. HY 351: AvdAuon kai Zxediaon MANpo@opIakwy ZucTNPATWY N Outline
® CS 351: Information Systems Analysis and Design -

+ Structural modeling

Structural Modeling © GRC Carde
Class and Object Diagrams : (ila;zi:gfams
CRC Cards. — Attributes
— Operations

— Associations
— Generalization
Constraints

» Object Diagrams

Yannis Tzitzikas

Lecture: 9
Date :1-11-2005 University of Crete, Fall 2005
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005
N v . . N - H
\‘b What is Structural Modeling? §b Why to do Structural Modeling ?

* Reduces the “semantic gap” between the real world and the world of software
« Establishes a common vocabulary for analysts and users
* Represent things, ideas, and concepts of importance in the application domain

Its objective is to describe:
« the structure of the data that supports the business processes

Requirements

) i Iev.el determination Detailed list of more

business requirements recise requirements

. K precise requirements
described in the system request

modeling

Function2¥StructuralBehavioral
modelinyrQf the system

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

SB How we model the structure in OO Analysis and .
/&?" Design?

Usually we employ 3 types of models:
* CRC Cards
— capture the essential elements of a class
CRC Cards

» Class Diagrams oo .
— allow the description of the types of objects in the system and the various (CIGSS_ReSponSlbIIITY_C()'IGbomhon Cards)
kinds of static relationships that exist among them
* Object Diagrams
— show example configurations of objects (instances rather than classes)

Remarks:
» We can define class diagrams from several perspectives.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

A

B

CRC Cards: Objectives

Lo

 lItis an informal approach to object oriented modeling
« |tis used for group brain-storming
* Proposed by Ward Cunnigham in the late 1980s

CRC cards help us:
— to identify and define the classes
— define and understand how they will collaborate

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

‘ N
¢ What is a CRC card?
THppan”
front side: back side
Class Name Attributes
Associations
Responsibilities Collaborators *lsa
+Aggregation
-other associations
Size:10 x 15¢cm
Responsibilities: Collaborators:
+ of Knowing . Objec;ls Wtorkmg, Consider the front as the
« of Doing together to service a public information, and the
request back as the encapsulated,
— i.e. UML associations implementation details

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

‘ 7
w Example of a CRC Card

Lo

Class Name

Responsibilities | Collaborators

/ Order

Check if items in stock Order Line
Determine price

Check for valid payment
Send to delivery address

Customer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Another Example

o
P c Grade school example
Teacher Teaches Lessons Secratary
Evaluates Students Student
Principal
Student Learns Lessons Taacher
Principal
Principal Administers Funds Taacher
Diciplines Studants Secretary
Hires Staff Stucent
Nurse Gives First Ald Students
Gives Vacinalions Taachers
Secretary Answers Phone Teacher
Prints Handouts Principal
Janior Cleans Building Teacher
Fies Equipment Secretary
Cock Prepares Meals Janiter
Taken from Cunnigham (Tektronix) ‘

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

10

‘ 7
w What we can do with CRC cards?

Lo

* CRC cards represent the static (structural) view of the system’s classes

* The dynamic description can be informally described by “role-playing”
— Other techniques for describing the dynamic behavior:
» Sequence Diagrams
— (they will be covered in the lecture about Behavioral modeling)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

‘ N
w Working with CRC cards

Lo

...“Card Playing”:
+ The team (<7 persons) sits around a table

— domain experts, analysts, oo developers
they start by identifying a number of classes of the problem domain
« they create one card for each class

— the responsibilities should not be too many (they should fit in the card)
they can then start role-playing the scenarios of the Use Cases

— each person can role-play one ore more cards

— they pick up on the air the classes that are active

— they move them to show the exchange of messages
If something doesn’t seem right, they change accordingly the cards (by

changing their contents, or by creating/destroying cards)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

N e
> How we start?

Lo

» A good starting point for CRC analysis is Use Cases.

« Start by trying to identify the classes in the problem domain.

— Use the requirements document, identify the classes that are obvious in the

subset of the problem that is going to explored in this session.

