
Yannis TzitzikasLecture : 9
Date : 1-11-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστημάτων
CS 351: Information Systems Analysis and Design

Structural Modeling

University of Crete, Fall 2005

Class and Object Diagrams
CRC Cards.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

Outline

• Structural modeling

• CRC Cards

• Class Diagrams
– Classes

– Attributes

– Operations

– Associations

– Generalization

– Constraints

• Object Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

What is Structural Modeling?

Its objective is to describe:

• the structure of the data that supports the business processes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

Why to do Structural Modeling ?

High level

business requirements

described in the system request

Detailed list of more

precise requirements

Functional/Structural/Behavioral

modeling of the system

Requirements

determination

modeling

• Reduces the “semantic gap” between the real world and the world of software

• Establishes a common vocabulary for analysts and users

• Represent things, ideas, and concepts of importance in the application domain

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

How we model the structure in OO Analysis and
Design?

Usually we employ 3 types of models:

• CRC Cards
– capture the essential elements of a class

• Class Diagrams
– allow the description of the types of objects in the system and the various

kinds of static relationships that exist among them

• Object Diagrams
– show example configurations of objects (instances rather than classes)

Remarks:

• We can define class diagrams from several perspectives.

CRC Cards
(Class-Responsibility-Collaboration Cards)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

CRC Cards: Objectives

CRC cards help us:

– to identify and define the classes

– define and understand how they will collaborate

• It is an informal approach to object oriented modeling

• It is used for group brain-storming

• Proposed by Ward Cunnigham in the late 1980s

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

What is a CRC card?

Class Name

Responsibilities Collaborators

Size:10 x 15 cm

Responsibilities:

• of Knowing

• of Doing

Collaborators:

• Objects working
together to service a
request

– i.e. UML associations

back sidefront side:

Attributes

Associations

• Isa

•Aggregation

•other associations

Consider the front as the
public information, and the
back as the encapsulated,
implementation details

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Example of a CRC Card

Order

Check if items in stock

Determine price

Check for valid payment

Send to delivery address

Order Line

Customer

Class Name

Responsibilities Collaborators

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Another Example

Taken from Cunnigham (Tektronix)

Grade school example

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

What we can do with CRC cards?

• CRC cards represent the static (structural) view of the system’s classes

• The dynamic description can be informally described by “role-playing”
– Other techniques for describing the dynamic behavior:

• Sequence Diagrams
– (they will be covered in the lecture about Behavioral modeling)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Working with CRC cards

...“Card Playing”:
• The team (<7 persons) sits around a table

– domain experts, analysts, oo developers

• they start by identifying a number of classes of the problem domain

• they create one card for each class
– the responsibilities should not be too many (they should fit in the card)

• they can then start role-playing the scenarios of the Use Cases
– each person can role-play one ore more cards

– they pick up on the air the classes that are active

– they move them to show the exchange of messages

• If something doesn’t seem right, they change accordingly the cards (by
changing their contents, or by creating/destroying cards)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

How we start?

• A good starting point for CRC analysis is Use Cases.

• Start by trying to identify the classes in the problem domain.
– Use the requirements document, identify the classes that are obvious in the

subset of the problem that is going to explored in this session.
• Find all of the nouns and verbs in the problem statement.

• The nouns are a good key to what class are in the system, and the verbs show
what the responsibilities are going to be.

• Use this information for the basis of a brainstorming session and identify all the
class that you see. Record them and filter the results after the brainstorming

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Example: Identifying the classes by analyzing the text

Problem statement.
– This application will support the operations of a technical library for an R&D

organization. This includes the searching for and lending of technical library
materials, including books, videos, and technical journals. Users will enter
their company ids in order to use the system; and they will enter material ID
numbers when checking out and returning items.

– Each borrower can be lent up to five items. Each type of library item can be
lent for a different period of time (books 4 weeks, journals 2 weeks, videos 1
week). If returned after their due date, the library user's organization will be
charged a fine, based on the type of item(books $1/day, journals $3/day,
videos $5/day).

