
T-76.115 Software Project
Project Plan, Group Muuntaja

0

T-76.115 Project Plan: FASTAXON
Group: Muuntaja

T-76.115 Software Project
Project Plan, Group Muuntaja

1

Version History

Owner of the document: All members of the group Muuntaja.

Version Date Author(s) Description
0.1 24.09.2003 Tero Leppänen First Draft
0.2 29.09.2003 Tero Leppänen Customer goals added, work practices

updated
0.3 04.10.2003 Pekka Uusitalo Added comments for some parts.
0.4 09.10.2003 Tero Leppänen Updated according group comments
0.5 09.10.2003 Tero Leppänen Updated according Pentti’s comments
0.6 10.10.2003 Tero Leppänen Customer goals added, communication and

meeting practices updated
0.7 13.10.2003 Tero Leppänen Action point register practice added
0.8 14.10.2003 Tero Leppänen Chapters merged to master document after

peer reviews
0.9 14.10.2003 Tero Leppänen Pentti’s personal assignment corrected:

Design patterns
0.10 16.10.2003 Tero Leppänen Test approach practice (PekkaU) added
0.11 16.10.2003 Tero Leppänen Changes accepted (easier to read)
0.12 17.10.2003 Tero Leppänen Risk Management added. Locked for

review.
0.13 17.10.2003 Tero Leppänen Page numbers added. Still valid for review
0.14 19.10.2003 Tero Leppänen Updates after group review
0.15 19.10.2003 Tero Leppänen More updates after review: corrections

according Hannu’s and PekkaU’s notes. MS
Word’s spell check.

0.16 20.10.2003 Tero Leppänen Phasing (I1) updated
0.17 20.10.2003 Tero Leppänen Hannu’s corrections to SCM chapter added
0.18 20.10.2003 Tero Leppänen Link to Quality manual removed
0.19 21.10.2003 Tero Leppänen Bug reporting chapter updated, Pentti’s

corrections to environments and skills
0.20 21.10.2003 Tero Leppänen RedHat removed from tool list, task list

table added.
0.21 21.10.2003 Tero Leppänen I1 Task updated
0.22 23.10.2003 Tero Lepänen Risk list added. Task list of PP phase added.

Accepted by the customer.
1.0 26.10.2003 Esko Simpanen Table 21 added. Table numbering unified.

Styles, appearance and layout finalized for
publishing.

T-76.115 Software Project
Project Plan, Group Muuntaja

2

Contents

1. Introduction... 3
1.1 Purpose and scope of project... 3
1.2 The system and environment .. 3
1.3 Rights to project outcome ... 3
1.4 Terminology and definitions ... 3

2. Stakeholders and staffing .. 4
2.1 Project group ... 4
2.2 Other stakeholders... 7

3. Goals and end criteria ... 8
3.1 Goals of the customer ... 8
3.2 Goals of the project group... 10
3.3 Project abort criteria.. 11
3.4 Project end criteria .. 11

4. Resources and budget ... 12
4.1 Personnel... 12
4.2 Materials.. 13
4.3 Budget ... 13

5. Work practices and tools... 15
5.1 Practices .. 15
5.2 Tools ... 32
5.3 Standards and guidelines... 34

6. Phasing.. 36
6.1 Overview... 36
6.2 Project Planning .. 36
6.3 Implementation 1 .. 37
6.4 Implementation 2 .. 39
6.5 Implementation 3 .. 39

7. Risk management plan .. 39
7.1 Risk management practices... 39
7.2 Risks.. 41

References... 42

Appendices.. 43

T-76.115 Software Project
Project Plan, Group Muuntaja

3

1. Introduction

1.1 Purpose and scope of project

Purpose of FASTAXON project is to develop a system, which allows building, maintaining and
browsing taxonomies by exploiting the faceted classification paradigm and Compound Terms
Composition Algebra [1]. System should implement both administration and end user interfaces
as well as database schema for FASTAXON.

FASTAXON is a part of research project in VTT. Main goal is to build a prototype system for
demonstrating and proofing usability and flexibility of the Compound Terms Composition
Algebra.

1.2 The system and environment

System contains several modules and user interfaces for them. Name of whole system developed
is FASTAXON system. Interfaces may be either stand-alone applications or standard web-
browser interfaces. Possible database runs in Windows 2000 server. In future database server may
be changed to Linux. All stand-alone applications developed, must run in Windows environment.
Some parts may include platform independent WWW-user interface. System is mainly mentioned
to research use and it is users are technically oriented. However, a long-term goal is to adopt
system to several application areas where information indexing is needed.

1.3 Rights to project outcome

The results (including source code) of the project will be published in VTT Open Source Server
under VTT Public Licence Agreement [2][3].

1.4 Terminology and definitions

Table 1 shows basic terminology needed to understand this document. General vocabulary,
terminology and definitions of domain are declared in [4]. More complete listing of terminology
and definitions can be found in separate document listed in appendix 2.

Table 1. Terminology and definitions.

Term Definition
Taxonomy Hierarchy of terms
Compound Term
Composition Algebra

Algebra for defining one meaningful compound term over a faceted
taxonomy

MYOC Merge Your Own code pattern
CCB Change Control Board
SCM Software Configuration Management
CVS Concurrent Versioning System
RMB Risk Management Board

T-76.115 Software Project
Project Plan, Group Muuntaja

4

2. Stakeholders and staffing
Project organization, stakeholders and roles are shown in figure 1.

Project manager
Tero Leppänen

System architect,
SW-designer
Pentti Vänskä

SW-designer
Pekka Korhonen

QA manager,
SW-designer

Pekka Uusitalo

Process
manager,

SW-designer
Hannu Törnroos

Documentation
manager,

SW-designer
Esko Simpanen

Account
manager,

SW-designer
Mika Hakkarainen

Project Group:
Muuntaja

Representative
Raimo Launonen

Technical
Advisor

Yannis Tzitzikas

Customer:
VTT Information Technology

T-76.115 course

Mentor
Tapani Aaltio

Figure 1. Project organization.

The project group Muuntaja is responsible of implementation of FASTAXON system. Muuntaja
is lead by project manager. Account manager handles technical and requirement issues with
customer’s technical advisor and distributes information to project group. Mentor observers the
progress of the project and advises Muuntaja group to accomplish project successfully and pass
the T-76.115 course.

