
Yannis TzitzikasLecture : 11 
Date      : 15-11-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Behavioral Modeling

University of Crete, Fall 2005

...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• What is Behavioral Modeling?

• Interaction Diagrams

– Sequence Diagrams

– Communication Diagrams

• State diagrams



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

What is Behavioral Modeling?

Its objective is to describe:

• internal dynamic aspects of an information system that supports 
business processes in an organization

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

Why to do Behavioral Modeling ?

High level

business requirements

described in the system request

Detailed list of more

precise requirements

Functional/Structural/Behavioral

modeling of the system

Requirements 

determination

modeling

• To depict the internal view of business processes

• To show the messages that pass between objects for a particular use-case



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

How the objects of this model interact ?

Order

date

Order Line

Amount: Num
1..*

Product
11 * id: String

price: Num

Customer

*

1

E.g. how the price of an order is calculated ?

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

How we model the behavior in OO Analysis and 
Design?

Usually we employ 3 types of models:

• Sequence diagrams

• Communication diagrams
– (in UML 1. they were called “Collaboration Diagrams”)

• Statechart diagrams

Remarks:

• Modeling the behaviour in detail  is like … implementing the 
system!

• So we should model the key aspects
– like storyboarding in film making (I.e. key frames)

Interaction diagrams



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

Interaction Diagrams

Interaction Diagrams (Διαγράμματα Αλληλεπίδρασης)

– Sequence Diagrams (Διαγράμματα Ακολουθίας)

– Communication/Collaboration Diagrams (Διαγράμματα
Συνεργασίας)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Interaction Diagrams

• They describe how groups of objects collaborate in some 
behaviour.

• Typically, an Interaction Diagram captures the behaviour of a 
single Use Case and shows a number of example objects and the 
messages that are passed between these objects within the use 
case

Use Case 18

Interaction Diagrams



Sequence Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

[A] Sequence Diagrams
(διαγράμματα ακολουθίας/διαδοχής/αλληλουχίας)

• Horizontal line: objects shown as boxes

• Vertical line: object’s lifeline

• Activation box: shows when object is active (at the stack)

• messages: between the lifelines of 2 objects

 : Lecturer

 : Department  : Course  : Student

Find( )
Find( )

Add( )Addit ion of a 
new student



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Messages

• A message is a specification of a communication between objects

• Types of messages
– Call:  Invocation of an operation

• an object can also send a message to itself (local invocation of an operation)

– Return: returns a value to the caller

– Send:  sends a signal to an object

– Create: creates an object

– Destroy: destroys an object

• A signal is an object value communicated to a target object 
asynchronously. 

• After sending a signal, the sending object continues its own 
execution.

• When the target object receives the signal message,it 
independently decides what to do about it.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

How we depict messages?

• As an arrow between the lifelines of 2 objects

• The arrow is accompanied by
– message name (e.g. name of called operation)

– possible arguments

– control info
• condition: indicates when a message is sent, e.g. [outOfStock]

• iteration marker: indicates a message sent many times to multiple receiver 
objects, e.g. *[for all order lines]  //  for UML 1.

• Return messages are denoted by dashed line (<- -)
– we can omit it and not draw every return message but only the crucial 



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Examples of Messages

Person

+assign(task:String)
Company

* employment 0..1

p:Person :Company

assign(task)

message

Yannis:Person c1:Company

assign(“Prepare slides”)

Message instance

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Example of Messages

A

+a1()

+a2()

B

+b1()

+b2()

All possible messages:

b1()

b2()

a1()

a2()

a1()

a2()

b1()

b2()



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Example A

+a1()

+a2()

B

+b1()

+b2()All possible flows of control that consist of 2 messages:

a1() b1()

a1()
a2()

a1() b2()

a2() b1()

a2() b2()

a2() a1()

b1() a1()

b1()
b2()

b1() a2()

b2() a1()

b2() a2()

b2()
b1()

All possible flows of control that consist of 3 messages:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

How the objects of this model interact ?

Order

date

Order Line

Amount: Num
1..*

Product
11 * id: String

price: Num

Customer

*

1

E.g. how the price of an order is calculated ?