Problem statement.
– This application will support the operations of a technical library for an R&D

organization. This includes the searching for and lending of technical library
materials, including books, videos, and technical journals. Users will enter
their company ids in order to use the system; and they will enter material ID
numbers when checking out and returning items.

– Each borrower can be lent up to five items. Each type of library item can be
lent for a different period of time (books 4 weeks, journals 2 weeks, videos 1
week). If returned after their due date, the library user's organization will be
charged a fine, based on the type of item(books $1/day, journals $3/day,
videos $5/day).

candidate classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Example:Identifying the responsibilities

Problem statement.
– This application will support the operations of a technical library for an R&D

organization. This includes the searching for and lending of technical library
materials, including books, videos, and technical journals. Users will enter
their company ids in order to use the system; and they will enter material ID
numbers when checking out and returning items.

– Each borrower can be lent up to five items. Each type of library item can be
lent for a different period of time (books 4 weeks, journals 2 weeks, videos 1
week). If returned after their due date, the library user's organization will be
charged a fine, based on the type of item(books $1/day, journals $3/day,
videos $5/day).

Problem statement.
– This application will support the operations of a technical library for an R&D

organization. This includes the searching for and lending of technical library
materials, including books, videos, and technical journals. Users will enter
their company ids in order to use the system; and they will enter material ID
numbers when checking out and returning items.

– Each borrower can be lent up to five items. Each type of library item can be
lent for a different period of time (books 4 weeks, journals 2 weeks, videos 1
week). If returned after their due date, the library user's organization will be
charged a fine, based on the type of item(books $1/day, journals $3/day,
videos $5/day).

candidate responsibilities

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

Scenario execution

• Start with scenarios that are part of the systems normal operation first.

• Then consider the exceptional scenarios (e.g. error recover)

• For each scenario decide which class is responsible. The owner of the class
then picks up his card
– When a card is in the air it is an object and can do things.

– The own announces that he needs to fulfill his responsibility.

– The responsibility is refined in to smaller tasks if possible. These smaller tasks can
be fulfilled by the same object or by interacting with other objects. If no other
appropriate class exist, maybe you need to make one. This is the fundamental
procedure of the scenario execution.

The scenarios of Use Cases can be used as a kind of script for the
role-playing method of checking the CRC cards.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

CRC cards describing an ATM

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

The benefits of using CRC cars

• CRC cards allow … animated discussion among the team
– the participants can experience how the system will work

• with CRC cards it is easy and fast to explore various alternatives
(sequence diagrams can be slow to draw)

• CRC cards are portable (no computers are required)

• CRC cards are a useful tool for teaching people the object-
oriented paradigm.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

A set of steps for Structural Modeling

1. Create CRC cards by analyzing the text of the Use Cases

2. Brainstorm additional candidate classes

3. Role-play each use-case using the CRC cards.

4. Create the class diagram based on the CRC cards.

5. Review the structural model for missing and/or unnecessary classes,
attributes, operations, and relationships.

Class Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

What is a Class?

A class describes a group of objects with
– similar properties (attributes),

– common behaviour (operations),

– common associations to other objects.

How we find classes?
– Use common sense

– Listen to domain experts

– CRC analysis

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

We define classes for several parts of the system

Typical examples:

• Application domain classes

• user interface classes

• data structure classes

• file structure classes

• operating environment classes

• document classes

• multimedia classes

• ...

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

Attιbutes and Operations

• Attributes
– Units of information relevant to the description of the class

– Only attributes important to the task should be included

• Operations
– Actions that instances/objects can take

– Focus on relevant problem-specific operations (at this point)

• Relationships
– Generalization

• Enables inheritance of attributes and operations

– Aggregation
• Relates parts to wholes

– Association
• Miscellaneous relationships between classes

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

Class Diagram

• Class Diagram = A description of the types of objects in the
system and the various kinds of static relationships that exist
among them

• Two principal kinds of static relationships

– associations (a Person can own a Car)

– subtypes (a student is a kind of person)

• they also show the attributes and operations of a class and the
constraints that apply to the way objects are connected

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

The 3 Perspectives of a Class Diagram

• There are 3 perspectives for the design of a class diagram (of a
conceptual model in general)
– Conceptual

• Independent of implementation. This is often called domain model.

