

Project Initiation

System Planning Feasibility Analysis

Lecture : 4 Date : 6-10-2005 Yannis Tzitzikas University of Crete, Fall 2005

- Project Identification
 - System Request
- System Planning
- Feasibility Analysis
 - Technical Feasibility
 - Economic Feasibility
 - Organizational Feasibility
- Project Selection

- It is a document that describes the **business reasons** for building a system and the **value** that the system is expected to provide.
- · It lists key elements of the project
 - Project name
 - Project sponsor
 - Business need
 - Functionality
 - Expected value
 - Special issues or constraints

Yannis Tzitzikas, Fall 2005

5

System Request (examples)

Business need

- increase sales
- improve customer service
- decrease product defeacts
- decrease production costs

• Functionality

- provide online access to information
- capture customer demographic information
- produce management reports
- include online user support
- provide personalized services

Business (expected) value

- 5% increase in sales
- 10.000 Euro savings from decreased supply costs

Special Issues or Constraints

- System needed before next April
- System should be integrated with the existing system

System planning precedes software development and determines which products can be most effective to the organization

System Planning

- IS projects have to be planned, i.e.:
 - identified
 - classified
 - ranked and selected for initial development, for improvement or perhaps for elimination

Business strategy can be determined by various processes known as

- strategic planning
- business modeling
- business process reengineering
- strategic alignment
- information resource mgmt

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

9

System Planning Approaches

- System planning can be carried according to various approaches:
 - **SWOT** (Strengths, Weaknesses, Opportunities, Threats)
 - VCM (Value Chain Model)
 - BPR (Business Process Reengineering)
 - ISA (Information System Architecture)
- All have an important common denominator: they are concerned with <u>effectiveness</u> (doing the right things) rather than <u>efficiency</u> (doing things right).

Yannis Tzitzikas, Fall 2005

13

System Planning VCM (Value Chain Model)

- Assesses competitive advantage by <u>analyzing the full chain</u> of activities in an organization
 - from raw materials to final products sold and shipped to customers
- Which value chain configurations will yield the greatest competitive advantages?
- Organizational functions are categorized into:
 - primary activities
 - they create or add value to a final product
 - <u>support activities</u>
 - · they are essential but they do not enrich the product

primary activities (they create or add value to a final product) – 1. Inbound logistics (επιμελητεία εισερχομένων) - 2. Operations (λ ειτουργίες) - 3. Outbound logistics (επιμελητεία εξερχομένων) · e.g. distribution - 4. Sales and marketing ($\pi\omega\lambda\eta\sigma\epsilon$) c kal $\mu\alpha\rho\kappa\epsilon\tau$) - 5. Services (υπηρεσίες) support activities (they are essential but they do not enrich the product) - 1. Administration and infrastructure (διαχείριση και υποδομές) - 2. Human resource mgmt (διαχείριση ανθρώπινου δυναμικού) – 3. Research and development (έρευνα και ανάπτυξη) – 4. IS development (πληροφοριακά συστήματα) 15 U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005

Premise:

- today's organizations must <u>reinvent themselves</u> and abandon the functional decomposition, hierarchical structures and operational principles that they are now using
 - most current organizations are structured in vertical units (focused on functions, products or regions)
 - no-one employee or department is responsible for a business process which is defined as "... a collection of activities that takes one or more kinds of input and creates an output that is of value to the customer"
 - the most visible difference between a process enterprise and a traditional organization is the existence of process owners

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

17

System Planning BPR (Business Process Reeingineering)

Objective of BRP:

- to radically <u>redesign business processes</u> in an organization (hence, process redesign)
 - the major hurdle lies in the need to embed a horizontal process in a traditional vertical mgmt structure
 - BPR requires changing the organization around the development teams as the primary organizational units
 - these teams are responsible for one or more end-to-end business processes

Παράδειγμα: Από την κλασσική οργάνωση των δημοσίων υπηρεσιών στα ΚΕΠ (Κέντρα Εξυπηρέτησης Πολιτών)