2.1 Project group

The project group consists professionals from IT sector. Members study in HUT in
“Muuntokoulutus” –program for M.Sc. (computer Science) degree. Six members have B.Sc.
degree and one has M.Sc. All the group members have a strong technical experience and work
background in several software projects. Members are 3rd and 4th year students with 110-150
credits.

Table 2. Project group.

Name Mika Hakkarainen
Role Account manager, SW designer
Education B.Sc. Electronics and Information technology, 1997
Major Interactive Digital Media

T-76.115 Software Project
Project Plan, Group Muuntaja

5

Minor
Work background Research engineer in VTT Information technology
Programming skills C/C++, Java in Windows OS (including PocketPC)
Other Skills TCP/IP, project management, SW design, familiar with 3D-modelling

Name Pekka Korhonen
Role SW designer
Education B.Sc., Construction technology, 1987
Major Software Technique
Minor Software Business
Work background Develops Xsteed 3D-modelling software in Tekla Oyj
Programming skills The main experience is with C/C++, but knows also Java
Other Skills 3D modeling, interested of programming and SW-design

Name Tero Leppänen
Role Project manager
Education B.Sc. Electronics and Information technology, 1997
Major Software Engineering and Business
Minor Software Technique
Work background Project manager and SW architect in Espotel Oy. Focused mainly on

embedded systems.
Programming skills Familiar with C and ASM, but knows also C++ and Java.
Other Skills SW architectural design, communication protocols, requirements

management and specification, UI design, project management, risk
management

Name Esko Simpanen
Role Documentation manager, SW designer
Education B.Sc. Electronics and Information technology, 1998
Major Software Engineering and Business
Minor The Venturing in Digital Economy
Work background 3D CAD and PDM specialist in CadWorks Oy.
Programming skills Visual Basic, basic knowledge of Java and C/C++
Other Skills API-programming, requirement management, and specification, UI design,

testing, marketing and management.

Name Hannu Törnroos
Role Process manager, SW designer
Education B.Sc. Electronics and Information technology, 1998
Major Software Engineering and Business
Minor
Work background Test manager in TietoEnator Oyj
Programming skills C/C++, Java, SQL.

T-76.115 Software Project
Project Plan, Group Muuntaja

6

Other Skills Testing, configuration management, relational databases, project
management.

Name Pekka Uusitalo
Role Quality manager, Test Manager, SW designer
Education M.Sc. Biophysics, 1998
Major Software Technique
Minor
Work background Software designer in Varian Medical Systems Finland Oy
Programming skills Fortran, C, TCL/Tk, Pascal. Knows also C++ and Java
Other Skills Quality expert, project management

Name Pentti Vänskä
Role System Architect, SW designer
Education B.Sc. Electronic and Information technology, 1998
Major Software Technique
Minor Telecommunication
Work background IT Specialist, Aerosystems Oy
Programming skills Java, Perl, C/C++, ASM, Pascal, Fortran and Basic
Other Skills Java application design and implementing with J2EE technology. TCP/IP,

communication protocols, Linux, Unix, Windows, DOS, computer system
administration, relational databases

2.1.1 Project group responsibilities

Responsibilities can be divided into two groups. First group contains general level project
responsibilities, while another group contains responsibilities of individual software modules.
Table 3 shows general responsibilities over the whole project.

Table 3. Responsibilities of the project.

Name Responsibility area
Mika Hakkarainen Requirement elicitation with the customer. Ensure that the remaining members

of the group have sufficient understanding of the customer's needs throughout
the project. SW engineering.

Pekka Korhonen Bug reporting system (Bugzilla). SW engineering
Tero Leppänen Project management, project meetings, project plan, progress reports, final

report, and supervision of hour reporting system Trapoli. Member of CCB.
Member of RMB.

Esko Simpanen Documentation, document formats, deadlines of deliverables, project web site.
SW engineering. Member of RMB.

Hannu Törnroos Version control system (CVS). SW engineering. Member of RMB.
Pekka Uusitalo Quality, testing. SW engineering. Member of CCB. Member of RMB.

T-76.115 Software Project
Project Plan, Group Muuntaja

7

Pentti Vänskä Chief responsibility of the system's technical design, including architecture,
interfaces, DB used and development tools. SW engineering. Member of CCB.

Technical responsibilities are assigned during design phases. Responsibilities to assign during
design phases are for example: software modules, designer UI, navigator tree generator, end user
UI, validity checker, storage manager and DB.

2.2 Other stakeholders

Table 4 shows stakeholders, their roles and responsibilities.

Table 4. Stakeholders.

Name Role Responsibility area
Raimo
Launonen

Customer To control project issues from customer side, grading the
course

Yannis Tzitzikas Customer’s
technical advisor

To give technical information, to provide test data

Tapani Aaltio Mentor Provide feedback and advises to project group, grading the
course

T-76.115 Software Project
Project Plan, Group Muuntaja

8

3. Goals and end criteria
This chapter describes goals on a general level from different perspectives. This chapter is not
intended as an actual specification of the project. The requirements document serves that purpose,
and can be referred to if deemed necessary.

3.1 Goals of the customer

This chapter contains the Top-13 goals of the customer in order of priority, accompanied by their
verification criteria.

Table 5. Top-13 goals of the customer.

 Goal Verification criteria
1 To have a system for building quickly very big

taxonomies or Catalogues by exploiting (a) the
faceted classification paradigm, and (b) the
Compound Term Composition Algebra.

The system implements the requirements as they
are specified in the Requirements document.

2 Implementation of Storage Manager, i.e. of a
module for storing faceted taxonomies,
algebraic expressions and object indices using
a DBMS.

A complete and functional software module.

3 Efficient implementation of the algorithm
CheckValid(s, e) where s is a compound term,
and e is an algebraic expression

Prerequisites: (1)

The correctness of this module will be tested on
specific examples, e.g. on the examples that are
given in [1].
The latency time of CheckValid(s, e) test
environment PC should not exceed 0.1 sec in a
faceted taxonomy of 1000 terms.