Find all of the nouns and verbs in the problem statement.
The nouns are a good key to what class are in the system, and the verbs show
what the responsibilities are going to be.
Use this information for the basis of a brainstorming session and identify all the
class that you see. Record them and filter the results after the brainstorming

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

N ',‘.

): Example: Identifying the classes by analyzing the text

Lo

candidate classes

Problem statement.

— Thi |II support the operatlons ofa technl an R&D

telg arching for and le dlng of technlcal library

g(beeks 4 weeks, journals 2 weeks, videos 1
week). If returned after their library user's organization will be
charged a fine, based on the type of item(books $1/day, journals $3/day,
videos $5/day).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

A

Example:Identifying the responsibilities

Lo

candidate responsibilities

Problem statement.

— This application will support the ope
organization. This includes thé
materials, including books, vid

h in

ations of a technical library for an R&D
or ftechnical ibrary

nd technical’journals. Users w*@@
tem; and they will enter material ID

p to five items. Each type of library item can be
of time (books 4 weeks, journals 2 weeks, videos 1

lent for a different-period b

week). Ifr their due date, the library user's organization will be
charged

video

0S, a

— Each borrower can be

a fine, based on the type of item(books $1/day, journals $3/day,
$5/day).

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

A

Scenario execution

Lo

The scenarios of Use Cases can be used as a kind of script for the
role-playing method of checking the CRC cards.

Start with scenarios that are part of the systems normal operation first.

Then consider the exceptional scenarios (e.g. error recover)
For each scenario decide which class is responsible. The owner of the class
then picks up his card
— When a card is in the air it is an object and can do things.
— The own announces that he needs to fulfill his responsibility.
— The responsibility is refined in to smaller tasks if possible. These smaller tasks can
be fulfilled by the same object or by interacting with other objects. If no other

appropriate class exist, maybe you need to make one. This is the fundamental
procedure of the scenario execution.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

¢ CRC cards describing an ATM

W cre

e Tuamsacson
Keeps balance Hamesellt
and wale
Transsckon CantReader Howm Seeven
Walkdase and periom Dinpemser e " Cardeader
money franuer. FRemo06 Fer Duspenier
¥! dualates hardwase hom
[y —— Acron P Remowlf
(- o user intertace.
Erwen Event
Candeader Eveni Acson
e Bt Oisplays prompen
Decodes wip. Displatees Events
Sigals inserion 2 Acsans
Dispenser
— e Arsan Transacton
ransacson s
E;"Qu‘.‘f;,... Segwence Sorren, Sercen
s rans
and oy snembie Transacsons.
RemecseDacshae Hvers
Retreves At owats Transackon
Recods Transacnons. Accoum

Sgaals communiaton
stabs

The benefits of using CRC cars

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

* CRC cards allow ... animated discussion among the team
— the participants can experience how the system will work

with CRC cards it is easy and fast to explore various alternatives
(sequence diagrams can be slow to draw)

* CRC cards are portable (no computers are required)

» CRC cards are a useful tool for teaching people the object-
oriented paradigm.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

N
w A set of steps for Structural Modeling

U. of Crete, Information Systems Analysis and Design

1. Create CRC cards by analyzing the text of the Use Cases
2. Brainstorm additional candidate classes

3. Role-play each use-case using the CRC cards.

4. Create the class diagram based on the CRC cards.

5. Review the structural model for missing and/or unnecessary classes,
attributes, operations, and relationships.

‘Yannis Tzitzikas, Fall 2005 19

&’
Tareae

Class Diagrams

): What is a Class?

A class describes a group of objects with

— similar properties (attributes),
— common behaviour (operations),
— common associations to other objects.

How we find classes?

— Use common sense
— Listen to domain experts
— CRC analysis

U. of Crete, Information Systems Analysis and Design

‘Yannis Tzitzikas, Fall 2005 21

N v .
w We define classes for several parts of the system

Typical examples:

« user interface classes
« data structure classes
« file structure classes

« document classes
* multimedia classes

« Application domain classes

« operating environment classes

U. of Crete, Information Systems Analysis and Design

‘Yannis Tzitzikas, Fall 2005 22

NS
w Attibutes and Operations

U. of Crete, Information Systems Analysis and Design

Attributes
— Units of information relevant to the description of the class
— Only attributes important to the task should be included
Operations
— Actions that instances/objects can take
— Focus on relevant problem-specific operations (at this point)
Relationships
— Generalization
« Enables inheritance of attributes and operations
— Aggregation
* Relates parts to wholes
— Association
* Miscellaneous relationships between classes