	A. What	B How	C.Where	D. Who	E.When	F.Why
1. Planner						
2. Owner						
3. Designer						
4. Builder						
5. Subcontractor						
L			<u>u</u>			

Yannis Tzitzikas, Fall 2005

21

Information Systems and Information Technology Strategies (the 3 layers of strategic thinking)

The best managed organizations separate their strategic thinking into 3 layers

- Business Strategy
- Information Systems Strategy
- Information Technology Strategy

Information Systems and Information Technology Strategies

- Once the need for the system and business requirements have been defined, it is time to create a <u>more detailed business case to</u> <u>better understand the opportunities and limitations associated with</u> <u>the proposed project.</u>
- Feasibility analysis guides the organization in determining whether to proceed with a project. It also identifies the important <u>risks</u> associated with the project that must be addressed if the project is approved.

- Dimensions of Feasibility
- Cost/Benefit Analysis
- Risk Analysis
- Comparing Alternatives
- Information Acquisition
- Feasibility Study Contents

- It is about judging whether possible benefits of the projects are worthwhile
- This is often called cost-benefit analysis
 - As soon as a specific solution has been identified, the analyst can weight the costs and benefits of each alternative

Its purpose it to answer the questions

- Is the project justified (benefits outweight costs)?
- Can the project be done, within cost constraints ?
- What is the maximal cost to attain a certain system ?

Difficulties

- discovering and assessing benefits and costs
- they can both be intangible, hidden and/or hard to estimate
- it's also hard to rank multi-criteria alternatives

U. of Crete, Information Systems Analysis and Design

Types of Benefits

- Monetary
 - when Euro values can be calculated
- <u>Tangible</u> (Quantified)(χειροπιαστά)
 - when benefits can be quantified, but Euro values can't be calculated
- Intangible (απροσδιόριστα)
 - when neither of the above applies

How to identify benefits ?

 By organizational level (operational, lower/middle/higher management) or by department (production, purchasing, sales,...)

Yannis Tzitzikas, Fall 2005

JM

29

JМ 30

- · Project-related
 - Development and purchasing costs
 - Installation, training and conversion costs
- Operational (on-going)
 - Maintenance: hardware, software, facilities
 - Personnel: operation, maintenance
- For a small business that wants to introduce a PC-based IS, these cost categories amount to:
 - project costs: purchase hardware, software, furniture; customize software, train, install, file conversion
 - on-going costs: operating the system (data entry, backups, helping users, vendors, etc.) maintenance (software) and user support, hardware and software maintenance, supplies, ...

Yannis Tzitzikas, Fall 2005

31

Accounting Methods (τρόποι λογιστικής)

- Payback Analysis (Αποζημίωσης/Απόσβεσης)
 - how long it will take to pay back the project, and accrued costs:
 - Total costs (initial + incremental) Yearly return (or savings)

• Return on Investment Analysis (Απόδοση Επένδυσης)

- Compares the lifetime profitability of alternative solutions
- (Lifetime benefits Lifetime costs)/Lifetime costs
- Net Present Value Analysis (Καθαρή σημερινή αξία)
 - Determines the profitability of the new project in terms of today's monetary values. Will tell you that if you invest in the proposed project, after n year you will have X profit (or loss) on your investment

Discount rate (προεξοφλητικό επιτόκιο)

- A Euro today is worth more than a Euro tomorrow...
- So we should <u>normalize</u> the Euro values so that to refer to current year Euro values
- This requires using a *discount rate*, which measures the opportunity cost of investing money. The number is company/industry-specific
- To calculate the *present value*, I.e. the real Euro value given the discount rate d, y years from now, we the use the formula

PresentValue(y) =
$$\frac{1}{(1+d)^y}$$

- For example, for d=0.12 we get:
 - PresentValue(1) = $1/(1+0.12)^{1} = 0.893$
 - PresentValue(2) = 1/(1+0.12)² = 0.797

U. of Crete, Information Systems Analysis and Design

WINE ST

Payback Analysis

• To calculate in present Euro values:

- Total costs (initial + incremental) - Yearly return (or savings)