4 Sound and User-friendly Expression Builder:
A module for formulating algebraic
expressions over faceted taxonomies. It will
use the Storage manager for storing and
loading expressions.
Prerequisites (1) and (2)

The correctness of the Expression Builder will
be tested by checking whether it can decide
correctly whether an expression formulated by
the designer is well-formed or not.
User-friendliness will be measured according to
the following two objective verification criteria:
The designer is able to define the parameters of
an expression without typing them (e.g. by
selecting them from lists).
The expression builder does not allow to the
designer to give a parameter that does not
belong to the genuine compound terms of the
current operation. (This would be very helpful
for the designer as it will reduce the size of the
lists and at the same time it will not let him to
make any error).

5 Implementation of the Navigation Tree
Generator i.e. of a module that takes as input
an expression e and derives the corresponding

The correctness of this module will be tested on
specific examples, e.g. on the examples that are
given in [1].

T-76.115 Software Project
Project Plan, Group Muuntaja

9

navigational tree.
The navigation tree should be available for
browsing of object-bases.
Prerequisites: (1), (2),

6 A dynamically generated Web-interface to the
navigation tree should be also provided.
Prerequisites: (1), (2), (4)

Implementation of Web-interface as specified

7 Designer IDE: A simple Graphical User
Interface that will provide integrated access to
the user-interfaces of the Storage Manager,
Taxonomy Editor, Expression Builder,
Navigation Tree Generator and Object Indexer.
Prerequisites: (1), (2), (3), (4), (7), (8).

Implementation of integrated designer interface
as specified

8 Object Indexer: module for creating/updating
object-bases where an object-base is a set of
objects indexed by compound terms. The user
will use the navigation tree in order to select
the desired compound term. The resulting
object indices will be stored using the Storage
Manager.
Prerequisites: (1), (4)

The correctness of this module will be tested on
specific examples, e.g. on the examples that are
given in [1].

9 Graphical Taxonomy Editor: A module for
creating and updating taxonomies. It will use
the Storage Manager for storing and retrieving
taxonomies.
Prerequisites: (1)

Scenario that will be used for verification:
(1) The user creates a new project and uses the
taxonomy editor for defining a new taxonomy
and then it closes the project, (2) the user opens
the project and adds some terms, changes the
ends of some edges, and saves again the project.

1
0

Modular software design The design should allow replacing/ re-
implementing any module of the system without
having to update the internal functionality of the
rest modules. The modules of the project will be
defined during the technical architectural design,
which will be done in I1 phase.

1
1

Importer/Exporter of XFML and
XFML+CAMEL files
Module for importing faceted taxonomies and
object indices that are expressed in XFML
Module for importing faceted taxonomies,
expressions and object indices that are
expressed in XFML+CAMEL
Module for exporting faceted taxonomies and
object indices in XFML format.
Module for exporting faceted taxonomies,
expressions and object indices in
XFML+CAMEL format.

The correctness will be tested on real XFML,
XFML+CAMEL files (e.g. on those that are
found in [5] and [6]).

1
2

The customer would like to further develop the
system

The software project will be published as an
open source project before the end of the course.

T-76.115 Software Project
Project Plan, Group Muuntaja

10

The experimental evaluation will start before the
end of the course so as to allow us to publish
them soon.

1
3

Publish the results in an international
conference or journal

The system is functional early enough.

3.2 Goals of the project group

Table 6 shows the Top-5 goals of project group. Realizations of goals are evaluated at the end of
each phase. Table 7 shows personal learning goals of project group members. Each group
member should evaluate his personal learning goal after project.

Table 6. Top-5 goals of project group.

 Goal Verification criteria
1. Learn new skills Grade of course ≥ 3
2. Get credits for the degree Pass course T-76.115
3. Stay on schedule and work

efficiently
Each review should be in schedule. Max. 190 working
hours / person.

4 Satisfy customer Documents delivered and approved by customer. Use
cases implemented and result approved by customer.

5. Have reputation Results of project published in an international conference
or journal and all members of group will appear as authors

Table 7. Personal learning goals.

Member Personal learning goal
Tero Leppänen To learn new skills and tools, efficient communication methods
Mika
Hakkarainen

To learn and get more familiar with new methods and practices for project
management

Pekka Korhonen To learn SW development process as a whole, to learn about architectures and
software design, to learn more Java

Esko Simpanen Learn to implement new tools and practices in SW project
Hannu Törnroos To learn new SE methods and get hands on experiences from work methods

different from my work organization
Pekka Uusitalo To learn in practice project management, project quality assurance, risk

management and iterative project
Pentti Vänskä To get more experience implementing Java applications, practices in SW project

and to learn more about architectures and software design

There are no significant conflicts between customer, project group or personal goals.

T-76.115 Software Project
Project Plan, Group Muuntaja

11

3.3 Project abort criteria

Project will be aborted if more than two people are leaving the group and work cannot be
reorganized.

3.4 Project end criteria

The project end criterion is set by course T-76.115. The course end date is 7th April 2004. The
project will end on this day, at the latest. The project may end earlier, if the FASTAXON system
is in state where all customer and course requirements are met. Meeting with all stakeholders and
project group members is held to make sure that all parties are satisfied with the outcomes and
feel that it is time to end the project.

T-76.115 Software Project
Project Plan, Group Muuntaja

12

4. Resources and budget
This chapter presents the planned resources for the project.

4.1 Personnel

Effort of project group members differs between project phases. Calendar lengths and content of
iterations are described in chapter 6. Total hours per person are set by course T-76.115 and it is
190h. Table 8 Shows planned effort of each member. Planning of PP phase is based on realized
hours so far. Effort for next iterations is focused during planning, which is done at the end of each
round. Realized effort of each round is presented at iteration reviews.

Table 8. Planned effort - hours to be spent on project.

Phase Tero
Leppänen

Mika
Hakkarainen

Pekka
Korhonen

Esko
Simpanen

Hannu
Törnroos

Pekka
Uusitalo

Pentti
Vänskä Total

PP 55 55 25 35 45 40 25 280
I1 30 35 40 30 35 30 40 240
I2 40 45 70 50 45 50 70 370
I3 30 35 35 45 35 50 35 265
DE 35 20 20 30 30 20 20 175
Total 190 190 190 190 190 190 190 1330

4.1.1 Restrictions

• Week 52: Reserved for Christmas holidays
• Customer’s technical advisor, Yannis Tzitzikas is absent 2.11.2003 – 9.11.2003
• Week 8: Pekka Korhonen is absent

4.1.2 Hours for personal assignment

10-20h / person is used for personal assignment, which brings several methods to project.
Depending of assignment, they are planned to present in different phases during the project. One
member of group brings his assignment at a time. He will also train other members to use
method. Training will take 0,5h – 1h / assignment, which takes total 3,5h – 7h / person. However,
personal assignments should bring benefits to the project. Assignments are selected so that they
give best possible advantages to the project. Phasing of personal assignments is shown in chapter
5.1.