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

Example of a sequence diagram

an Order : OrderLine a: Product : Customer

calculatePrice

calculatePrice
getPrice(quantity:Integer)

getDiscountedValue(an Order)

getBaseValue

discountedValue

parameter

return message

(we show only those 
that can aid 

understanding)

Calculation of the price of an order line of an order

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

Sequence diagram of a different implementation

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

Calculation of the price of an order line of an order

calculatePrice

Self-call



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Comparing the two diagrams

an 
Order

: OrderLine a: Product : Customer

calculatePrice

calculatePrice
getPrice(quantity:Integer)

getDiscountedValue(an Order)

getBaseValue

discountedValue

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

centralized control distributed control

Sequence diagrams are not very good at showing details (algs with loops and 
conditions), but they make the calls between participants very clear and give a 
good picture about which participants are doing which processing.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

Comparing the two diagrams (ΙΙ)

an 
Order

: OrderLine a: Product : Customer

calculatePrice

calculatePrice
getPrice(quantity:Integer)

getDiscountedValue(an Order)

getBaseValue

discountedValue

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

Order Order Line Product

Customer

Here only those objects that are associated 
communicate

Here an Order communnicates with a 
Product (although they are not associated 
in the class diagram)



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

Creating and Deleting Participants

a Handler

a Query 
Command

a Database 
Statement

query database

new

results

new

execute

results

close

extra results

creation

deletion from 
another object

self-deletion

In a garbage-collected environment we don’t delete objects directly, but it is still worth using 
X to know when an object is no longer available and can be deleted

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

What about loops?

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

calculatePrice

From this diagram it is not 
clear that the above calls 
should be done for every 

OrderLine of an Order



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Loops and Conditionals (modeling control logic)

This is not the focus of Sequence Diagrams.

We could use Activity Diagrams or Pseudo-code instead.

procedure dispatch
foreach (lineitem)

if (product.value > $10K)
careful.dispatch

else
regular.dispatch

endif
endfor

if (needsConfirmation) messenger.confirm
end

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Loops and Conditionals (modeling control logic)

:Order careful: 
Distributor

regular: 
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

procedure dispatch
foreach (lineitem)

if (product.value > $10K)
careful.dispatch

else
regular.dispatch

endif
endfor

if (needsConfirmation) messenger.confirm
end



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

Loops and Conditionals (modeling control logic)

:Order careful: 
Distributor

regular: 
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

[for each line item]loopprocedure dispatch
foreach (lineitem)

if (product.value > $10K)
careful.dispatch

else
regular.dispatch

endif
endfor

if (needsConfirmation) messenger.confirm
end

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Loops and Conditionals (modeling control logic)

:Order careful: 
Distributor

regular: 
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

[for each line item]loopprocedure dispatch
foreach (lineitem(

if (product.value > $10K)
careful.dispatch

else
regular.dispatch

endif
endfor

if (needsConfirmation) messenger.confirm
end

[value>10K]alt

[else]



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Loops and Conditionals (modeling control logic)

:Order careful: 
Distributor

regular: 
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

[for each line item]loopprocedure dispatch
foreach (lineitem(

if (product.value > $10K)
careful.dispatch

else
regular.dispatch

endif
endfor

if (needsConfirmation) messenger.confirm
end

[value>10K]alt

[needsConfirm]opt

[else]

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Loops and Conditionals 
(notations of UML 1)

:Order careful: 
Distributor

regular: 
Distributor

: Messenger

dispatch

dispatch

confirm

dispatch

*[for each line item]
procedure dispatch

foreach (lineitem(
if (product.value > $10K)

careful.dispatch
else

regular.dispatch
endif

endfor
if (needsConfirmation) messenger.confirm

end

[value>10K]

[needsConfirm]

[else]



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

Operators for sequence diagrams

• alt: alternative multiple fragments; only the one whose condition is true will be 
executed

• opt: optional fragments; executed only if its condition is true (equiv to alt with 
one fragment)

• par: parallel execution of fragments

• loop: the fragments will be executed multiple times (based on the guard)

• region: critical region; the fragment can have only one thread executing it at 
once

• neg: the fragment shows an invalid interaction

• ref: reference: refers to an interaction defined on another diagram. The frame is 
drawn to cover the lifelines involved in the interaction. You can define 
parameters and a return a value.

• sd: sequence diagram; used to surround the entire diagram

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Withdraw cash from an ATM

user:Person bank:ATM

enter(password)

valid=verify (password)

enter(account)

enter(amount)

deliver cash



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Withdraw cash from an ATM 
Example of using operators sd

user:Person bank:ATM

enter(password)

valid=verify (password)

enter(account)

enter(amount)

deliver cash

sd withdrawal

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Withdraw cash from an ATM 
Example of using operators sd, loop

user:Person bank:ATM

enter(password)

valid=verify (password)

enter(account)

enter(amount)

deliver cash

sd withdrawal

[invalid password]loop (1,3)



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Withdraw cash from an ATM 
Example of using operators sd, loop, opt

user:Person bank:ATM

enter(password)

valid=verify (password)

enter(account)

enter(amount)

deliver cash

sd withdrawal

[invalid password]loop (1,3)