• Example:

CASH FLOW	Year	Year	Year 2	Year 3	Year 4	Year 5	Year
COSTS	0	1	2	3	4	5	6
Development cost	33000	0	0	0	0	0	0
Operational cost	0	0	4000	4500	5500	6000	6000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
Present value of annual costs	33000	0	3366.72	3474.826	3896.339	3899.588	3577.604
Total present value of lifetime cost	33000	33000	36366.72	39841.55	43737.88	47637.47	51215.08
BENEFITS							
Benefit from opereration	0	4000	16000	17000	20000	22000	23000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
present value of annual benefits	0	3669.725	13466.88	13127.12	14168.5	14298.49	13714.15
Total present value of lifetime cost	0	3669.725	17136.6	30263.72	44432.23	58730.72	72444.87
Lifetime benefit - Lifetime cost (present value	-33000	-29330.3	-19230.1	-9577.82	694.3438	11093.25	21229.79
					aposvesh		
						ROI=	0.414522

Yannis Tzitzikas, Fall 2005

33

- After discounting all costs and benefits, subtract the sum of the discounted costs from the sum of the discounted benefits to determine the net present value
- When comparing multiple solutions or projects, the one with the highest positive net present value is the best investment.

CASH FLOW	Year	Year	Year 2	Year 3	Year 4	Year 5	Year
COSTS	0	1	2	3	4	5	6
Development cost	33000	0	0	0	0	0	0
Operational cost	0	0	4000	4500	5500	6000	6000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
Present value of annual costs	33000	0	3366.72	3474.826	3896.339	3899.588	3577.604
Total present value of lifetime cost	33000	33000	36366.72	39841.55	43737.88	47637.47	51215.08
BENEFITS							
Benefit from opereration	0	4000	16000	17000	20000	22000	23000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
present value of annual benefits	0	3669.725	13466.88	13127.12	14168.5	14298.49	13714.15
Total present value of lifetime cost	0	3669.725	17136.6	30263.72	44432.23	58730.72	72444.87
						\sim	
Lifetime benefit - Lifetime cost (present value	-33000	-29330.3	-19230.1	-9577.82	694.3488	11093.25	2 229.79
					aposvesh	\mathbf{F}	
						ROI=	0.414522

Net present value after 5 years <

• (Lifetime benefits - Lifetime costs)/Lifetime costs

• The alternative with the highest ROI is the best.

CASH FLOW	Year	Year	Year 2	Year 3	Year 4	Year 5	Year
COSTS	0	1	2	3	4	5	6
Development cost	33000	0	0	0	0	0	0
Operational cost	0	0	4000	4500	5500	6000	6000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
Present value of annual costs	33000	0	3366.72	3474.826	3896.339	3899.588	3577.604
Total present value of lifetime cost	33000	33000	36366.72	39841.55	43737.88	47637.47	51215.08
BENEFITS							
Benefit from opereration	0	4000	16000	17000	20000	22000	23000
discount factors for 9%	1	0.91743	0.84168	0.77218	0.70843	0.64993	0.59627
present value of annual benefits	0	3669.725	13466.88	13127.12	14168.5	14298.49	13714.15
Total present value of <u>lifetime cost</u>	0	3669.725	17136.6	30263.72	44432.23	58730.72	72444.87
Lifetime benefit - Lifetime cost (present valu	-33000	-29330.3	-19230.1	-9577.82	694.3438	11093.25	21229.79
					aposvesh		
					(ROI=	0.414522

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

- Risk Analysis
 - One of the criteria for comparing alternatives often has to do with an <u>evaluation of the risks for each alternative</u>
 - Examples
 - one alternative may have a higher risk of rejection by users of the system.
 - one alternative may have better support from top management, which means that it has lower risk of failure because top management changed its mind.