T-76.115 Software Project
Project Plan, Group Muuntaja

13

4.2 Materials

Table 9 shows personal development environments of project group. Personal environments are
available during whole project. Because of standard nature of environments, they are easily
replaceable, if failures occur. Customer has possibility to offer development platform if needed.

Table 9. Personal development environments.

Member Hardware OS
Mika Hakkarainen 1. Best P3, 600MHz

2. Dell Latitude C800, P3,
700MHz
3. Dell P4 1,9GHz

1. Windows 2000 SP4
2. Windows 2000 SP4
3. Windows 2000 SP4

Pekka Korhonen P3, 350MHz Windows 2000 SP4
Tero Leppänen 1. PC Workstation, Celeron 800

MHz, 256MB
2. Compaq NX9010, P4, 2,6GHz

1. Windows XP Professional SP1

2. Windows XP Professional SP1

Esko Simpanen PC Workstation, P3 800MHz,
1GB

Windows XP Professional SP1

Hannu Törnroos IBM Laptop T21, P3, 850MHz,
256MB

Windows 2000 Professional SP4

Pekka Uusitalo HP Kayak PC Workstation, 2 x
400 MHz, 512MB

Windows 2000 Professional SP4

Pentti Vänskä IBM ThinkPad T30 1GB Windows 2000 Professional SP4

4.3 Budget

Theoretical cost of project is presented in table 10. Work time cost of 80 € / hour is used as basis
for calculations. For simplify, same work cost is used for all stakeholders. Project group members
have fixed hours, 190h / person. Mentor’s hours are taken from course T-76.115 presentation
slides. Customers and technical advisors hour are estimated.

T-76.115 Software Project
Project Plan, Group Muuntaja

14

Table 10. Theoretical cost of project.

Stakeholder Work
type

Hours Total
hours

Cost Total €

Project group All 7 members * 190 h /
member

1 330 h 80 € / hour 106 400 €

Meetings 20 * 2 h 40 h 80 € / hour 3 200 € Customer
Other 15 h 15 h 80 € / hour 1 200 €

Meetings 25 * 2 h 50 h 80 € / hour 4 000 € Technical

advisor Other 40 h 40 h 80 € / hour 3 200 €

Meetings 10 * 1 h 10 h 80 € / hour 800 € Mentor
Other 5 iterations * 6 h / iteration 30 h 80 € / hour 2 400 €

 Total Hours 1515h Total cost 121 200 €

T-76.115 Software Project
Project Plan, Group Muuntaja

15

5. Work practices and tools

5.1 Practices

5.1.1 Test approach

This is a high-level test plan for the FASTAXON system. The purpose of the test plan is to make
sure that validation and verification of the system is done properly and all parts of the system are
tested. This plan describes the test methods used in different phases of the project. Detailed test
plan will be written as a separate document in next iteration (I1). Test practices described here are
applied to project with consideration together with customer. The aim of customer is to use 80%
of implementation time for technical design and coding. 20% of implementation time is used for
testing.

Before the implementation developers are encouraged to include the planned unit tests as a list
with the design proposal. List of planned unit tests help the test writer in designing the formal
testing. In our iterative development process formal testing should be done at the end of each
iteration. Testing is focused to the features developed in the on going iteration. Also system level
testing is done as early phase as possible. Some parts of the system tests like formal installation
and stress testing will be done only during the last iteration when optimization of the program is
meaningful. The cross-reference table in test plan will be updated after every test round to make
sure that all parts of the product will be adequate tested. At the end of last iteration all tests should
be tested and product should have no major discrepancies.

Main responsibility about the test management will be on the Quality Manager. Testing and test
writing responsibilities will be shared between the group members. Coders will not test their own
code, except engineering tests. Following testing procedures are used in this project.

5.1.1.1 Testing documents (all project documents delivered to course or customer, user documentation,
manuals)

Purpose of document testing is to validate documents. Testing must be done before document can
be accepted. Documents are tested in every phase of the project, and every document that is
delivered to course or to the customer must be accepted.

Every document must have owner and acceptor. Testing is done by reviewing the document
before it is accepted. Reviewers (one or several) must fill the review log. The review log
describes who, what, when and how is review done and what are the found discrepancies. The
reviewer also makes decision whether new review is needed or not. The owner of the document
collects logs, makes corrections and (if new review is not needed) gives document and review
logs to the acceptor. Acceptor must verify that every part of the document is reviewed by at least
one reviewer. Accepted version is put aside in a version control system and everybody in the
project group are informed about it.

5.1.1.2 Engineering testing (debugging, unit tests, code review)

T-76.115 Software Project
Project Plan, Group Muuntaja

16

Engineering tests are done by the developer. Purpose of engineering tests is to make sure that unit
that is under creation fulfils the functional and quality requirements of a program and the code is
well commented, documented and easily maintainable. Discrepancies found in engineering tests
are generally not reported to the bug database. Only if bug is not fixed and will be present in a
next build of a program the bug report is done.

Debugging is informal test that is done by the coder to verify that the code meets the
requirements. Debug sessions are normally not documented. Sometimes the code can have
commented test lines etc.

Unit test is done by the coder to verify that code meets requirements. Unit test is always
documented. The test documents can be informal but test procedure should be documented in
such level that tests can be easily repeated by another developer. Testing environment should be
also record as detailed as possible.

Code review is usually done by other coder with the original coder. Code review is not mandatory
to record but it’s possible to fill a review log. Purpose of code review is to make sure that quality
of code is adequate and more than one developer get to know the code.

Automated unit testing is done as a personal assignment of a one member of the project group.
Tests are created to very limited and carefully selected part of the code during the implementation
phases. Purpose is to efficiently verify the critical part of the code by adding the automated test
procedure to the code.

Heuristic analysis is done to the graphical user interface (GUI) as a personal assignment of one
member in a project group. Purpose is to verify the usability of the GUI using formal method.

