) - C AV ; . :) -
Apaa: HY 351: Avaluon kai Zxediaon MNMAnpo@opIakwy ZuaTnUATwyY Yy .
‘& CS 351: Information Systems Analysis and Design UML Introduction
» Successor to the wave of object-oriented analysis and design
. . (OOA&D) methods that appeared in the late ‘80s and early ‘90s.
UML: Introduction and Overview
+ Unifies the methods of
How UML came up? _ Booch
Overview of the UML Techniques and their uses — Rumbaugh (OMT)
Why do analysis and design using UML ? —_ Jacobson
Hello World!in UML * Now itis an OMG (Object Management Group) standard
Lecture : 3b Yannis Tzitzikas

Date 1 4-10-2005 University of Crete, Fall 2005

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

N
\‘b How we got here?

oot

\
W8): The birth of UML

%
Hran

>

* 1980: C++
— Need to adapt the design methods of (‘70s-'80s) for the object-oriented world
* 1989-91 “Recursive Design Approach” (Sally Shlaew, Steve Meller)
* P. Coad and Ed. Yourdon (books 1991, 1991b, 1995,1999)
» Responsibility-Driven Design (Wirfs-Brock 90)
» Class-Responsibility-Collaboration (CRC Cards) Beck and Cunnigham
» Grady Booch: work with Rational Software (for Ada systems)
» Jim Rumbaugh: Object-Modeling Technique (OMT)
* The most conceptual of these books: Martin and Odell, 94
» Ivar Jacobson (introduced the concept of use cases)

« Aev utmipxe 81a0¢eon yia TutToTroinon (standardization)
— Kabe évag xpnoipotrolovoe Toug dikoUg Tou gupBoAiopols kal peBodoloyia

Famous joke:

- What is the difference between a methodologist and a terrorist?

- You can negotiate with a terrorist!

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 3

« Jim Rumbaugh and G. Booch => Rational Software

* 1996: The 3 amigos (James Rumbaugh, Grady Booch, Ivar
Jacobson)

— UML Version 1.1 Became OMG standard

e Current version: UML Version 2.0, 2003

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

o

cat’

\
\‘QE. The objective of UML

e "
Hran

N
\‘b How many UML diagrams exist?

e "
Hran

To provide a common vocabulary of object-oriented terms and
diagramming techniques that is rich enough to model any systems
development project from analysis through implementation

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 5

* UML 2.0 defines 14 diagrammatic techniques used to model a
system.

» Diagrams for modeling the structure of a system
— Class, Object, Package, Deployment, Component, Composite Structure

» Diagrams for modeling the behavior of a system

— Activity, Sequence, Communication, Interaction Overview, Timing, State,
Protocol State Machine, Use Case Diagrams

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

N
¥&@): When we use what diagram?

e e,
Hran

. Notations and Meta-Models
&7 (quoThPOTNTA £vavTi EUXPNOTIAG)

« Different diagrams are appropriate for different phases of the
project

» Some diagrams can be used in more than one phase. They start
from a very very abstract (and conceptual) form and evolve to
include details that can even lead to code generation.

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

UML: defines a notation and a meta-model
— Notation: graphical stuff we see in models, i.e. syntax

Question: What exactly is meant by each one symbol ?
— ILe. what is a class, what is a multiplicity ?

There is not a formal interpretation.

Formal interpretations can be found in the area of formal methods

— where design and specifications are represented using derivatives of
predicate calculus

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 8

(ot
o
1ot

Why not natural language?

%
Hran

\

e e,
Hran

: Why not formal methods?

Too imprecise and gets tangled when comes to
more complex concepts

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

Even if we can prove that a program satisfies a mathematical
specification, there is no way to prove that the mathematical
specification actually meets the real requirements of the system.

Other problems of formal methods:
» Often lead to getting bogged down (BaAtivw) in lots of minor details
* Hard to understand and manipulate

— often harder to deal with that programming languages
— and you can’t even execute them!

