
Yannis TzitzikasLecture : 3b
Date : 4-10-2005

HY 351: Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων
CS 351: Information Systems Analysis and Design

UML: Introduction and Overview

University of Crete, Fall 2005

How UML came up?
Overview of the UML Techniques and their uses

Why do analysis and design using UML ?
Hello World! in UML

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 2

UML Introduction

• Successor to the wave of object-oriented analysis and design
(OOA&D) methods that appeared in the late ‘80s and early ‘90s.

• Unifies the methods of
– Booch
– Rumbaugh (OMT)
– Jacobson

• Now it is an OMG (Object Management Group) standard

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 3

How we got here?

• 1980: C++
– Need to adapt the design methods of (‘70s-’80s) for the object-oriented world

• 1989-91 “Recursive Design Approach” (Sally Shlaew, Steve Meller)
• P. Coad and Ed. Yourdon (books 1991, 1991b, 1995,1999)
• Responsibility-Driven Design (Wirfs-Brock 90)
• Class-Responsibility-Collaboration (CRC Cards) Beck and Cunnigham
• Grady Booch: work with Rational Software (for Ada systems)
• Jim Rumbaugh: Object-Modeling Technique (OMT)
• The most conceptual of these books: Martin and Odell, 94
• Ivar Jacobson (introduced the concept of use cases)

• ∆εν υπήρχε διάθεση για τυποποίηση (standardization)
– Κάθε ένας χρησιµοποιούσε τους δικούς του συµβολισµούς και µεθοδολογία

Famous joke:
- What is the difference between a methodologist and a terrorist?
- You can negotiate with a terrorist!

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 4

The birth of UML

• Jim Rumbaugh and G. Booch => Rational Software

• 1996: The 3 amigos (James Rumbaugh, Grady Booch, Ivar
Jacobson)
– UML Version 1.1 Became OMG standard

• Current version: UML Version 2.0, 2003

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 5

The objective of UML

To provide a common vocabulary of object-oriented terms and
diagramming techniques that is rich enough to model any systems
development project from analysis through implementation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 6

How many UML diagrams exist?

• UML 2.0 defines 14 diagrammatic techniques used to model a
system.

• Diagrams for modeling the structure of a system
– Class, Object, Package, Deployment, Component, Composite Structure

• Diagrams for modeling the behavior of a system
– Activity, Sequence, Communication, Interaction Overview, Timing, State,

Protocol State Machine, Use Case Diagrams

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 7

When we use what diagram?

• Different diagrams are appropriate for different phases of the
project

• Some diagrams can be used in more than one phase. They start
from a very very abstract (and conceptual) fοrm and evolve to
include details that can even lead to code generation.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 8

Notations and Meta-Models
(αυστηρότητα έναντι ευχρηστίας)

• UML: defines a notation and a meta-model
– Notation: graphical stuff we see in models, i.e. syntax

• Question: What exactly is meant by each one symbol ?
– ι.e. what is a class, what is a multiplicity ?

• There is not a formal interpretation.
• Formal interpretations can be found in the area of formal methods

– where design and specifications are represented using derivatives of
predicate calculus

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 9

Why not natural language?

Too imprecise and gets tangled when comes to
more complex concepts

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 10

Why not formal methods?

Even if we can prove that a program satisfies a mathematical
specification, there is no way to prove that the mathematical
specification actually meets the real requirements of the system.

Other problems of formal methods:
• Often lead to getting bogged down (βαλτώνω) in lots of minor details
• Hard to understand and manipulate

– often harder to deal with that programming languages
– and you can’t even execute them!