5.1.1.3 Functional testing (formal testing of functionalities with planned input and output)

The base of the functionality testing is in use-cases and requirements derived from use-cases.
Testing is pre-designed, input and output are defined and test environment is fixed. Purpose of the
testing is to verify that software meets requirements. Tests will be written during the
implementation to the test plan.

In functional testing every requirement must be tested. There will be cross-reference table
indicating the requirements, test related to the requirement and result of the test. Tests are done
cumulatively during iterations and once the requirement is verified it’s no need to test it again in
future builds unless related code or requirement is changed.

5.1.1.4 System testing (integration test, installation test, multi-user stress test, security test)

The purpose of system testing is to verify the system level requirements that are not tested in the
functional tests. The goal of system testing is to make sure that program meets the performance
requirements, is working correctly and is possible to install and maintain in different
hardware/software environments.

Integration test is done to verify that different units of the system can communicate together
correctly. This includes also communication with the operating system and network resources.

T-76.115 Software Project
Project Plan, Group Muuntaja

17

Installation test makes sure that all elements of the system can be installed and updated.

Stress tests are performed to make sure that system meets the performance requirements set to the
system in different hardware and software environments.

Platform validation test is a short test procedure that can be run to the different software/hardware
configurations. It goes trough the major functionalities and system level requirements. It is used
to determine that system is installed and works correctly in current environment. It can be also
used as an acceptance test when build/release is moved from development to the quality
assurance.

5.1.1.5 Discrepancy tests (Test procedure for found bugs)

The bug reports are created when a bug is found from the program in some phase of a project. A
separate procedure is defined for handling bugs. When the product is released all bugs should be
ranked and all severe bugs should be fixed. All fixed bugs should be tested. Test log for
discrepancy testing must be filled.

5.1.1.6 Peer test

The course has determined that the peer testing must be done by using Session-Based Exploratory
Testing approach. In this approach predefined test plans are not done. However testers will
receive instructions how to use the program. Also testers are guided to focus to the certain parts
of the program. Test plan document will describe the focus areas for the peer testers. Peer testing
will be done in two last iteration phases (I2 and I3).

5.1.1.7 Customer acceptance test

Customer acceptance test is a formal test created with the customer to make sure that customer
requirements are fulfilled. The test is fixed in early state of the project. The customer will
provide the test data and the test environment for this test.

5.1.2 Communication methods

E-mail, phone calls and personal meeting are used as communication methods between project
group, customer and mentor. Group members should communicate directly to customer and
mentor if needed, however project manager should be noted what is going on. Easiest way to
keep project manager informed is use of CC-field in e-mail messages.

5.1.2.1 Daily Communication between group members

In addition to personal meetings, e-mails and phone calls Yahoo! Groups is used as daily
communication channel between group members. Yahoo! Groups has web based user interface
and it is easy to access. Yahoo! Groups offers following services: on-line chat, document archive,
calendar, message posting and storing. A group called muuntaja is established and all group
members have access to it. Yahoo! is not used as “official” document archive. It is used for fast
distribution and information change. It is supposed that members of project group will read

T-76.115 Software Project
Project Plan, Group Muuntaja

18

Yahoo! messages at least once in a day. Language of Yahoo! messages may be finish or English.
Note: security issues such as backup are not guaranteed by Yahoo!

5.1.2.2 Status reporting

If there are no meetings with stakeholders, project manager sends weekly status report to
customer, mentor and project group by e-mail. For each iteration review detailed report of status
and costs (hours) are prepared.

5.1.3 Software configuration management (SCM)

5.1.3.1 SCM organization

Following persons form projects change control board (CCB):

• Tero Leppänen
• Pentti Vänskä
• Pekka Uusitalo

CCB is responsible for following tasks:

• Handle bug reports
• Handle technical change requests
• Handle requirements changes
• Decision of new release / build
• Decide who is release manager
• Decide who is allowed to merge code

5.1.3.2 SCM tools

The used SCM tool is Concurrent Versioning System (CVS). For more info about it see chapter
5.2 Tools. CVS facilitates the storing of project artefacts to centralized repository where backups
are taken on regular interval. In this case repository is located in HUT CS departments disk server
(Niksula) where backups are taken every night. CVS saves all versions of the artefacts stored in
repository. It assigns new version number to each version of the artefact committed in the
repository. This way we can “return” the older version of the certain document/file by fetching it
from CVS repository to needed version.

5.1.3.3 CVS repository structure

The CVS repository structure is stored under projects root folder named ‘fastaxon’. Underlying
hierarchy is described in ‘index.txt’ document, which is stored in repository’s root folder. This
index file is describes the meaning of each folder created in repository. Actual files are not
included in the index. Thus index is updated only if folder hierarchy is changed.

5.1.3.4 Build/release baselines

T-76.115 Software Project
Project Plan, Group Muuntaja

19

Baselines are divided in two categories a) build baselines done inside the iteration and b) release
baselines done in the end of iteration. These categories are handled in separate ways.

5.1.3.5 Release baselines

Release baseline consists of all deliverables of certain iteration. The release baseline creation
procedure is following:

CCB makes decision to make release from build that has passed system testing and nominates
one project group member as release manager for the release.

Release manager makes the release build.

Release Manager performs release platform test for the release.

If the release does not pass the test, the build is returned to development.

If the release passes the platform test all delivered artefacts related with the release are marked to
belong to certain release by CVS tag operation. Tag for release is called as release number.
Release number has following format:

fxr_X_Y , where

fxr = Fastaxon release

X = major version number

Y = minor version number

After release tagging, the files are copied to “/release/fxr_X_Y” folder in CVS. The hierarchy
under each “fxr...” folder depends from delivered releases content.

Version numbering scheme for releases

Releases are numbered following manner:

• Major version number is incremented in major releases. Each increments deliverables
form major release. Change in major version number resets the minor version number to
zero.

• Minor version number may be incremented when minor release is delivered to customer.
Minor release can be e. x. fix to major release.

5.1.5.6 Build baselines

Build baseline is created each time system build is delivered to system testing or when project
documentation is delivered to customer for approval during the iteration.

T-76.115 Software Project
Project Plan, Group Muuntaja

20

Creating build baseline for document:

Only documents that are versioned are baselined. These documents are baselined after it has
passed the quality assurance review. Reviewers and review methods are selected separately per
document. When document is baselined, it gets new version number. A new folder named as
document name_x_y, is created to store the baseline version of the document.

