-minded a module (class, object,

method) is within a system

We should try to maximize it

preferred

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Cohesion>Method

• Functional

• Sequential

• Communicational

• Procedural

• Temporal or
Classical

• Logical

• Coincidental

• A method performs one single task

• The method combines two functions: the output from the

first is used as input to the second

• The method combines two functions that use the same

attributes to execute

• The method supports multiple weakly related functions

• The method supports multiple related functions in time

(e.g. initialize all attributes)

• The method supports multiple related functions but the

choice of the specific function is chosen based on a

control variable that is passed as parameter

• The method supports multiple unrelated functions

Adapted from Dennis et al. 2005

A method should solve a single task
– A method performing multiple functions is more difficult to understand and reuse

7 types of method cohesion:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

Cohesion>Class

• A class should represent one thing (e.g. person, car, department)

• All attributes and methods of a class should be required for the

class to represent one thing

• No redundant attributes should exist

• The Cohesion of a class is the degree of cohesion between the

attributes and the methods of a class

Guidelines [G. Meyers 78]

– a class should contain multiple methods that are visible outside of the class and that

each visible method only performs a single function (I.e. functional cohesion)

– a class should have methods that only refer to attributes or other methods defined

with the class or its superclasses

– a class should not have any control-flow couplings between its methods

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

4 types of Class Cohesion

• Ideal

• Mixed-Role

• Mixed-Domain

• Mixed-Instance

• The class has no mixed cohesions

• The class has one or more attributes that relate objects

of the class to other objects on the same layer (e.g. the

problem domain layer), but the attribute(s) have nothing

to do with the underlying semantics of the class

• The class has one or more attributes that relate objects

of the class to other objects on a different layer. So

these attributes have nothing to do with the underlying

semantics of the thing that the class represents.

• The class represents different types of objects meaning

that different instances only use a portion of the full

definition of the class. The class should be decomposed

into separate classes.

Adapted from Dennis et al. 2005

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

Example: Method vs Class Cohesion

High method cohesion but

low class cohesion

Employee

name

address

telephone

roomNumber

roomLength

roomWidth

calculateRoomSpace()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Cohesion>Generalization/Specialization

• How are the classes in the inheritance hierarchy related?

• Are they related through a generalization/specialization semantics?

• Or they are related for simple reuse purposes?

• To what degree a subclass actually needs the features it inherits?

Low Inheritance Cohesion

Vehicle

serviceDate

maximumAltitude

takeOffSpeed

checkAltitude()

takeOff()

LandVehicle

registrationDate

register()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Example: Restructuring for satisfying LSP

ChequeAccount

accountNum

balance

credit

debit

MortgageAccount

interestRate

calculateInterest

debit

Account

accountNum

balance

credit

MortgageAccount

interestRate

calculateInterest

debit

ChequeAccount

debit

Liskov Substitution Principle (LSP)

– In a class hierarchy it should be possible to treat a specialized object as if it
were a base object

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Example (1/3)

class Rectangle {

public:

void setWidth(double w) {itsWidth=w;}

void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

class Square: public Rectangle {

…

};

void Square::setWidth(double w)

{

Rectangle::setWidth(w);

Rectangle::setHeight(w);

};

void Square::setHeight(double w)

{

Rectangle::setWidth(w);

Rectangle::setHeight(w);

};

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Example (2/3)

void f(Rectangle* r)

{

r->setWidth(32);

}

Violation of LSP:

Function f will not function correctly if r is a square

We could fix this problem by allowing polymorphism

class Rectangle {

public:

virtual void setWidth(double w) {itsWidth=w;}

virtual void setHeight(double h){itsHeight=h;}

double getArea() {return itsHeight * itsWidth;}

private:

double itsWidth;

double itsHeight;

};

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Example (3/3)

void g(Rectangle* r)

{

r->setWidth(5);

r->setHeight(4);

assert(r->getArea()==20);

}

It will function correctly if r is a rectangle.

It will not function correctly if r is square

So g() is fragile and it violates LSP

The class Rectangle actually violates an “invariant” of the class Rectangle,

specifically the width-height independence.

This could be expressed using OCL (will be described in the next lecture)

It will expressed as a post condition of setWidth:

i.e. the height is the old value of height

Restructuring the Design

Factoring

Optimizing

Translate to Implementation Language

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

Factoring

Factoring is the process of separating out aspects of a method or

class into a new method or class to simplify the overall design.