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 10

: Why diagrams ?

e e,
Hran

o

' ot

Vo)

%
Hran

Overall picture

create table Component o able Project
C_P_ID_Par char(10) not null " e;miha':fm}m i, e
1D_Par char(10) not null, Pmlld char(1) not null, alter table Component add constraint FKconsistsOf
Quantity char(1) not null, Tl charr) ot foreign key (ID_Par)
constaintID_ Component primariEy? cha) references Part
Par)): constraint \D Dnmafy key (ID_Rétstable Component add consuam« FKCom_Par
create table Proj_Work (

~ Constraints Section

16 Doo foreign key (C_P_ID_f
1D_Emp char(10) not null, references Part;
1D_Pro char(10) not null, alter table Dependent add constraint FKEmp_Dep
timePercentage char(1) not null, foreign key (Supporter)
consliinl D Prj Work pmary kefarences Employee
altor table Employee add constraint FKDept_Emp
foreignkey (D Dep)

create (able Deparmenl(
1D_Dep char(10) not null,
Depld char(1) not null,
DepName char(1) not null,
Address char(1) notnull, reate il Sopr

constraint D primary key (ID_Dep)up char(10) not null,
create table Dependent (Supld char(1) not null,
FirstName char(1) not null, gf;:; zﬁg}(‘&”ﬂi‘l”n“u'}‘-
LastName ohar(1) notnull, — Riies ol no . e o W e constrain oo
YearOfBirth char(1) not null, constraint D primary key (ID_Sufieign koy (0. Pro)
Supporter char(10) not null); create table Supp_Part references Projec
create table Employee (D_Par char10) oLl aiter bl re fork add constrant FPro_ Emp
D B oo " ID_Sup char(10) not nul, Toreign koy {ID_ Emp)
Emp char(10) not null, constrantID Supp_Part primary etrences Employe:
Empld char(1) not null, create l:gePSupp o)gm‘(alter table Supp_Part add constraint FKSup_Sup_1
FirstName char(1) notnull, ~ crese ole Supp_Sart P foreign key (ID_Sup)
ID_Pro char(10) not null,
ID_Sup char(10) not null,
Quantity char(1) not null, references Par
constaitID_Supp, Pert Prol B R upp Part_Pro addconsiain FKSup_Sup
foreign key (ID_Sup)

references Depar

atr tabl Projoctadd eonstant FKProl_Manager
foreignkey (0_Emp)
reforences Employ

LastName char(1) not null,
MiddleName char(1) not null,
YearOfBirth char(1) not nul,
Salary char(1) not null,
ID_Dep char(10),

references Supplier
altertable Supp_Part add constraint FKSup_Par_1
foreign key (ID_Par)

references Supplier
alter table Supp_Part_Proj add constraint FKSup_Pro
foreign key (ID_Pro)
references Project;
alter table Supp_Part_Proj add constraint FKSup_Par
foreign key (ID_Par)
references Part;

constraint ID primary key (ID_Emp));
reate table Part (
ID_Par char(10) not null,
PartNo char(1) not null,
PartDescription char(1) not null,
QuantityOnHand char(1) not null,
constraint ID primary key (ID_Par));

9

A picture is worth a thousands of words

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

1

precise @ | Formal Methods

imprecise @

Natural language ‘

@ L
Non-executable executable

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 12

Yep: :
\a; Overall picture

Yep: :
\a; Overall picture

precise @ |Formal Methods

CASE tools

imprecise @

Natural language

L L
Non-executable executable

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

13

precise @ |Formal Methods

Reverse Engineering

imprecise @

Natural language ‘

Non-executable executable
E.g. CodelLogic
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 14

- .
‘E Overall picture

e "
Hran

Ny
\‘E Most OO methods have very little rigor

e "
Hran

precise @ | Formal Methods

imprecise @

Natural language ‘

@ @
Non-executable executable

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

15

» Their notation appeals to intuition rather than formal definition

* This does not seem to have done much harm. These methods may
be informal, but many people still find them useful - and it is
usefulness that counts.

* However, OO people are looking for ways to improve the rigor of
methods without sacrificing their usefulness

— one way: to define a meta-model: a diagram, usually a class diagram, that
defines the notation

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 16

% How strictly should you stick to the modeling
=" language?