‘Yannis Tzitzikas, Fall 2005 23

): Class Diagram

among them

» Class Diagram = A description of the types of objects in the
system and the various kinds of static relationships that exist

» Two principal kinds of static relationships
— associations (a Person can own a Car)
— subtypes (a student is a kind of person)

» they also show the attributes and operations of a class and the
constraints that apply to the way objects are connected

U. of Crete, Information Systems Analysis and Design

‘Yannis Tzitzikas, Fall 2005 24

L2
w The 3 Perspectives of a Class Diagram

N
\‘b Keywords (UML v2) and Stereotypes (UML v1)

» There are 3 perspectives for the design of a class diagram (of a
conceptual model in general)
— Conceptual
« Independent of implementation. This is often called domain model.
— Specification
« Based on interfaces of the software, not the implementation
— Implementation

« Here we model the implementation classes. This is the most often used
perspective

» Perspectives are not part of the formal UML

+ By tagging classes with a stereotype, we can provide an indication
of the perspective

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

» ltis the core extension mechanism of the UML

+ If you need a modeling construct that isn’t in the UML but is similar to something
that is, you treat your construct as a stereotype (UML v.1), or keyword (UML
v.2) of the UML construct.

+ Denoted by <<name>> (or sometimes {name})
+ E.g.interface

— A UML interface is a class with only public operations with no method bodies nor
attributes (like in Java, CORBA)

— Denoted by <<interface>>
+ We could define stereotypes of classes, associations, generalization.

— We would consider them as subtypes of the meta-model types Class, Association,
Generalization

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

NEZE
w Example of a class diagram

Department

e || operations

elete()
pdate()

Computer Sc

Student

I"| constraints

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

e C
): Associations (Perspective: Conceptual)

Person employment Company
name employee employer| name
age i
<« hasPresident stockPrice()

* Represent binary relationships between instances of classes
» Each end can be assigned a name called role name

» Multiplicity constraints
— how many objects may participate in a given relationship
— multiplicity indicates lower & upper bounds

= 0..* =0..00 //no constraint
1 = 1.1 /I mandatory and single-valued association
0.1 /I single-valued association

— other more general multiplicity constraints
1..11 (for soccer teams)
3.4 (wheels of a car)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

e -
): Associations (Perspective: Conceptual)

Person 0.* employment 0.1| Company
name employee employer| name
age i
. <« hasPresident = stockPrice()

* Represent binary relationships between instances of classes
» Each end can be assigned a name called role name
» Multiplicity constraints

— how many objects may participate in a given relationship

— multiplicity indicates lower & upper bounds

* = 0.* =0..00 //no constraint
1 = 1.1 /I mandatory and single-valued association
0.1 /I single-valued association

— other more general multiplicity constraints
1..11 (for soccer teams)
3.4 (wheels of a car)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

WDas
): Another example

Order

ateReceived
Prepaid
umber : Sting
iice : Money

Customer

+line items

emind()
iilForionthInteger)()

uantty :integer
rice : Money
Satisfied :Boolean

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

MEcustomerName : String
BHcustomerAddress : String
BEphoneNumber : String

BemailAddress : String

Configurationtem
BlitemType : String
@SitemDescr : String

1.1 Invoice
BEinvoiceNumber : String
EinvoiceDate : Date
EinvoiceTotal : float
0.1
0.n
Order 1.1

MorderNumber : Sting
BEorderDate : Date
BashipAddress : Stiing
B¥orderTotal : float 0.n 1.1
B¥orderStatus : String
BisalespersonName : String

Q

Payment c omputer | StandardComputer _|
gaymewelhod : String BEconfiguredPrice : float | standardPrice :float |
ateReceived : Date Students
MamountReceived : float L I l I shoud give
the mut
contraints
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

‘ "' . .
): Associations (Perspective: Specification)

« Here associations represent

responsibilities (read & update)