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 11

Why diagrams ?
create table Component (

C_P_ID_Par char(10) not null,
ID_Par char(10) not null,
Quantity char(1) not null,
constraint ID_Component primary key

(C_P_ID_Par, ID_Par));
create table Deparment (

ID_Dep char(10) not null,
DepId char(1) not null,
DepName char(1) not null,
Address char(1) not null,
constraint ID primary key (ID_Dep));

create table Dependent (
FirstName char(1) not null,
LastName char(1) not null,
YearOfBirth char(1) not null,
Supporter char(10) not null);

create table Employee (
ID_Emp char(10) not null,
EmpId char(1) not null,
FirstName char(1) not null,
LastName char(1) not null,
MiddleName char(1) not null,
YearOfBirth char(1) not null,
Salary char(1) not null,
ID_Dep char(10),
constraint ID primary key (ID_Emp));

create table Part (
ID_Par char(10) not null,
PartNo char(1) not null,
PartDescription char(1) not null,
QuantityOnHand char(1) not null,
constraint ID primary key (ID_Par));

-- Constraints Section
-- ___________________

alter table Component add constraint FKconsistsOf
foreign key (ID_Par)
references Part;

alter table Component add constraint FKCom_Par
foreign key (C_P_ID_Par)
references Part;

alter table Dependent add constraint FKEmp_Dep
foreign key (Supporter)
references Employee;

alter table Employee add constraint FKDept_Emp
foreign key (ID_Dep)
references Deparment;

alter table Project add constraint FKProj_Manager
foreign key (ID_Emp)
references Employee;

alter table Proj_Work add constraint FKPro_Pro
foreign key (ID_Pro)
references Project;

alter table Proj_Work add constraint FKPro_Emp
foreign key (ID_Emp)
references Employee;

alter table Supp_Part add constraint FKSup_Sup_1
foreign key (ID_Sup)
references Supplier;

alter table Supp_Part add constraint FKSup_Par_1
foreign key (ID_Par)
references Part;

alter table Supp_Part_Proj add constraint FKSup_Sup
foreign key (ID_Sup)
references Supplier;

alter table Supp_Part_Proj add constraint FKSup_Pro
foreign key (ID_Pro)
references Project;

alter table Supp_Part_Proj add constraint FKSup_Par
foreign key (ID_Par)
references Part;

create table Project (
ID_Pro char(10) not null,
ProjId char(1) not null,
Title char(1) not null,
ID_Emp char(10),
constraint ID primary key (ID_Pro));

create table Proj_Work (
ID_Emp char(10) not null,
ID_Pro char(10) not null,
timePercentage char(1) not null,
constraint ID_Proj_Work primary key

(ID_Pro, ID_Emp));
create table Supplier (

ID_Sup char(10) not null,
SupId char(1) not null,
Name char(1) not null,
Status char(1) not null,
Address char(1) not null,
constraint ID primary key (ID_Sup));

create table Supp_Part (
ID_Par char(10) not null,
ID_Sup char(10) not null,
constraint ID_Supp_Part primary key

(ID_Par, ID_Sup));
create table Supp_Part_Proj (

ID_Par char(10) not null,
ID_Pro char(10) not null,
ID_Sup char(10) not null,
Quantity char(1) not null,
constraint ID_Supp_Part_Proj primary key

(ID_Par, ID_Sup, ID_Pro));

A picture is worth a thousands of words
U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 12

Overall picture

Natural language

Formal Methods Code

imprecise

precise

executableNon-executable

UML

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 13

Overall picture

Natural language

Formal Methods Code

imprecise

precise

executableNon-executable

UML

CASE tools

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 14

Overall picture

Natural language

Formal Methods Code

imprecise

precise

executableNon-executable

UML

Reverse Engineering

E.g. CodeLogic

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 15

Overall picture

Natural language

Formal Methods Code

imprecise

precise

executableNon-executable

UML

+OCL

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 16

Most OO methods have very little rigor

• Their notation appeals to intuition rather than formal definition
• This does not seem to have done much harm. These methods may

be informal, but many people still find them useful - and it is
usefulness that counts.

• However, OO people are looking for ways to improve the rigor of
methods without sacrificing their usefulness
– one way: to define a meta-model: a diagram, usually a class diagram, that

defines the notation

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 17

How strictly should you stick to the modeling
language?