N
\‘E List of UML Diagrammatic techniques and their uses

e "
Hran

» Depends on the purpose

— in case you use a CASE tool that generates code, you have to stick to the
CASE tool’s interpretation of the modeling language in order to get
acceptable code

— in case you use the diagrams for communication purposes, you have a little
more leeway

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

17

* Use Case Diagram (d1aypappa TEPITITWOEWY XPAONG)
* Class Diagram (didypappa KAGoEwv)
« Interaction Diagram (didypappa aAAnAemtidpaong)
— Sequence Diagrams (diaypappara akoAoubiag)
— Collaboration Diagrams (Siaypdupara cuvepyaaoiag)
« State Diagram (didypappa KATOOTACEWV)
* Activity Diagram (diaypdupara dpacTtnpIoTrTwV)
« Deployment Diagram (diaypduparta avamTugng)
« Package Diagram (didypappa TTAKETWV)
* Component Diagram (didypapua eEapTnuaTWy)

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 18

\

%
Hran

)t Use Cases

sb, UML Techniques

»

e "
Hran

Use Case Diagrams (diayp. TepIMTWoEWY XpHong)

» Use Case = a set of scenarios tied together by a common user goal
» Scenario = a sequence of steps describing an interaction (user vs system)

Buy a Product

Customer browses through catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information, including shipping

Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

© NGO~ WN =

System sends confirming email to customer

Alternative: Authorization Failure
At step 6, system fails to authorize credit purchase
Allow customer to re-enter credit card information and re-try

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

19

Elicits requirements from users in meaningful chunks. Construction

planning is build around delivering some use cases in each iteration.

Basis for system testing.

Used for: Analysis

-

Display Standard
Computer Configuration

Verify and Accept
Customer Payment

-

Display
Order Status

Warehouse

%7

-

Build Computer
Configuration

o2

Order Configured
Computer
Customer <<extend>>

Print Invmcs\

Inform Warehouse
about Order

Concerns: Behavior

-

Salesperson Contact

Salesperson

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005 20

Concerns: Structure

sb, UML Techniques
’s Class Diagrams (81aypdppara kKAdoswv)

Used for: Analysis/Design

%
Hran

UML Techniques

%
Hran

Ny
) =
‘b Objecf Diagrams (31aypdupara avTiKEIPéVWY)

Shows static structure of concepts, types, and classes. Concepts show how users
think about the world; types show interfaces of software components; classes
show implementation of software components

Customer
BicustomerName : String
BicustomerAddress : String
BEphoneNumber : String

BemailAddress : String

Configurationtem
WitemType : String
BSitemDescr : String

1.1 Inwice
@invoiceNumber : String
BinvoiceDate : Date
BinvoiceTotal : float
0.1
0.n
Order 1.1

BorderNumber : Stiing
BorderDate : Date
BEshipAdadress : String
BorderTotal : foat 0.n 1.n
BorderStatus : String
MisalespersonName : String

Q

1.1
Payment ConfiguredComputer | StandardComputer
L2 L2

E A : String *float ‘ istandardPrice : float ‘
ateReceived : Date
B, float [! [!

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

21

Shows the relationships between the objects in the system.

Class diagram

Used for: Analysis/Design
Concerns: Structure

Object diagram

Party
- * children
location
o 1| parent
Person Organization

engineering:Organization

Location="Athens”
paren

apps:Organization
Location="Rethimno”

tools:Organization
Location="Heraklio”

paren

\ Yannis:Person \ \

\ Location="Heraklion” H

Nikos:Person ‘
Location="Moires” |

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005 22

N ¢ UML Techniques

‘=" Interaction Diagrams (3iavp. aMnAemidpaong)

Used for: Analysis/Design
Concerns: Behavior

N ¢ UML Techniques

‘=" Interaction

Used for: Analysis/Design
Concerns: Behavior

Show how several objects collaborate in a single use case
(A) Sequence Diagrams

‘ : Order ‘ ‘ : Order Line

‘ a : Product ‘ ‘ : Customer

calculatePrice | getQuantity |

\
getProduct /U }
getPricingDetails ‘

| I

[
calculateBaseFkice

=s—]

calculateDis mﬁnts

| getDiscountinfo

\
\
\
\
\
\
\ \
\ \
\ \
o
\ \
\ \

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

23

Show how several objects collaborate in a single use case

(B) Collaboration Diagrams

1. submit()
—»