Folders name consists from parts described below:

Document name is the name of the baselined document,

x is the major version number and

y is the minor version number.

Ex. Project plan_1_0 is the folder name for project plan version 1.0 baseline

The folder is created in baseline documents “home” folder and the baseline version is copied in
this folder and folder with its contents is added to CVS repository. Future updates are done
normally in original document and the saved baseline document is left as is.

Creating build baseline for code:

CCB makes decision that system is ready to be tested and nominates one project group member
as build manager for the build.

Build manager makes the build.

Build manager performs simple platform test for the build.

If build does not pass the test the build is returned to development.

If build passes the platform test all code related with build is marked to belong to certain build by
CVS tag operation. Tag for build is called as build id. Build id has following format:

fxb_X_Y , where

fxb = Fastaxon build

X = increment number

Y = build number inside increment

Version numbering scheme for documents

Document versions are numbered following manner:

T-76.115 Software Project
Project Plan, Group Muuntaja

21

• Major version number changes only when document is accepted officially after formal
review. Minor version number is reset to zero when major number is incremented.

• Minor version number may be incremented every time the document is modified. Minor
version number is incremented as long as change in major version number resets it to
zero.

Version numbering scheme for system builds

System builds are numbered following manner:

• Major version number tells the iteration in which the build is made.

• Minor version number is linearly incremented counter of builds inside each iteration.

Example:

fxb_1_1 is first build of first iteration.

5.1.3. 7 Procedures for changing baselines (procedures may slightly vary with each baseline)

Procedure below is modified copy from [7]. In order to change the baseline following procedure
must be followed:

The change request related to change must be stored as change request document in to change
request folder in CVS.

The change to baseline must be approved by CCB.

If the change implementation work estimate is more than 5 workdays or the change has great
effect on products architecture or function, the change must be approved by customer.

Changes are implemented on version under development. Changes are done during normal
development work on schedule of iteration that implements the changes.

5.1.3.8 Procedures for processing change requests and approvals

Procedure below is modified copy from [7].

Change reporting documentation

All change requests will be stored in change request folder in CVS and bug reports will be
recorded using Bugzilla.

Change control process

T-76.115 Software Project
Project Plan, Group Muuntaja

22

Flow of control is displayed in the graph below

Main points about the process are:

Only well prepared requests and reports are presented to CCB to preserve time

Each change needs to be verified either by the board.

T-76.115 Software Project
Project Plan, Group Muuntaja

23

Figure 2: Flow diagram of the change control process from [7]

T-76.115 Software Project
Project Plan, Group Muuntaja

24

5.1.3.9 Branching and merging documents and code

To facilitate parallel SW development, following simple branching and merging methods are
used.

5.1.3.10 Branching and merging documents:

Note: Method below is valid only if multiple project members are updating same document in
parallel. If only one person is updating the document he may update the original document.

Each versional document has owner. See chapter 5.1.8 for details. Only the owner of the
document may update the document. Thus if some other updates the document he will save the
updated document to same folder with name formed as follows:

<document name>_<updater name>_<CVS version number of original document>.*

 (* can be any extension which file can have)

The document under updating will be marked with draft status until update is finished. Then the
updater will set status of the document as ready. Then the owner of the document will merge the
changes to original document and moves the updaters version of the document to /old –folder
located in same folder with original document.

5.1.3.11 Branching and merging code modules:

During the development the project structure is designed in a way that minimizes the need for
parallel development. Anyhow some degree of branching and merging is required. Branch
structuring is done manner similar to mainline branch-structuring pattern presented in [8].

Figure 3: Mainline branch-structuring pattern from [8]

T-76.115 Software Project
Project Plan, Group Muuntaja

25

We maintain one main code line (mainline) that holds the whole stable system. Subsystem
development is started in own code line and they will be merged to mainline when it is verified as
stable. Thus branch elements are similar to Activity branch pattern presented in [8] and similarly
branch creation corresponds to Branch per task pattern in [8].

The key point in merging is the used branching policy. Because the project group does not have
very much experience in Java ™ coding we will start with very strict branching policy, where
only CCB named persons are allowed to merge code to mainline. This way we achieve better
code quality in the beginning of the project. This approach corresponds to Restricted-Access line
branching policy pattern in [8] After group has got more experience from Java programming we
may loosen the branching policy and allow coders to merge their own code to mainline. This
approach corresponds to Merge Your Own Code (MYOC) pattern in [8].

5.1.4 Bug reporting, Bugzilla

In the project must be some system by which all bugs that are found in the product can be
considered. Any bug that are found in testing, are assigned to CCB. CCB checks priority of the
bug and assign it for fixing to the developer who is responsible for the module. Developer fix the
bug and after own testing reassign the defect for verifying to the person who found the bug. He
test that the fix works and if it does, he close the defect. If not, he reassigns the defect back to the
developer. Only bugs that are found in official testing versions are considered via reporting
system.

Bugzilla have been chosen for handling defects in the FASTAXON system. Bugzilla is web-
based, open source bug reporting system. It allows adding of the defects to the database and
assigning them to the responsible person. Any defect that has been added to the system can be
found in Bugzilla by searching it, and after that, status of the bug can be checked. Bugzilla is also
a good tool for estimating how much testing is required yet or is the product ready to releasing.

Following priorities used:

• Show stopper: Must be fixed immediately. Prevents releasing.

• High: Must be fixed before final version.

• Low: Should be fixed before final version.

• Cosmetic: Minor problems that don’t affect to functionality. For example small errors in
GUI.

• Not a bug: It can be possible that although tester has found a “bug”, it is not the bug but
user error. In this case developer can use this priority to tell it to the tester.

Bugzilla can be found http://www.soberit.hut.fi/T-76.115/03-04/raportointi/. Short instructions to use
of Bugzilla :

Create new account:

T-76.115 Software Project
Project Plan, Group Muuntaja

26

1. Every person who is responsible for developing or testing the product must be create own
account in Bugzilla.

2. Open the page http://www.soberit.hut.fi/T-76.115/03-04/raportointi.

3. Choose New Account and follow the instructions to give your user name and e-mail
address to the system.

4. Password is send to you by e-mail, but your can change it afterwards

5. You are ready to use the system

Add a new defect to the system:

1. Login to the Bugzilla.

2. Choose New-button and Enter Bug-dialog is opened.

3. Type short and well descriptive string to Summary-field.

4. Give more information from the defect in Description-field. There you must describe the
bug exactly and write step-by-step instruction how the bug can be reproduced. Set also
priority here (Show stopper, High, Low, Cosmetic).