[valid password]opt

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Withdraw cash from an ATM 
Example of using operators sd, loop, opt, par

user:Person bank:ATM

loop (1,3)

par

[valid password]opt

[invalid password]

enter(password)

valid=verify (password)

enter(account)

enter(amount)

deliver cash

sd withdrawal



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Suppose we had defined the following two sequence 
diagrams

user:Person bank:ATM

enter(password)

valid=verify (password)

sd getPassword

loop (1,3) [invalid password]

user:Person bank:ATM

par
enter(account)

enter(amount)

deliver cash

sd getCach

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

We can exploit them   using the operator ref

user:Person bank:ATM

ref

ref

[valid password]opt

get password

sd withdrawal

get cash



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Example

 : ReqForm  : ReqControl  : Course  : StudentRec  : Schedule

register( )
open( )

getTime( )

getDays( )

checkSchedulingConflicts( )

measuresShot( )

libraryFees( )

parkingFees( )

assign(course)

assign(schedule)

new( )

Communication Diagrams (UML 2.0)
~ Collaboration Diagrams (UML V 1.3)



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

[B] Communication Diagrams (διαγράμματα επικοινωνίας)

≡ Collaboration Diagrams (v.1)

 : Lecturer

 : 
Department

 : 
Course

 : Student

1: Find( )

2: Find( )

3: Add( )

 : Lecturer

 : Department  : Course  : Student

Find( )
Find( )

Add( )Addit ion of a 
new student

Here the sequence is indicated by numbering messages.
– Advantage: better exploits the drawing space (more compact)

– Weakness: makes it harder to see the sequence (comparing to sequence diagrams)

Sequence Diagram Communication  Diagram

≡

Sequence Diagram <=> Communication Diagram
– Automatic transformation is possible (e,g, F5 in Rational rose)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Sequence vs Collaboration Diagrams: Example

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

calculatePrice

:Order :Customer

:Order Line a:Product

1:calculatePrice

2:getQuantity

3:getProduct

4:getPricingDetails

5:calculateBasePrice()

6:calculateDiscounts()
7:getDiscountInfo

It is like an object diagram that shows message passing relationships

instead of aggregation or generalization associations

Order Order Line Product

Customer



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Numbering Methods

• Numbering methods
– 1, 2, 3, …

– 1, 1.1, 1.1.1, 1.1.2, 2.1  (Decimal numbering (used by UML))

• communication diagrams have not a precise notation for control logic 
– we could however use iteration markers and guards

:Order :Customer

:Order Line a:Product

1:calculatePrice

2:getQuantity

3:getProduct

4:getPricingDetails

7:getDiscountInfo

5:calculateBasePrice()

6:calculateDiscounts()

:Order :Customer

:Order Line a:Product

1:calculatePrice

1.1:getQuantity

1.2:getProduct

1.3:getPricingDetails

1.5.1:getDiscountInfo

1.4:calculateBasePrice()

1.5:calculateDiscounts()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Numbering Methods (II)

:Order :Customer

:Order Line a:Product

1:calculatePrice

1.1:getQuantity

1.2:getProduct

1.3:getPricingDetails

1.5.1:getDiscountInfo

1.4:calculateBasePrice()

1.5:calculateDiscounts()

Why 1.5.1 and not 1.6?

• Procedural (or nested) sequence
– 1, 2, 2.1, 2.2

• Flat sequence
– 1, 2, 3, 4

( 2.1 and 2.2 are performed while the object of 2 is still active)



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Sequence Diagrams  vs
Communication Diagrams

• Different developers have different preferences

 : PCustomConfiguration  : EComputer

 : EConfigurationItem : PConfigurationSummary

1. submit()
1.1.1. getComputerName()

1.1.3. getPrice()

1.2.1 . disp lay()

1.1. getCurrentConf()

1.2. new(currentConf)

1.1.2. getItemDescr()

 : 
PCustomConfiguration

 : EComputer  : EConfigurationItem

 : 
PConfigurationSummary

1. submit()

1.1. getCurrentConf()

1.1.2. getItemDescr()

1.1.1. getComputerName()

1.1.3. getPrice()

1.2. new(currentConf)

1.2.1. display()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

When to use Interaction Diagrams

• When to use Interaction Diagrams
– To show the behaviour of several objects within a single Use Case

– Tip: Focus on simplicity
• If the control is complex split it to several interaction diagrams

• When use not Interaction Diagrams
– If you want to look at the behaviour of a single object across multiple use 

cases, then use a state diagram

– If you want to look at the behaviour across many use cases and many 
threads consider an activity diagram



State Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

State Diagrams: Outline

• State Diagrams

• Concurrent State Diagrams



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

State Diagrams

• A state diagram describes all possible states that a particular 
object can get into and how the object’s state changes as a result 
of events that reach the object.

• Usually are drawn for a single class

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

State Diagrams

We can use them for various perspectives

Perspectives
– Conceptual: 

• Business processes

– what are the states of an order of a company ? Are cancellations
possible ?