– Specification
• Based on interfaces of the software, not the implementation

– Implementation
• Here we model the implementation classes. This is the most often used

perspective

• Perspectives are not part of the formal UML

• By tagging classes with a stereotype, we can provide an indication
of the perspective

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

Keywords (UML v2) and Stereotypes (UML v1)

• It is the core extension mechanism of the UML

• If you need a modeling construct that isn’t in the UML but is similar to something
that is, you treat your construct as a stereotype (UML v.1), or keyword (UML
v.2) of the UML construct.

• Denoted by <<name>> (or sometimes {name})

• E.g. interface
– A UML interface is a class with only public operations with no method bodies nor

attributes (like in Java, CORBA)

– Denoted by <<interface>>

• We could define stereotypes of classes, associations, generalization.
– We would consider them as subtypes of the meta-model types Class, Association,

Generalization

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

Example of a class diagram

Computer Sc Philosophy

Course

Title
Code
Level

Find()
Select()
Change()
Allocate()

Department
Name
Number
Fax Number

Find()
Delete()
Update()

Student

Name
Address
AM Code
Gender

Add()
Find()
Update()
Delete()

1..*1..* 1..*

+Can take

1..*

+Has

subtypes

association
attributes

operations

constraints

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

Associations (Perspective: Conceptual)

• Represent binary relationships between instances of classes

• Each end can be assigned a name called role name

• Multiplicity constraints
– how many objects may participate in a given relationship

– multiplicity indicates lower & upper bounds
* ≡ 0..* ≡ 0.. ∞ // no constraint

1 ≡ 1..1 // mandatory and single-valued association

0..1 // single-valued association

– other more general multiplicity constraints
1..11 (for soccer teams)

3..4 (wheels of a car)

Person

name

age
stockPrice()

Company

name

employment
employee employer

hasPresident

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

Associations (Perspective: Conceptual)

• Represent binary relationships between instances of classes

• Each end can be assigned a name called role name

• Multiplicity constraints
– how many objects may participate in a given relationship

– multiplicity indicates lower & upper bounds
* ≡ 0..* ≡ 0.. ∞ // no constraint

1 ≡ 1..1 // mandatory and single-valued association

0..1 // single-valued association

– other more general multiplicity constraints
1..11 (for soccer teams)

3..4 (wheels of a car)

Person

name

age
stockPrice()

Company

name

employment
employee employer

hasPresident
1 0..1

0..10..*

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

Another example

• Do it on class?

Personal Customer

creditCard#

Order Line

quantity : integer
price : Money
is Satisfied : Boolean

Product

1

0..*

Employee

CorporateCustomer

contactName
creditRating
creditLimi t

rem ind()
b il lForMonth(Integer)()

+sales rep

Order
dateReceived
is Prepaid
number : String
price : Money

dispatch()
close()

1..*

1

+line items

Customer
name
address

creditRating()

1

0..*

1..*

1

*

1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

Associations
examples of multiplicity constraints

ConfiguredComputer
configuredPrice : float

StandardComputer
standardPrice : float

ConfigurationItem
itemType : String
itemDescr : String

Customer
customerName : String
customerAddress : String
phoneNumber : String
emailAddress : String

Payment
paymentMethod : String
dateReceived : Date
amountReceived : float

Invoice
invoiceNumber : String
invoiceDate : Date
invoiceTotal : float

Computer

computerName : String

1..n1..n

Order

orderNumber : S tring
orderDate : Date
shipAddress : S tring
orderTotal : float
orderStatus : String
salespersonName : String

0..n

1..1

0..n

1..1

1..1

1..1

1..1

1..1

1..1

0..1

1..1

0..1

1..n0..n 1..n0..n

• Students
should give
the mult
contraints

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

Associations (Perspective: Specification)

• Here associations represent
responsibilities (read & update)

• from this diagram we may say that:
– there are methods associated with

customer that return the orders of a
given customer has made

– the reverse for Order (return the
customer)

• we cannot infer implementation details:
– I.e. if Order class contains a pointer to