5. Fill all other fields. If you need more information choose the link to the help.

6. Write e-mail address of CBB to the Assigned To-field.

7. Choose Commit-button to commit the assignment.

Fix the defect:

1. Fix the defect that is assigned to you.

2. Test functionality of the fix and merge changes to CVS.

3. Login to the Bugzilla.

4. Find the defect in Bugzilla and open it.

5. Change status of the defect for “FIXED”.

6. Write additional comment “Fixed. Verify the fix, please”.

7. Assign the defect back to the person who found the bug.

Verify the defect:

T-76.115 Software Project
Project Plan, Group Muuntaja

27

1. Update your bin-branch from CVS.

2. Run the program and test carefully if the bug has been fixed or not.

3. Login to the Bugzilla.

4. If the defect had been fixed in the way you wanted, change status for “CLOSED”.

5. If there was something to fix yet, change status for “REOPENED”. After that, write
additional comments for the developer and assign the defect back to him for fixing the
problem again.

Find the defects:

1. Login to the Bugzilla.

2. If you know number of the defect, type it to the dialog field and choose Find-button.

3. If you don’t know the number, you can search defects of the product by choosing Quary-
option.

Some additional important notes:

• Use always descriptive string in Summary-field.

• Keep in mind that you describe the bug well and there are exact step-by-step instructions
how the bug can be reproduced.

• Remember to mention number (or date) of the build in which the problem is occurred.

• Make sure that you are using the latest version of the product. If not, update your bin-
directory and try to test again.

• Try to react to the assignment as soon as possible. Work of the many persons can be
depend on you.

• Before you will add the new defect to the Bugzilla, make sure that it isn’t here. It is not
nice if there is a same bug in several defects. Of course duplicate defects can be merged
afterwards.

More information from Bugzilla can be found in Bugzilla home page [9].

5.1.5 Time reporting, Trapoli

Each member of the group tracks the work effort they have invested in the project by reporting
work hours to a Web based Trapoli system which is available at [9]. The Project Manager is
responsible for administrating the project “muuntaja” in Trapoli. All the members of the project

T-76.115 Software Project
Project Plan, Group Muuntaja

28

use their own login usernames to enter data to the system. Hours are reported by task and work
type. Tasks are created and updated by the project manager. The following fixed work types are
categorized:

T-76.115 Software Project
Project Plan, Group Muuntaja

29

Table 11. Work types in Trapoli.

Category Description
Project
management

Project planning, tracking and control. Project reviews. Defining process and
work practices. Creating substance for the project plan, progress reports, final
report.

Design Requirement specification and technical design, e.g., creating use cases, drawing
design diagrams, specification of user interface and descriptions of interfaces.
Architectural specifications, module interfaces and descriptions.

Programming Creating, modifying, debugging and unit testing code. Low-level design done
while writing code. Creating tools (e.g. scripts) for the project.

Pair programming If the pair programming practice is used, the person responsible for the task
reports his hours as programming. The other member of the pair reports his
hours as pair programming.

Testing Planning and executing testing (integration and system testing). Reporting
defects. Other quality assurance practices, e.g., code reviews.

Documenting Writing, reviewing and revisioning of documents concerning the software and
the project. Time spent on brainwork creating the substance for a document
before writing it in its final form should be reported to the corresponding work
type, e.g., design.

Infrastructure Installing and maintaining hardware and software tools for the project.
Maintaining project web pages.

Meetings Project status meetings, mentor meetings. Substance meetings on, e.g.,
requirements definition, design, etc. should be reported using the relevant work
type for the topic.

Studying Learning new project related issues (e.g. tools, technologies, standards, topic's
domain).

Lectures T-76.115 lectures

5.1.6 Meetings

There are tree basic meeting types:

1. Internal meetings of project group

2. Mentor meetings

3. Customer meetings

Project manager acts as chairman of meeting by default. Secretary for each meeting is selected
among project group according alphabetical order of last name. Minutes of internal meetings and
mentor meetings are stored in Yahoo Groups! files\minutes area. Minutes of customer meetings
are stored to version control system.

T-76.115 Software Project
Project Plan, Group Muuntaja

30

Project manager prepare agenda for each meeting. Agendas of customer meetings are kept in
version control system, where both customer and project group can access them. Agendas of
internal meetings are distributed to project group via Yahoo Groups! Additionally project
manager will send mentor meeting agenda to mentor by e-mail.

5.1.6.1 Weekly meetings

There are two timeslots for weekly meetings:

- Tuesday: 18:00-19:30 internal meeting, Computer Science Hall Cafeteria, Otaniemi, Espoo.

- Thursday: 16:00-18:00 meeting with customer, VTT, Tekniikantie 4B, Espoo

These meetings are held weekly if needed. Necessity of participation is agreed case by case,
typically at previous meeting.

5.1.8 Documentation methods

The project generates a number of documents that are used as a communication tools between the
stakeholders of the project. The table 12 below describes the main documentation of the project.

Table 12. Documentation.

Document name Description Format Owner Acceptor
Project Plan Defines project level issues

and practices.
MS Word Tero Leppänen

All members of
the group
Muuntaja.

Pekka
Uusitalo

User
Requirements

Describe the customer
requirements of the
FASTAXON software in
general level.

MS Word Mika
Hakkarainen

Tero
Leppänen

Technical
Specification

Describe software
requirements in detailed and
technical level.

MS Word Pentti Vänskä Tero
Leppänen

Testing plan Defines the test cases used
for FASTAXON.

MS Word Pekka Uusitalo Tero
Leppänen

Test log Used for bookkeeping test
runs.

MS Excel Pekka Uusitalo Tero
Leppänen

Test report Used for reporting test runs
against the test cases.

 Pekka Uusitalo Tero
Leppänen

User's manual

FASTAXON end user’s
manual.

MS Word Esko Simpanen Tero
Leppänen

Action Point
Register

Used for bookkeeping open
tasks.

MS Excel Tero Leppänen Pekka
Uusitalo

Progress report Reports project status,
practices and hours used.