Customer

[em—

+ from this diagram we may say that:
— there are methods associated with
customer that return the orders of a
given customer has made
— the reverse for Order (return the
customer)

[Personal Gustomer_| [_CorporateCustomer
[creditCara [ontactame

[creditRatng +sales rep
 — T
—

emind (.
I onont(hieger))

sine tams.

uantly infeger
price - Norey
e Satsfied :Boolean

+ we cannot infer implementation details

— l.e. if Order class contains a pointer to
Customer, or if it calls a method of

customer

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

@
8

Associations (Perspective: Specification)

« If this were an specification model

A

Associations (Perspective: Implementation)

we could infer the following
interface for an Order class

Customer

[Maispatcno.
[Mciose(

T

class Order {
public Customer getCustomer();
public Set getOrderLines();

[icrecitLimit

—
o1 Fofionth(iteger)

sine tams.

Order Line

uanity infeger
jprice - Norey
& Satsfied :Boolean

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

8

 If this were an implementation

model we could infer:

Customer

class Order {
private Customer _customer;
private Set _orderLines;

| recitimit

emind (.
I ononth(hieger))

sine tams.

Order Line

class Customer { o

ice - Noney
‘Satisfed : Boolean

private Set _orders;

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 34
‘ Lo . . . ope ‘ Lo . ope
): Associations and Navigability (perspective: Spec. and Impl)): Navigability (unidirectional associations)
Order * employment 1 Customer
» Useful only for Design and Implementation perspective (not for
conceptual) + Spec: Order has responsibility to tell you which customer it is for
— unidirectional * Impl: Order contains a pointer to Customer (and not the other way around)
— bidirectional
Order * employment 1 Customer
« Spec: Customer has responsibility to tell you his/her orders
* Impl: Customer contains a set of pointers to Orders
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 35 U. of Crete, Information Systems Analysis and Design

‘Yannis Tzitzikas, Fall 2005 36

‘ -
w Navigability (bidirectional associations)

Order * employment 1 Customer

» Spec: Both have the responsibility to tell you the other end
+ Impl: Both contain pointers to the other end

When we implement a bidirectional association in a programming language we
have to be sure that both properties are updated.

note.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

— Conceptual: Property
* e.g. a Person has a name
name — Specification:
age + e.g. a Person object can tell/set its name
— Implementation:

+ e.g. a Person object has a field (instance variable)

Person

« Like associations
— small, simple classes, such as strings, dates, money objects, and non-
object values like Integer and Real.

Attribute syntax in UML:
visibility name: type = defaultValue

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Difference between Attributes and Associations

‘ -
w Operations

Person Person

name m String

» Conceptual perspective: No difference
— attributes are usually single-valued
— can be optional, mandatory, have multiplicity
 e.g. dateReceived [0..1]: Date

+ Specification/Implementation perspective:
— attribute => navigability from the type to the attribute only
— each person has its own copy of attribute object (value semantics rather than
reference semantics)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Are the processes a class knows to carry out

— Conceptual perspective:

| Company | « Indicate the principal responsibilities (described in a
| name | couple of words)

hire(p:Person) — Specification perspective:

fire(p:Person) « Public methods on a type

promote(p,incr,

— Implementation perspective:
« plus private/protected operations

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Operations in UML

‘ -
w Operations in UML

syntax:

visibi‘lity name (parameter-list): return-type-expression {property-string}

!
« visibility:
+ : public (by all used)
- private (by owning class)
: protected (by owning class and its subclasses)

* name: a string

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

syntax:
visibility name (parameter-list): return-type-expression {property-string}

/

« parameter-list: comma separated parameters with syntax that of attributes (plus
direction), i.e. direction name: type = default value
— direction (default: in)

« in: used for input
« out: used for output
« inout: used for both

« return-type expression: comma-separated list of return types
« can be more than one

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

‘ -
w Operations in UML

N
w Operations in UML

syntax:
visibility name (parameter-list): return-type-expression {property-string}

e

* property-string: property values that apply to the given operation
— {abstract}: it requires a child to complete the implementation
— {leaf}: not polymorphic (may not be overridden) // like final in Java
— {query}: the execution of the operation leaves the state of the system unchanged
— {sequential}: only one flow should be in the object at a time
— {guarded}:
— {concurrent}
— {static}: it behaves as a global procedure