– Design
• states to be handled by the interfaces of the classes

– Implementation
• actual states of the implementation objects



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 49

Basic Notions

• States

• Transitions
– Events

• Activities

Start

Probabionary

Permanent

Left

End

employ

Resigned

Fired

successfully 
completed 1 year 

period

Unsuccessfully 
completed 1 year 

period

staff of the 
departhemt

state

transition

event

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Transitions

• Event:
– if nil then when the task is completed we continue

• Condition
– logical condition (transition occurs if its value is True)

– the guards of transitions from a state must be mutually exclusive so that to 
have a unique next state

• Action
– processes that occur quickly and are not interruptible

Transition labels:  Event[Condition]/Action   
• all three are optional

IdleActive



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

Example of a transition label of the form 
Event[Condition]/Action

Start

Probabionary

Permanent

Left

End

employ

Resigned

Fired

successfully 
completed 1 year 

period

Unsuccessfully 
completed 1 year 

period

staff of the 
departhemt

After 1 year [successful so far]/inform the director of personnel

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Kinds of Events

• Entry
– any action related to entry event is executed whenever the given state is entered via 

a transition

• Exit
– when we exit the transition

• After 20 minutes
– example of event generated after a period of time

• When (temperature > 40)
– example of event generated when a condition becomes true

• ...



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

V 1. : Actions vs Activities 
V 2.0:  Internal vs External Activities

• Distinctions
– Actions are associated with transitions (usually quick)

• not interruptible

– Activities are associated with states (can take longer)
• can be interrupted by events

• Each state has an activity associated with it
– syntax:   do/activity

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

Actions vs Activities

Start

Probabionary

Permanent

Left

End

employ

Resigned

Fired

successfully 
completed 1 year 

period

Unsuccessfully 
completed 1 year 

period

staff of the 
departhemt

do/working  

After 1 year [successful so far]/inform the director of personnel

activity

action



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

Example:

Recall the class diagram about Orders and Products and the interaction diagram 
about calculating the price of a product

 : Order  : Order Line a : Product  : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

calculatePrice

Which are the (important) states of an order object?

Order Order Line Product

Customer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

Example: The states of an Order object

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

This concerns an Order object



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 57

Example: The states of an Order object (ΙΙ)

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

[All items checked && all 
items available]

DeliveredItems Received [all items available]

[All items checked && 
some not in stock]

Item Received[ some 
items not in stock ]

[ Not all items checked ] / get next item

 / get first item

activity

action

condition

event

This concerns an Order object

event

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 58

Example (cont)

Assume we want to be able to cancel at any point

Solution 1: add a cancel transition from each state

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

[ Not all items checked ] / get next item

[All items checked && all 
items available]

Delivered

Item Received[ some 
items not in stock ]

Items Received [all items available]

[All items checked && 
some not in stock]

 / get first item

Cancelled



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 59

Example (cont): Superstates

Assume we want to able to cancel at any point

Solution 2: Define a superstate and cancel only there (the substates
inherit it)

Active

Waiting

Checking Dispatching

Cancelled Delivered

Waiting

Checking

do/ Check item

Dispatching

do/ initiate delivery

DeliveredWaiting

[ Not all items checked ] / get next item

[All items checked && all 
items available]

Delivered

Item Received[ some 
items not in stock ]

Items Received [all items available]

[All items checked && 
some not in stock]

 / get first item

Cancelled

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 60

Example

The states of an Order object w.r.t. payment

Unpaid Partly Paid

Fully Paid

partial payment

final payment

final payment

Rejected

How to combine these states with the previous ones (i.e. 
checking, waiting, dispatching,  delivered, etc) ?



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 61

Concurrent State Diagrams

Allow  “parallel” execution
– multiple states are active concurrently

– when an object leaves the concurrent states, it is only in one state

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 62

Concurrent State Diagrams

Unpaid Partly Paid

Fully Paid

partial payment

final payment
final payment

Waiting

Checking Dispatching

Cancelled

Delivered

Waiting

Rejected

Recall fork and join from activity diagrams



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 63

Internal Activities (or self-transitions)

• States can react to events without transition, using internal 
activities
– like self-transitions

– putting the event[guard]/activity inside the state box

• Example of internal events of the typing state of a text field

Typing
entry/highlight all

exit/update field

character/handle character

help[verbose]/open help message

help[quiet]/update status bar

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 64

When to use State Diagrams

• To describe the behaviour of an object across several use cases

• not flexible if there are many collaborating objects
– in this case it’s better to use

• interaction diagrams

• activity diagrams

Classical cases for using state machine diagrams: 
– Example applications

• Cruise controls

• vendor machines 

– Formal methods
• verification of network protocols



U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 65

Summary

Sequence diagrams (and Communication 
diagrams)

• illustrate the classes that participate in a use 
case and the messages that pass between 
them.

State diagrams

• show the different states that a single class 
passes through in response to events.