• Depends on the purpose
– in case you use a CASE tool that generates code, you have to stick to the

CASE tool’s interpretation of the modeling language in order to get
acceptable code

– in case you use the diagrams for communication purposes, you have a little
more leeway

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 18

List of UML Diagrammatic techniques and their uses

• Use Case Diagram (διάγραµµα περιπτώσεων χρήσης)
• Class Diagram (διάγραµµα κλάσεων)
• Interaction Diagram (διάγραµµα αλληλεπίδρασης)

– Sequence Diagrams (διαγράµµατα ακολουθίας)
– Collaboration Diagrams (διαγράµµατα συνεργασίας)

• State Diagram (διάγραµµα καταστάσεων)
• Activity Diagram (διαγράµµατα δραστηριοτήτων)
• Deployment Diagram (διαγράµµατα ανάπτυξης)
• Package Diagram (διάγραµµα πακέτων)
• Component Diagram (διάγραµµα εξαρτηµάτων)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 19

Use Cases

• Use Case = a set of scenarios tied together by a common user goal
• Scenario = a sequence of steps describing an interaction (user vs system)

Buy a Product
1. Customer browses through catalog and selects items to buy
2. Customer goes to check out
3. Customer fills in shipping information (address, next-day or 3-day delivery)
4. System presents full pricing information, including shipping
5. Customer fills in credit card information
6. System authorizes purchase
7. System confirms sale immediately
8. System sends confirming email to customer

Alternative: Authorization Failure
At step 6, system fails to authorize credit purchase
Allow customer to re-enter credit card information and re-try

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 20

UML Techniques
Use Case Diagrams (διαγρ. περιπτώσεων χρήσης)

Elicits requirements from users in meaningful chunks. Construction
planning is build around delivering some use cases in each iteration.
Basis for system testing.

Display Standard
Computer Configuration

Build Computer
Configuration

Verify and Accept
Customer Payment

Order Configured
Computer

Warehouse

Customer

Request
Salesperson Contact

<<extend>>

Inform Warehouse
about Order

Print Invoice
Display

Order Status

Salesperson

Used for: Analysis
Concerns: Behavior

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 21

UML Techniques
Class Diagrams (διαγράµµατα κλάσεων)

Shows static structure of concepts, types, and classes. Concepts show how users
think about the world; types show interfaces of software components; classes
show implementation of software components

ConfiguredComputer
configuredPrice : float

StandardComputer
standardPrice : float

ConfigurationItem
itemType : String
itemDescr : String

Customer
customerName : String
customerAddress : String
phoneNumber : String
emailAddress : String

Payment
paymentMethod : String
dateReceived : Date
amountReceived : float

Invo ice
invoiceNumber : String
invoiceDate : Date
invoiceTotal : float

Computer
computerName : String

1..n1..n

Order
orderNumber : S tring
orderDate : Date
shipAddress : S tring
orderTotal : float
orderStatus : String
salespersonName : String

0..n

1..1

0..n

1..1

1..1

1..1

1..1

1..1

1..1

0..1

1..1

0..1

1..n0..n 1..n0..n

Used for: Analysis/Design
Concerns: Structure

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 22

UML Techniques
Object Diagrams (διαγράµµατα aντικειµένων)

Shows the relationships between the objects in the system. Used for: Analysis/Design
Concerns: Structure

Party

location

Person Organization
1 parent

* children

Class diagram

engineering:Organization
Location=“Athens”

tools:Organization
Location=“Heraklio”

apps:Organization
Location=“Rethimno”

Yannis:Person
Location=“Heraklion”

Nikos:Person
Location=“Moires”

parent

parent

Object diagram

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 23

UML Techniques
Ιnteraction Diagrams (διαγρ. αλληλεπίδρασης)