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

syntax:
visibility name (parameter-list): return-type-expression {property-string}

» Examples:
— +balanceOn(date:Date):Money

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 44
N < . N \ . .
Operations (IT) Generalization
» Constructor Person
— creates an object name
. g age
* Queries vs Modifiers tel
— query: an operation that gets a value from a class without changing its state Person Customer email
(i.e. without side effects) name name address
» we mark them with the constraint {query} E’lgf EET
o . el
— moadifier: an operation that changes the state email email
address address
« Operations vs Methods °;’rset(’;f;‘a"r‘gt Customer
— operation: the procedure call (else called method call or method declaration) custAccount
— method: the body of the procedure (else called method body) creditCard
— the above are different if we have polymorphism
« if we have a supertype and three subtypes, each of which overrides the
supertype’s “foo” operation, then we have 1 operation and 4 methods that
implement it.
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 45 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 46

\ - . .
w‘ Generalization

Person — Conceptual perspective:
name » Subset of instances
age « inheritance of properties
— Specification perspective:
» The interface of the subtype must include all elements
from the interface of the supertype.
* The subtype’s interface is said to “conform to” the
Customer sypertype interface
custAccount — Implementation perspective:
creditCard « Associated with inheritance in PLs

+ Subtypes inherit all methods and fields and may
override inherited methods

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

N
w Constraint Rules

» A diagram actually specifies a set of constraints

* However, we need to express more constraints (apart from those
we have seen so far)

* UML wants to put them inside braces { } // e.g. informal English
* There is also a formal Object Constraint Language (OCL)

— Warmer/Kleppe 98. OCL will be covered in a subsequent lecture.
« Ideally, they should be implemented by assertions in the PL

» These correspond with the “Design by Contract” notion of
invariants.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

&
Payeat

NS
w Object Diagram

Object Diagrams

» Shows instances rather than classes. Also called instance diagrams
» Can show an example configuration of objects
— itis like a collaboration diagram but without messages

form of names: instanceName:className

Party . engineering:Organization
N * children Location="Athens”
location

apps:Organization
Location="Rethimno”

tools:Organization
Location="Heraklio”

parent

Yannis:Person Nikos:Person
Location="Heraklion” Location="Moires”

1| parent

Person

U. of Crete, Information Systems Analysis and Design

Organization

‘Yannis Tzitzikas, Fall 2005 50

Presenting Class and Object Diagrams Together

NE: s
w Presenting Class and Object Diagrams Together

» Sometimes useful (if class diagrams are small)

* A model for statically analyzing code

Party
- * children
location
” definedl: has takes Scless
CHie >+ Clas 12 lethod> e < ArgType >
s
| 1| parent
Person ‘ ‘ Organization
ki EoN class level
I ! AN . H
- / instance level : e
| . // list. C+———list \@L‘—' int* acnen ate
| ut®)> int —_—
i a —Cget(’> / .
| “Athens” : / = isA
ut -
| instanceOf
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 51 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 52
Presenting Class and Object Diagrams Together
» If you are an analyst => draw conceptual models
» If you are a programmer => concentrate on specification models
m*ﬂ‘ » Draw implementation models only when you are illustrating a
1 CSubject > subject ? £ \
: . $):/é’m,nf/? L particular implementation technique
i Perso> i B technique ,;\ e -m i
‘: 3 |]
1 1 ; ;) » Don’t draw models for everything: concentrate on key aspects
f i 1 ' Simle Class Level
i RO Ui T
‘ ‘ " - - = instancef
——
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 53 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 54

I

L2
w: Reading and References

» CRC cards capture the essential parts of classes.

+ Class and object diagrams show the underlying structure of an object-oriented
system.

+ Constructing the structural model is an iterative process involving: textual
analysis, brainstorming objects, role playing, and creating the diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

« Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. CHAPTER 7

« UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin
Fowler, Addison Wesley, 2004. Chap. 3

« The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.
Jacobson, Addison Wesley, 2004, Chap 8 (advanced: 9-10)

+ CRC cards:A tutorial regarding CRC cards can be found at:
— http:/iwww.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