Customer, or if it calls a method of
customer

Personal Customer

creditCard#

Order Line

quantity : integer
price : Money
is Satisfied : Boolean

Product

1

0..*

Employee

CorporateCustomer

contactName
creditRating
creditLimi t

rem ind()
b il lForMonth(Integer)()

+sales rep

Order
dateReceived
is Prepaid
number : String
price : Money

dispatch()
close()

1..*

1

+line items

Customer
name
address

creditRating()

1

0..*

1..*

1

*

1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Associations (Perspective: Specification)

• If this were an specification model
we could infer the following
interface for an Order class

Personal Customer

creditCard#

Order Line

quantity : integer
price : Money
is Satisfied : Boolean

Product

1

0..*

Employee

CorporateCustomer

contactName
creditRating
creditLimi t

rem ind()
b il lForMonth(Integer)()

+sales rep

Order
dateReceived
is Prepaid
number : String
price : Money

dispatch()
close()

1..*

1

+line items

Customer
name
address

creditRating()

1

0..*

1..*

1

class Order {

public Customer getCustomer();

public Set getOrderLines();

*

1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Associations (Perspective: Implementation)

• If this were an implementation
model we could infer:

Personal Customer

creditCard#

Order Line

quantity : integer
price : Money
is Satisfied : Boolean

Product

1

0..*

Employee

CorporateCustomer

contactName
creditRating
creditLimi t

rem ind()
b il lForMonth(Integer)()

+sales rep

Order
dateReceived
is Prepaid
number : String
price : Money

dispatch()
close()

1..*

1

+line items

Customer
name
address

creditRating()

1

0..*

1..*

1

class Order {

private Customer _customer;

private Set _orderLines;

class Customer {

private Set _orders;

*

1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Associations and Navigability (perspective: Spec. and Impl)

• Useful only for Design and Implementation perspective (not for
conceptual)
– unidirectional

– bidirectional

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Navigability (unidirectional associations)

Order Customeremployment 1*

• Spec: Order has responsibility to tell you which customer it is for

• Impl: Order contains a pointer to Customer (and not the other way around)

Order Customeremployment 1*

• Spec: Customer has responsibility to tell you his/her orders

• Impl: Customer contains a set of pointers to Orders

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Navigability (bidirectional associations)

Order Customeremployment 1*

When we implement a bidirectional association in a programming language we
have to be sure that both properties are updated.

note.

• Spec: Both have the responsibility to tell you the other end

• Impl: Both contain pointers to the other end

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Attributes

– Conceptual: Property
• e.g. a Person has a name

– Specification:
• e.g. a Person object can tell/set its name

– Implementation:
• e.g. a Person object has a field (instance variable)

Person

name

age

• Like associations
– small, simple classes, such as strings, dates, money objects, and non-

object values like Integer and Real.

Attribute syntax in UML:

visibility name: type = defaultValue

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Difference between Attributes and Associations

• Conceptual perspective: No difference
– attributes are usually single-valued

– can be optional, mandatory, have multiplicity
• e.g. dateReceived [0..1]: Date

• Specification/Implementation perspective:
– attribute => navigability from the type to the attribute only

– each person has its own copy of attribute object (value semantics rather than
reference semantics)

Person

name

Person

String
name 1

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Operations

Are the processes a class knows to carry out

Company

name

hire(p:Person)

fire(p:Person)

promote(p,incr)

– Conceptual perspective:
• Indicate the principal responsibilities (described in a

couple of words)

– Specification perspective:
• Public methods on a type

– Implementation perspective:
• plus private/protected operations

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Operations in UML

syntax:
visibility name (parameter-list): return-type-expression {property-string}

• visibility:

+ : public (by all used)

- : private (by owning class)

: protected (by owning class and its subclasses)

• name: a string

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Operations in UML

syntax:
visibility name (parameter-list): return-type-expression {property-string}

• parameter-list: comma separated parameters with syntax that of attributes (plus
direction), i.e. direction name: type = default value
– direction (default: in)

• in: used for input

• out: used for output

• inout: used for both

• return-type expression: comma-separated list of return types
• can be more than one