: PCustomCi

1.1. getCurrentConf()
—

1.1.1. getComputerName()

1.1.3. getPrice()
—

: EComputer

drentConn)

1.2. new(ct

1.2.1. display()
I

: PConfigurationSummary

12 ggmemDescr()

EConfigurationitem

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005 24

gt

UML Techniques

! activity Dioo
=¥ State Diagrams (diayp. karaotdoewv) Coneerns: Behavior &2 Activity Diagrams (3iavp. Spactnpiotitwy) Concers: Behavior
Shows how single object behaves across many use cases lllustrate business workflows independent of classes, the flow of
activities in a use case, or detailed design of a method
Pending
stock not available G
Computer
partial payment| - partly paid stock availablef|ship date in future]
nal gayment fingl payment stock available[ship date in future]
{ Fully Paid } M] stock available[ship daté\pow]/ configureComputer
g Canceled

GetOrder
Request
[canceled]

plete |
ship[ccepted]
Filled
Details
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 25 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 26
\ "-a UML TeChnquZS Used for: Analysis/Design/Implenent SM.J UML Techniques
‘&=?> Package Diagrams (siayp. maxérwy) [Concems:Structure «° Package Diagrams
Shows groups of classes and o <
dependencies among them — T B P
<<subsystem>>
e o
Cm\er‘a:e <<sbsysteme> O
It can also group other UML I /Mmme
elements together i — =0
Minterface ‘ «uhsﬁlﬂ"‘»
= s il [-]
. java &7 - Eintrface
g E\msﬂace <<sbsystem>>
] [e
A & & — me
<<ebeptom>> Finterface e
N B /. “Soundaton
<<7ubsdys:.em>>
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 27 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 28
as: UML Techniques ‘\b UML Techniques
2 Used for: Phys./Design/Implenent =
o s - Componenf DIClgr‘GmS (5IOVp CﬁdenudTUJ Concerns: Structure ‘ fomes A
« Component: a logical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces
% ProductList
=

% ProductDisplay
—— Configuration
—

Booking
\

Componem' Daagrams (Siayp. e€apThudTwy)

Purchase
4

Load Attractions

port name Interface name
normal
=] sales .
Ticket Sales
Ticket Seller
Credit Cards Ticket Sales
: riority
chargin p!
ging sales
U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 29 U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 30

sa’*-: UML TeChniqUeS Used for: Phys./Design/Implenent
= 4 Deploymenf Diagr‘ams (5ldvp. GVC'(TITUEHC) Concerns: Structure

Wes: UML Techniques
Deploymen'r Diagrams (3iayp. avdntung)

Shows physical layout of components on hardware nodes

Client ‘eb Server|
Browser HTFR

JDBC|sQLJ

Database
Server

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 31

Browser Client EIEEE
{OS=Windows}
browser Lala.exe
Application Server
http/Internet http/LAN ————
Appl
Web server
{0S=Solaris} Java RMI/LAN
{web server=apache}
{number deployed =3} JDBC
Lala.war) ——
Oracle DBMS I

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 32

oot

\
Y8): Why do Analysis and Design using UML 2

e e,
Hran

s Why do Analysis and Design using UML ?
=" [A] Communication

* The real point of software development is executable code
— diagrams are, after all, just pretty pictures

— no user is going to thank you for pretty pictures; what a user wants is
software that executes

* So we must ask ourselves

— why we are using UML?

— How it will help us when it comes down to writing the code ?
* Three main reasons

— [A] Communication

— [B] Learning OO

— [C] Communication with Domain Experts

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 33

* Fundamental reason to use UML
— Natural language
« too imprecise and gets tangled when comes to more complex concepts
— Code
« precise but too detailed
» So we use UML when we want a certain amount of precision but
don’t want to get lost in details
— this doesn’t mean avoid details, but use UML to highlight important details.