Show how several objects collaborate in a single use case
(A) Sequence Diagrams

Used for: Analysis/Design
Concerns: Behavior

 : Order : Order Line a : Product : Customer

getQuantity

getProduct

getPricingDetails

calculateBasePrice

calculateDis counts

getDiscountInfo

calculatePrice

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 24

UML Techniques
Ιnteraction

Show how several objects collaborate in a single use case
(B) Collaboration Diagrams

 : PCustomConfiguration : EComputer

 : EConfigurationItem : PConfigurationSummary

1. submit()
1.1.1. getComputerName()

1.1.3. getPrice()

1.2.1. disp lay()

1.1. getCurrentConf()

1.2. new(currentConf)

1.1.2. getItemDescr()

Used for: Analysis/Design
Concerns: Behavior

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 25

UML Techniques
State Diagrams (διάγρ. καταστάσεων)

Shows how single object behaves across many use cases

Unpaid Partly Paid

Fully Paid

partial payment

final payment
final payment

Pending

Future Order

New Order Back Order

Filled

Future Order

Ready to Ship

New Order Back Order

Canceled

[canceled]

stock not available

stock available[ship date in future]

stock available[ship date in future]

stock available[ship date now] / configureComputer

ship[accepted]

[canceled]

Used for: Analysis/Design
Concerns: Behavior

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 26

UML Techniques
Activity Diagrams (διαγρ. δραστηριοτήτων)

Illustrate business workflows independent of classes, the flow of
activities in a use case, or detailed design of a method.

Display Current
Computer

Get Order
Request

Display Purchase
Form

Get Purchase
Details

Store Order

Email Order
Details

[timeout]

[incomplete]

[OK]

Used for: Analysis/Design
Concerns: Behavior

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 27

UML Techniques
Package Diagrams (διαγρ. πακέτων)

Shows groups of classes and
dependencies among them

It can also group other UML
elements together

Used for: Analysis/Design/Implenent
Concerns: Structure

java

applet

awt

lang

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 28

UML Techniques
Package Diagrams

presenta tion
<<subsystem>>

contro l
<<subsystem>>

entity
<<subsystem>>

mediator
<<subsystem>>

foundation
<<subsystem>>

Cinterface

Minterface

Einterface

Finterface

configuration view order view

customers

computers

orders

configuration
provider

order monitor

data mapper

identity map

lazy load unit of work

crud

connection

schema

presentation
<<subsystem>>

control
<<subsystem>>

entity
<<subsystem>>

mediator
<<subsystem>>

foundation
<<subsystem>>

Cinterface

Minterface

Einterface

Finterface

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 29

UML Techniques
Component Diagrams (διαγρ. εξαρτηµάτων)

ProductList ProductDisplay

Configuration

Purchase

OrderTracking

Used for: Phys./Design/Implenent
Concerns: Structure

• Component: a logical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 30

UML Techniques
Component Diagrams (διαγρ. εξαρτηµάτων)

Ticket Seller

normal
sales

priority
sales

Ticket Sales

Ticket Sales

port name Interface name

Load Attractions

attractions

charging

Credit Cards

Booking

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 31

UML Techniques
Deployment Diagrams (διαγρ. ανάπτυξης)

Shows physical layout of components on hardware nodes

Client
Browser

Web Server

Database
Server

HTTP

JDBC, SQLJ

Used for: Phys./Design/Implenent
Concerns: Structure

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 32

UML Techniques
Deployment Diagrams (διαγρ. ανάπτυξης)

Browser Client

browser

Rich Client
{OS=Windows}

Lala.exe

Web server
{OS=Solaris}

{web server=apache}
{number deployed =3}

Lala.war

Application Server

Oracle DBMS

Appl

JDBC

Java RMI/LAN

http/LANhttp/Internet

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 33

Why do Analysis and Design using UML ?

• The real point of software development is executable code
– diagrams are, after all, just pretty pictures
– no user is going to thank you for pretty pictures; what a user wants is

software that executes

• So we must ask ourselves
– why we are using UML?
– How it will help us when it comes down to writing the code ?