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Operations in UML

syntax:
visibility name (parameter-list): return-type-expression {property-string}

• property-string: property values that apply to the given operation
– {abstract}: it requires a child to complete the implementation

– {leaf}: not polymorphic (may not be overridden) // like final in Java

– {query}: the execution of the operation leaves the state of the system unchanged

– {sequential}: only one flow should be in the object at a time

– {guarded}:

– {concurrent}

– {static}: it behaves as a global procedure

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Operations in UML

syntax:
visibility name (parameter-list): return-type-expression {property-string}

• Examples:
– +balanceOn(date:Date):Money

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Operations (II)

• Constructor
– creates an object

• Queries vs Modifiers
– query: an operation that gets a value from a class without changing its state

(i.e. without side effects)
• we mark them with the constraint {query}

– modifier: an operation that changes the state

• Operations vs Methods
– operation: the procedure call (else called method call or method declaration)

– method: the body of the procedure (else called method body)

– the above are different if we have polymorphism
• if we have a supertype and three subtypes, each of which overrides the

supertype’s “foo” operation, then we have 1 operation and 4 methods that
implement it.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Generalization

Customer

custAccount

creditCard

Person

name

age

tel

email

address

Customer

name

age

tel

email

address

custAccount

creditCard

Person

name

age

tel

email

address

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 47

Generalization

– Conceptual perspective:
• Subset of instances

• inheritance of properties

– Specification perspective:
• The interface of the subtype must include all elements

from the interface of the supertype.

• The subtype’s interface is said to “conform to” the
sypertype interface

– Implementation perspective:
• Associated with inheritance in PLs

• Subtypes inherit all methods and fields and may
override inherited methods

Person

name

age

Customer

custAccount

creditCard

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 48

Constraint Rules

• A diagram actually specifies a set of constraints

• However, we need to express more constraints (apart from those
we have seen so far)

• UML wants to put them inside braces { } // e.g. informal English

• There is also a formal Object Constraint Language (OCL)
– Warmer/Kleppe 98. OCL will be covered in a subsequent lecture.

• Ideally, they should be implemented by assertions in the PL

• These correspond with the “Design by Contract” notion of
invariants.

Object Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 50

Object Diagram

• Shows instances rather than classes. Also called instance diagrams

• Can show an example configuration of objects
– it is like a collaboration diagram but without messages

form of names: instanceName:className

Party

location

Person Organization
1 parent

* children
engineering:Organization

Location=“Athens”

tools:Organization
Location=“Heraklio”

apps:Organization
Location=“Rethimno”

Yannis:Person
Location=“Heraklion”

Nikos:Person
Location=“Moires”

parent

parent

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 51

Presenting Class and Object Diagrams Together

• Sometimes useful (if class diagrams are small)

Party

location

Person Organization
1 parent

* children

parent

Yannis

Nikos
engineering

tools

apps

“Athens”

“Heraklio”

“Rethimno”

“Moires”

“Heraklio”
parent

class level

instance level

instanceOf

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 52

Presenting Class and Object Diagrams Together

S_Class

Token

File Class Method ArgType
definedIn has takes

list.C list get()

put() int

int*

ordlist get()

put()
isA

attribute

• A model for statically analyzing code

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 53

Presenting Class and Object Diagrams Together

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 54

Tips

• If you are an analyst => draw conceptual models

• If you are a programmer => concentrate on specification models

• Draw implementation models only when you are illustrating a
particular implementation technique

• Don’t draw models for everything: concentrate on key aspects

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 55

Summary

• CRC cards capture the essential parts of classes.

• Class and object diagrams show the underlying structure of an object-oriented
system.

• Constructing the structural model is an iterative process involving: textual
analysis, brainstorming objects, role playing, and creating the diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 56

Reading and References

• Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom,
D. Tegarden, Wiley, 2005. CHAPTER 7

• UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition) by Martin
Fowler, Addison Wesley, 2004. Chap. 3

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J. Rumbaugh, I.
Jacobson, Addison Wesley, 2004, Chap 8 (advanced: 9-10)

• CRC cards:A tutorial regarding CRC cards can be found at:

– http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/