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 34

Mg Why do Analysis and Design using UML ?
&7 [A] Communication (IT)

Wasa: Why do Analysis and Design using UML ?
& [B] Learning OO

* Examples .
P . .) * |t takes time to learn and use well OO
— You are a consultant to you want in a very short time to understand a big . .
project — CRC cards is a very useful technique to learn OO (not part of UML)

UML gives you an overall view of the system

class diagrams tell you what kinds of abstractions are used and where are the
questionable parts (that need further work)

if you want a deeper view and see how classes collaborate, then you can see the
interaction diagrams

— You work for an organization as a system analyst/designer. You express
your analysis and design using UML and then another company undertake
the implementation.

* For the same reasons it is useful for the members of a project
team

— members have a common view (axon of reference)

— new members enter the game quickly

— less risk for the team if a person leaves the project

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 35

— Interaction diagrams

+ make the message structure explicit and thus are useful for highlighting over-
centralized designs

— Class diagrams
« quite similar to data models

« danger: develop a class model that is data oriented rather than being
responsibility oriented

Patterns:
« gets you concentrate on good OO designs and to learn by following an example

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 36

‘ab Why do Analysis and Design using UML ? Voa: Hello Worldlin UML
& [C] Communication with Domain Experts ’
* Use Cases:
— US: a snapshot of one aspect of your system
— The sum of all Use Cases: the external picture of your system mypage.html HelloWorld.java
— Very good tool to understand what users want
« Class diagrams <html> import java.applet.Applet;
i j . . hics;
— Help, especially those built from a “conceptual perspective” <body> import java.awt.Graphics;

* Activity diagrams
— Useful if workflow processes are an important part of the user’s world

« as they support parallel processes, can help you get away from unnecessary
sequences

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

37

<APPLET CODE="HelloWorld.class">
</APPLET>

</body>

</html>

U. of Crete, Information Systems Analysis and Design

public class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);
}
}

Yannis Tzitzikas, Fall 2005

oot

e "
Hran

Hello World!/in UML

Ny
M@): Hello World/in UML

%
Hran

import java.applet.Applet;
import java.awt.Graphics;

Helloworld g.drawString("Hello World!",
public class HelloWorld extends Applet { —10,10)
public void paint(Graphics g) { [®paint()

g.drawString("Hello world!", 50, 25);
}

}

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

39

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);
}
}

U. of Crete, Information Systems Analysis and Design

Appplet Graphics

A\ 7
,

;

;

HelloWorld

[®paint ()

Yannis Tzitzikas, Fall 2005

40

NG
M8): Hello World/in UML

e "
Hran

NG
N@): Hello World/in UML

e "
Hran

By studying the Java libraries
for Applet and Graphics the
entire hierarchy is revealed:

ImageObserver

HelloWorld

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005

41

By studying how the Java libraries are organized (packaged):

applet

HelloWorld [~~~ r

java

1

| awt

lang

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005

42

¢ Hello World!in UML

&

N
M8): Hello World/in UML

%
Hran

How Java classes work together?

How the paint operation gets invoked ?

By studying Java libraries we see that paint
is inherited from component

U. of Crete, Information Systems Analysis and Design

L paint()

ImageObserver

Yannis Tzitzikas, Fall 2005 43

By studying how Java classes work together we see that paint is invoked as
follows:
paint is called as part of the thread that encloses applet.

root: Thread ‘Toolkit ComponentPeer target:
HelloWorld
run ‘ run ‘
—

=

handleExpose

\ \
callbackLoop ‘ ‘
\ \
\ \

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 44

N
‘\b Hello World!in UML: Physical view

oot

%
Hran

Reading and References

»

HelloWorld

—
A

Artifacts (e.g. files)

HelloWorld.class

logical view of the class

"manifests”

manifests: physically implements

HelloWorld java

U. of Crete, Information Systems Analysis and Design

Yannis Tzitzikas, Fall 2005 45

* UML Distilled: A Brief Guide to the Standard Object Modeling Language
(3rd Edition) by Martin Fowler, Addison Wesley, 2004.

* The Unified Modeling Language User Guide (2nd edition) by G. Booch, J.
Rumbaugh, |. Jacobson, Addison Wesley, 2004

U. of Crete, Information Systems Analysis and Design ‘Yannis Tzitzikas, Fall 2005 46