For example we may realize that some classes of the design share a similar
definition. In this case we can factor out the similarities and define a new class.
The new class is then related with the existing classes through generalization,
aggregation or association.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Optimizing the Design

• There is a trade-off between understandability and efficiency

– increasing the understandability of a design usually results in inefficiencies

– focusing only on efficiency usually results in design that is difficult to
understand by someone else

• Some ways to improve the efficiency of a design

– Review Access Paths

– Review Attributes

– Use derived attributes when necessary to cache values

– Review the order of execution of the statements in frequently used
methods (this is “Method Design” described later)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Optimizing the Design
Reviewing the Access Paths

If a message has to traverse a long path and such calls occur very
frequently, it is better to create a redundant direct connection

A B C D E F G

A B C D E F G

a:G

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Optimizing the Design
Reviewing the Attributes

If attribute a2 of B is used only by the methods setA2 and getA2 and
if only class A uses these 2 methods, then a2 should be probably

placed at A.

A B

a2

setA2(val)

getA2()

A

a2

B

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Parenthesis: AND/XOR for Relationships
(also for associations in class diagrams)

• Orders either order a part, or
request a service.Not both

• For any given order, whenever
there is at least one invoice there
is also at least one shipment and
vice versa.

Part

Order

contains

Servicerequests

XOR

Shipment

Order

FilledBy

InvoiceGenerates

AND

Mapping Problem Domain Classes to
Implementation Languages

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Mapping Problem Domain Classes to Implementation
Languages

• Multiple Inheritance Conflicts

• Eliminating Multiple Inheritance

– If the implementation will be done in a PL that does not support multiple
inheritance, then the multiple inheritance must be factored out from our class
diagrams

• Eliminating Inheritance

– If the implementation will be done in a PL that does not support inheritance,
we have to map our class diagrams to constructs that can be implemented
within that PL. For example, Visual Basic 6 does not support inheritance

• Handling Multiple and Dynamic Classification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Inheritance in PLs

• Different PLs address inheritance differently

– so we should know the PL that is going to be used

Feature C++ Eiffel Java

multiple inheritance yes yes no

• The accessibility of inherited properties also depends on the PL.

• In UML, visibility (private, public, protected) applies to methods and attributes

• Let A be a class with some private and public attributes and methods.

• Let B be a class defined as a subclass of class A.

• What B inherits?

• In Java, we can answer this question right away.

• In C++ we should see how B has been declared as subclass of A

– C++ allows visibility at the class level.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Inheritance and Visibility

In C++, class B may have been defined as:

class B: public A

class B: protected A

class B: private A

• Accessibility rules (C++)

– The private properties of A are not visible to class B objects (in every case)

– If base class A is defined as public, the visibility of inherited properties does
not change in derived class B (public are still public and protected are still
protected)

– If base class A is defined as protected, the visibility of inherited public
properties changes in derived class B to protected

– If base class A is defined as private, the visibility of inherited public and
protected properties changes in derived class B to private.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Inheritance Conflicts: Multiple Inheritance

[1] Two (or more) attributes (or methods) have the same name and semantics

[2] Two (or more) attributes (or methods) have the same name but different
semantics (homonyms)

[3] Two (or more) attributes (or methods) have different names but identical
semantics (synonyms)

sA

a1

a2

sB

a1

a3

C1

a5

a6

Here we could be in case [1] or [2]

isA

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Inheritance Conflicts: Multiple Inheritance

Employee

-name

-salary

Robot

-name

-fuel

Robot-Employee

[1] Two (or more) attributes (or methods) inherited from different superclasses
have the same name and semantics

name

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Inheritance Conflicts: Multiple Inheritance

Employee

-phone

Robot

-phone

Robot-Employee

[2] Two (or more) attributes (or methods) have the same name but different
semantics (homonyms)

Phone ≠≠≠≠ Phone (of technician)

Student

-year

-department

Teacher

-degree

-department

TeachingAssistant

A student of CSD may be

assistant to a course of the Math. Dep.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Inheritance Conflicts: Multiple Inheritance

[3] Two (or more) attributes (or methods) inherited from different superclasses
have different names but they have identical semantics (synonyms)