• Three main reasons
– [A] Communication
– [B] Learning OO
– [C] Communication with Domain Experts

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 34

Why do Analysis and Design using UML ?
[A] Communication

• Fundamental reason to use UML
– Natural language

• too imprecise and gets tangled when comes to more complex concepts
– Code

• precise but too detailed

• So we use UML when we want a certain amount of precision but
don’t want to get lost in details
– this doesn’t mean avoid details, but use UML to highlight important details.

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 35

Why do Analysis and Design using UML ?
[A] Communication (II)

• Examples
– You are a consultant to you want in a very short time to understand a big

project
• UML gives you an overall view of the system
• class diagrams tell you what kinds of abstractions are used and where are the

questionable parts (that need further work)
• if you want a deeper view and see how classes collaborate, then you can see the

interaction diagrams
– You work for an organization as a system analyst/designer. You express

your analysis and design using UML and then another company undertake
the implementation.

• For the same reasons it is useful for the members of a project
team
– members have a common view (axon of reference)
– new members enter the game quickly
– less risk for the team if a person leaves the project

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 36

Why do Analysis and Design using UML ?
[B] Learning OO

• It takes time to learn and use well OO
– CRC cards is a very useful technique to learn OO (not part of UML)
– Interaction diagrams

• make the message structure explicit and thus are useful for highlighting over-
centralized designs

– Class diagrams
• quite similar to data models
• danger: develop a class model that is data oriented rather than being

responsibility oriented
– Patterns:

• gets you concentrate on good OO designs and to learn by following an example

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 37

Why do Analysis and Design using UML ?
[C] Communication with Domain Experts

• Use Cases:
– US: a snapshot of one aspect of your system
– The sum of all Use Cases: the external picture of your system
– Very good tool to understand what users want

• Class diagrams
– Help, especially those built from a “conceptual perspective”

• Activity diagrams
– Useful if workflow processes are an important part of the user’s world

• as they support parallel processes, can help you get away from unnecessary
sequences

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 38

Hello World! in UML

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {

g.drawString("Hello world!", 50, 25);
}

}

<html>
<body>
<APPLET CODE="HelloWorld.class">
</APPLET>
</body>
</html>

HelloWorld.javamypage.html

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 39

Hello World! in UML

HelloWorld

paint()

g.drawString("Hello World!",
10, 10)

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {

g.drawString("Hello world!", 50, 25);
}

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 40

Hello World! in UML

HelloWorld

paint()

Appplet Graphics

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {

g.drawString("Hello world!", 50, 25);
}

}

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 41

Hello World! in UML

Appplet

Object

Container

Panel

HelloWorld

paint()

Im ageObserver

Component

By studying the Java libraries
for Applet and Graphics the
entire hierarchy is revealed:

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 42

Hello World! in UML

java

applet

awt

lang

Hello World

By studying how the Java libraries are organized (packaged):

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 43

Hello World! in UML

How Java classes work together?

How the paint operation gets invoked ?

By studying Java libraries we see that paint
is inherited from component

Appplet

Object

Container

Panel

HelloWorld

paint()

Im ageObserver

Component paint()

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 44

Hello World! in UML

root:Thread :Toolkit ComponentPeer target:
HelloWorld

run

callbackLoop

handleExpose
paint

By studying how Java classes work together we see that paint is invoked as
follows:
paint is called as part of the thread that encloses applet.

run

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 45

Hello World! in UML: Physical view

HelloWorld.class HelloWorld.java

Hellopage.html

HelloWorld

"manifests""manifests"

logical view of the class

manifests: physically implementsArtifacts (e.g. files)

U. of Crete, Information Systems Analysis and Design Yannis Tzitzikas, Fall 2005 46

Reading and References

• UML Distilled: A Brief Guide to the Standard Object Modeling Language
(3rd Edition) by Martin Fowler, Addison Wesley, 2004.

• The Unified Modeling Language User Guide (2nd edition) by G. Booch, J.
Rumbaugh, I. Jacobson, Addison Wesley, 2004