37

- · inadequate participation by users in development process
- poor project management
- poorly trained developers

Political/Environmental

- · weak upper management commitment
- changing environment, technological environment, government action

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

39

Feasibility Analysis Matrix:

Description	Alternative 1	Alternative 2	Alternative 3
Operational feasibility			
Technical feasibility			
Economic feasibility			
Cost			
Payback period			
ROI			
Schedule feasibility			

Feasibility Analysis Matrix: Examples

Des	cription	Alternative 1	Alternative 2	Alternative 3
Оре	erational feasibility	1		
Tec	hnical feasibility			
Eco	nomic feasibility			
	Cost			
	Payback period			
	ROI			
Sch	edule feasibility			
• The k	ousiness process shou	ıld be changed	because with	h this system
• The e	employees will use it ri	ight away		
• the e	mployees will love it b	ecause it will so	olve that prob	olem
• The r	manager strongly supp	oorts this projec	t	
• There	e is one department di	rector who is a	gainst this pro	oject

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

41

Feasibility Analysis Matrix: Examples

Description	Alternative 1	Alternative 2	Alternative 3
Dperational feasibility			
Fechnical feasibility	1		
Economic feasibility			
Cost			
Payback period			
ROI			
Schedule feasibility			
e should hire an expert in	C++		

- We should hire an expert in COBOL because the existing system ...
- We will have to master PowerBuilder
- We don't yet know if this is technical possible because

Feasibility Analysis Matrix: Examples

(a) Prioritise the criteria <Economic, Technical, Operational, Schedule> (b) Assign a weight to each criterion 0.3*Economic + 0.3* Technical + 0.3* Operational + 0.1* Feasibility (c) Eliminate unsatisfactory alternatives by "acceptability" threshold values e.g. Economic>80, Technical >60, Operational >90, Schedule>30 and then apply (a) or (b) (d) Do a more detailed analysis based on multi-criteria decision making taking into account the associated risks and preferences over risks (decision theory, utility theory)

Description	Weight	Alternative 1	Alternative 2	Alternative 3
Operational feasibility	30%	50	90	60
Technical feasibility	30%	60	60	80
Economic feasibility	30%			
Cost		see Appendix B	see Appendix B	see Appendix B
Payback period				
ROI		60	40	80
Schedule feasibility	10%	90	60	80
SCORE	100%	72	57	74

Yannis Tzitzikas, Fall 2005

45

Expressing Preferences over Alternatives with Uncertainty

• >> Decision Analysis and Utility Theory

- Techniques:
 - Study available documents and data
 - Sampling
 - Interviews
 - Questionnaires
 - Observation

Yannis Tzitzikas, Fall 2005

47

Feasibility Study Contents

- Purposes and scope of the study
 - objectives, who commissioned it, who did it, sources of information, process used for the study, how long did it take, ...
- Description of the current situation
 - organizational setting, current system(s), ...
- Related factors and constraints
- Problems and requirements
- Objectives of the new system
- Possible alternatives (including possible the present situation)
- Analysis of alternatives
 - description of each alternative, evaluation w.r.t. criteria, cost/benefit analysis
- Recommendations
 - what is recommended, implications, what to do next, sometimes it makes sense to recommend an interim solution and a permanent solution
- Appendices that include supporting material

- Systems Analysis and Design with UML Version 2.0 (2nd edition) by A. Dennis, B. Haley Wixom, D. Tegarden, Wiley, 2005. CHAPTER 3
- **Requirements Analysis and System Design** (2nd edition) by Leszek A. Maciaszek, Addison Wesley, 2005, CHAPTER 1
- **Object-Oriented Systems Analysis and Design Using UML** (2nd edition) by S. Bennett, S. McRobb, R. Farmer, McGraw Hil, 2002, CHAPTER 1
- Modern Systems Analysis & Design (4th Edition) by Jeffrey A. Hoffer, Joef F. George, Joseph S. Valacich, Prentice Hall, 2005, CHAPTERS 4,5
- Lecture Notes of John Mylopoulos, CS340 Information Systems Analysis and Design, University of Toronto
- Ralph L. Keeney and Howard Raiffa, *Decisions with Multiple Objectives: Preferences and Value Tradeoffs*, John Wiley & Sons, 1976

Yannis Tzitzikas, Fall 2005

49