Employee

-Name

Robot

-Nickname

Robot-Employee

Name <=> Nickname

Employee

-id

-salary

-speciality

Robot

-serialNum

-fuel

-type

Robot-Employee

Id <=> serialNum

speciality <=> type

Eliminating Multiple Inheritance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Eliminating Multiple Inheritance:
Method 1: Flatten the Extra Superclasses

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

isA

sA

a1

a2

sC

a7

a8

C1

a3

a4

a5

a6

C2

a3

a4

a5

a6

Flattening the inheritance by copying the attributes and methods of the additional

superclass(es) to all of the subclasses and remove the additional superclasses

from the design

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Eliminating Multiple Inheritance:
Method 2: Convert the Extra Superclasses to Associations

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

isA

Convert the extra superclass(es) to associations with the appropriate multiplicity.

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

Assumption: sB can be either concrete or abstract.

Is everything ok?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Eliminating Multiple Inheritance:
Method 2: Convert the Extra Superclasses to Associations (ΙΙ)

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

isA

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Assumption: sB can be either concrete or abstract.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Method 1 versus Method 2

sA

a1

a2

sC

a7

a8

C1

a3

a4

a5

a6

C2

a3

a4

a5

a6

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Method 2

+: the domain class (sB) is preserved

-: increases message passing and we have to keep the

XOR constraint (computationally more expensive)

Hint: Use method 2 only if the extra superclass (sB) is concrete (not abstract).

Otherwise use method 1

Eliminating Inheritance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Eliminating Inheritance
Method 1: Flattening

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

C1

a1

a2

a3

a4

a5

a6

C2

a1

a2

a3

a4

a5

a6

Assuming sA, sB and sC are abstract

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49

Eliminating Inheritance:
Method 2: Convert all Superclasses to Associations

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

1

1

1

1

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Assuming sA, sB and sC are abstract

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Eliminating Inheritance:
Method 2: Convert all Superclasses to Associations (2)

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

1

0..1

1

sA

a1

a2

sB

a3

a4

sC

a7

a8

C1

a5

a6

C2

a5

a6

0..1 1..1 1..1 0..1

{XOR}

Assuming sA, sB and sC are concrete

0..1

Multiple Classification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Multiple classification and conflicts

• Nixon is a Quaker.

• Quakers are typically pacifists.

• Nixon is a Republican.

• Republicans are typically not pacifists.

• What to conclude?

* "Nixon is a pacifist." or

* "Nixon is not a pacifist."?

Quaker

pacifist:Yes

Republican

pacifist:No

Nixon

instanceOf

Nixon Diamond

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

Multiple Classification

Person

CrewMember TicketAgent Passenger

Suppose that according to the domain model:

A person part of the flight crew can also be a

passenger.

Occasionally the flight crew can work as ticket agent.

To implement this in Java we would need multiple and dynamic classification

(which is not supported).

Solution 1: To overcome multiple classification, create “join” classes

Person

CM
TA

P

CM & TA CM & P TM & P CM & TA & P

We need to define an exponential
number of classes.

And still we will not be able to support
dynamic classification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

Multiple Classification (II)

Person

CrewMember TicketAgent Passenger

Suppose that according to the domain model:

A person part of the flight crew can also be a passenger.

Occasionally the flight crew can work as ticket agent.

Solution 2: Delegation

Person

CrewMember TicketAgent Passenger

0..1

1 1

1

0..1 0..1

• Delegation is a way to extend a class’s
behavior without using inheritance.

• It is useful when multiple and dynamic
classification is not possible in the PL.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

For homework

Person

Female

Male

Patient

Doctor

Nurse

Physiotherapist

Surgeon

FamilyDoctor

sex
{complete}

Role
<<dynamic>>

patient

Method Specification

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

Method Specification

• Objective: give enough detail for the programmers

• There is no standard format for this

• Some organizations use forms of the following format:

Method Name: Class Name: ID:
Programmer: Date due:
Programming Language:
Triggers/Events:

Arguments Received:
Data Type: Notes:

Messages Sent and Arguments Passed:
ClassName.MethodName: DataType: Notes:

Arguments Returned:
Data Type: Notes:

Algorithm Specification:

Notes:

Method Name: Class Name: ID:
Programmer: Date due:
Programming Language:
Triggers/Events:

Arguments Received:
Data Type: Notes:

Messages Sent and Arguments Passed:
ClassName.MethodName: DataType: Notes:

Arguments Returned:
Data Type: Notes:

Algorithm Specification:

Notes:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

Method Specification

Method Name: Class Name: ID:
Programmer: Date due:
Programming Language:
Triggers/Events:

Arguments Received:
Data Type: Notes:

Messages Sent and Arguments Passed:
ClassName.MethodName: DataType: Notes:

Arguments Returned:
Data Type: Notes:

Algorithm Specification:

Notes:

Method Name: Class Name: ID:
Programmer: Date due:
Programming Language:
Triggers/Events:

Arguments Received:
Data Type: Notes:

Messages Sent and Arguments Passed:
ClassName.MethodName: DataType: Notes:

Arguments Returned:
Data Type: Notes:

Algorithm Specification:

Notes:

E.g. event-driven programming

Recall behavioural modeling

Pseudocode

Structured English

Activity Diagram

Constraints and Contracts

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 60

Constraints and Contracts

• A set of constraints and guarantees for classes and method

• We could express constraints using

– natural language,

– structured English,

– pseudocode,

– or a formal language.

• Can a minor (underage) work for a company ?

• Can a company hire a person already hired ?

• Can a promotion lower the salary of an employee?

Person

name

age

increaseAge()

Company

name
employment

hire(p:Person)

fire(p:Person)

promote(p:Person, incr:Money)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

Constraints and Contracts

• The designer should decide how to handle a violation of a
constraint

– abort, undo, let user handle it?

– The designer must design the errors that the system is expected to handle. It
is best not to leave these types of problems for the programmer to solve

– Violations of a constraint are known as exceptions in languages like
C++/Java.

• In the next lecture we will see a formal language (called OCL) for
expressing constraints

Opportunities to Reuse

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

Identifying Opportunities for Reuse

• Frameworks

• Class libraries

– frameworks tend to be more domain specific. Frameworks may be
implemented using class libraries

• Design Patterns

We could exploit:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64

Identifying Opportunities for Reuse

Frameworks

Frameworks

– Is a set of implemented classes that can be used as the basis for
implementing the system

– Most frameworks allow you to create subclasses

– Frameworks like CORBA and DCOM can be used to specify the physical
architecture layer of the system

– Object-persistence frameworks can be used to add persistence to the
problem domain classes and thus specify the data management layer of the
system.

Design Patterns

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 66

Identifying Opportunities for Reuse

Design patterns

A pattern is a commonly occurring reusable piece in software system that provides
a certain set of functionality.

• Using patterns in modeling of systems helps in keeping design standardized and
more importantly, minimizes the reinventing of the wheel in the system design.

• How design patterns relate to UML ?

– The patterns need to be captured and documented in a sufficiently descriptive

manner so that they can be referred for future use.

– UML provides the perfect tools to do just this. The class diagram in UML can be used

to capture the patterns identified in a system. In addition, UML has a sufficiently

extensive and expressive vocabulary to capture the details of patterns.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 67

Categorizing Patterns

Based on how they are to be used, patterns are primarily categorized as:

• Creational

– They define mechanisms for instantiating objects. The implementation of the
creational pattern is responsible for managing the lifecycle of the instantiated
object.

– Examples: Factory, Singleton

• Structural

– They define compositions of objects and their organization to obtain new and
varied functionality.

– Examples: Adapter, Proxy.

• Behavioral

– They define interaction between different objects.

– Examples: Command, Iterator

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 68

Behavioral Patterns

Command

Example:

Design of a Word Processor that supports undoing and redoing commands

AbstractCommand

doIt()

undoIt()

DeleteCommand

«constructor»

DeleteCommand(position:Int, length:int)

«misc»

doIt()

undoIt()

InsertStringCommand

«constructor»

InsertStringCommand(position:Int, length:int)

«misc»

doIt()

undoIt()

...

Encapsulate commands in objects so that you control their selection and
sequencing, queue them, and othewise manipulate them

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 69

Behavioral Patterns> Command
Design of a Word Processor supporting Undo and Redo

• materialize each command as an object with do and undo methods.

• when the user tells the WP to do something instead of performing the command,

• it creates a new object using the appropriate constructor (e.g, an

InsertStringCommand object)

•it then calls the object’s doIt method to execute the command

•The WP also puts the command object in a data structure that allow the WP to maintain a

history of what commands have been executed. This allows the WP to undo commands in

the reverse order that they were issued by calling their undo methods.

AbstractCommand

doIt()

undoIt()

DeleteCommand

«constructor»

DeleteCommand(position:Int, length:int)

«misc»

doIt()

undoIt()

InsertStringCommand

«constructor»

InsertStringCommand(position:Int, length:int)

«misc»

doIt()

undoIt()

...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 70

Behavioral Patterns> Command
Design of a Word Processor supporting Undo and Redo

AbstractCommand

doIt()

undoIt()

ConcreteCommand

doIt()

undoIt()

Invoker

1

0..*

Command Manager
0..* < Manages 1

public abstract class AbstractCommand{

public final static CommandManager manager

=new CommandManager();

public abstract boolean doIt(); // returns True if successful

public abstract boolean undoIt();

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 71

Behavioral Patterns> Command
Design of a Word Processor supporting Undo and Redo (2)

AbstractCommand

doIt()

undoIt()

InsertStringCommand

InsertStringCommand

(position:Int, length:int)

doIt()

undoIt()

Command Manager
0..* < Manages 1

class InsertStringCommand extends AbstractCommand{

InsertStringCommand(Document doc, int position, String str){

this.document = document;

this.position = position;

this.str = str;

manager.invokeCommand(this);

}

public boolean doIt(){

try{

document.insertStringCommand(position, str);

} catch (Exception e){

return false;

}

return true;

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 72

Behavioral Patterns> Command
Design of a Word Processor supporting Undo and Redo (3)

AbstractCommand Command Manager
0..* < Manages 1

class CommandManager{

private int maxHistoryLength = 20;

private LinkedList history = new LinkedList();

private LinkedList redoList = new LinkedList();

public void invokeCommand(AbstractCommand command){

if (command instanceOf Undo){

undo(); return;

}

if (command instanceOf Redo){

redo(); return;

}

if (command.doIt()) {

addToHistory(command);

} else {

history.clear()

}

if (redoList.size()>0)

redoList.clear();

}

Private void addToHistory(AbstractCommand command){

history.addFirst(command);

if (history.size() > maxHistoryLength) {

history.removeLast();

}

}

interface Undo {

}

interface Redo{

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 73

Behavioral Patterns> Command
Design of a Word Processor supporting Undo and Redo (4)

Private void undo(){

if (history.size() >0) {

AbstractCommand undoCommand;

undoCommand = (AbstractCommand) history.removeFirst();

undoCommand.undoIt();

redoList.addFirst(undoCommand);

}

}

Private void redo(){

if (redoList.size() >0) {

AbstractCommand redoCommand;

redoCommand = (AbstractCommand) redoList.removeFirst();

redoCommand. doIt();

history.addFirst (redoCommand);

}

}

Command Manager

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 74

Design Patterns

• Design patterns is a useful mechanism to document and learn about common
reusable design approaches.

• Design patterns can reduce the designing time for building systems and ensure
that the system is consistent and stable in terms of architecture and design.

• The UML class diagrams provide an easy way to capture and document Design
patterns.

• Some UML tools support design patterns.

– They have a pre-built catalog of well-known design patterns. The design patterns can

be easily pulled in into your design as templates and then customized for your

application design.

More on patterns at CS352 - Software Engineering

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 75

Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom, D.

Tegarden, Wiley, 2005. Chapter 10

• Requirements Analysis and System Design (2nd edition) by Leszek A. Maciaszek, Addison Wesley,

2005, Chapter 5 and 6

• Inheritance Hierarchies in KR and Programming Languages, Lenzerini, Nardi, Simi,

1991

• Patterns in Java, Mark Grand, Wiley, 1998

• Using Design Patterns in UML, Mandar Chitnis, Pravin Tiwari, & Lakshmi Ananthamurthy

• Slides of John Mylopoulos, University of Toronto

• Αντικειµενοστρεφής Σχεδίαση: UML, Αρχές, Πρότυπα και Ευρετικοί Κανόνες, Α.

Χατζηγεωργίου, Κλειδάριθµος 2005