MS
PowerPoint

Tero Leppänen Pekka
Uusitalo

T-76.115 Software Project
Project Plan, Group Muuntaja

31

Terminology and
Definitions

Vocabulary, terminology
and definitions of the
FASTAXON problem
domain.

MS Word Mika
Hakkarainen

Tero
Leppänen

Final Report The final report of the
project.

MS Word Tero Leppänen Pekka
Uusitalo

In addition to these documents, separate documents will be created as needed for miscellaneous
purposes. These includes agendas for customer meetings, minutes of the meetings, and
installation instructions for the tools which are used etc.

Documents are stored into version management system using native tool formats. The final
versions of the documents will be published on project’s web site. PDF format will be used for
publishing and delivering the documents to the stakeholders.

5.1.10 Action Point Register

Action point register is used for listing open tasks. Register is updated during meetings (internal,
customer, mentor). Action point register is simple Excel sheet, containing tasks, their status and
responsible person. Each task is named according current date and running number, i.e.
AP20031013_1. Each task has Id, Description, responsible person, deadline, status and possible
comments. Statuses of tasks are updated during meetings. Register is stored to version control
system. Tasks listed in Action Point Register should be tiny enough so that responsible person
can handle them. Each task should have only one responsible person; there are no shared
responsibilities. If several persons are marked responsible, it means that all of them must handle
task separately. For example if there task called “give comments about document X” and whole
project group is marked responsible, it means that everybody should give comments of document
X.

5.1.12 Personal SE assignments summary

Table 13 shows personal software engineering assignments required by course T-76.115.

Table 13. Personal SE assignments.

Practice Responsible Usage
Heuristic analysis Mika Hakkarainen I2-I3
Bug reporting, life cycle of bug Pekka Korhonen I3-DE
Communication methods Tero Leppänen I3-DE
Documentation methods Esko Simpanen PP-I1
Automated unit testing Hannu Törnroos I2-I3
Automated system testing Pekka Uusitalo I1-I3
Design patterns Pentti Vänskä I1-I2

T-76.115 Software Project
Project Plan, Group Muuntaja

32

5.2 Tools

This section describes all tools that project group will need on this project. This section describes
also development and testing environments. Basically test environment is same than product
environment. On this phase of the project it is not possible to know all the tools that we may need
during the project. Main tools are basically clear. Some tools are also for customer use. On this
point of view it is reasonable that all tools on product are free to use. This point is also important
in the future after this project is over, because then it is much easier for the customer to continue
further developing.

It is important that amount of the tools is as small as possible. This helps for example the
maintaining. On the other hand, on software architecture’s point of view, a simple construction is
good. We must also remember that our resources are limited. On this phase it is clear that
programming language will be Java. This system has tree main parts: client part, database and
web server part. All programming will be done on Java. On database server there will be database
management system software. On web server there will be web server software and some kind of
servlet container. All the tools that will be used are described in tables 14-18. The development
and the test environment are also described. These are preliminary valuations of platforms and
tools. They are focused during project.

For avoiding overhead of configuration and learning new tools, brief installation manuals of each
tool may be written if needed.

Table 14. Summary of tools needed.

 Tool name Version System part Use function Note

Eclipse 2.1.1 All Software developing
J2SE 1.4.2_01 JRE in all parts Software developing
MySQL 4.0.15 Database server Mandatory system

software
this may
change on
next phase

Apache 2.0.47 Web server Mandatory system
software

Tomcat 4.1.27-
LE-jdk14

Web server Mandatory system
software

Microsoft Office 2000 Documentation
Dia 0.91 Documentation of UML

diagrams
This may
change
during next
phase

CVS 1.10 unix
version

 Version control of
documentation and source
files

Server

TortoiseCVS 1.4.5 Version control of
documentation and source
files

Front-end

Microsoft Windows SP4 Clients and Operation system Also project

T-76.115 Software Project
Project Plan, Group Muuntaja

33

 Tool name Version System part Use function Note

2000 database server group
operating
system

Internet explorer 6.0 User interfaces Platform Compatibilit
y with other
browsers: to
be defined

Bugzilla Bug database Web-
browser
front-end

Trapoli Time reporting and
project management

Web-
browser
front-end

Table 15. Development environment.

Software
Tool Optional
Microsoft Windows 2000
Eclipse
Java SDK
MySQL X
Apache X
Tomcat X
Microsoft Office 2000
TortoiseCVS
Dia X
Hardware
Processor Intel P2 350MHz or better
System memory ≥256MB
Free disk space ≥1GB
Network connection Mandatory for

installations
CD ROM

Table 16. Test environment for client configuration.

Software
Microsoft Windows 2000
Client version of FASTAXON application
JRE
Hardware

T-76.115 Software Project
Project Plan, Group Muuntaja

34

Software
Processor Intel P2 350MHz or better
System memory ≥128MB
Free disk space ≥10MB
Network connection ≥10Mbit/s
CD ROM Optional

Table 17. Test environment for database server configuration.

Software
Microsoft Windows 2000
Database server version of FASTAXON application
MySQL
Hardware
Processor Intel 1GHz or better
System memory ≥512MB
Free disk space ≥1GB
Network connection ≥10Mbit/s
CD ROM

Table 18. Test environment web server configuration.

Software
Microsoft Windows 2000
Web server version of FASTAXON application
Apache
Tomcat
Hardware
Processor Intel 1GHz or better
System memory ≥512MB
Free disk space ≥1GB
Network connection ≥10Mbit/s
CD ROM

5.3 Standards and guidelines

Following standards and guidelines are used in project:

• Code Conventions for the Java™ Programming Language Sun Microsystems [11]
• Java™ Look and Feel Design Guidelines, Sun Microsystems [12]

T-76.115 Software Project
Project Plan, Group Muuntaja

35

• UML [13]
• XFML [5]
• XFML + CAMEL [6]

T-76.115 Software Project
Project Plan, Group Muuntaja

36

6. Phasing
This chapter presents the phasing of the project. It lists the iterations' primary goals and
deliverables, tasks and effort estimates, and critical dates during the iterations. The iterations
follow T-76.115 course schedule.

At the end of each iteration, the next iteration's goals and deliverables are planned and
documented here. If the plans change during the iteration, the changes must be presented at the
project review in relation to the original plans.

6.1 Overview

Table 19. Project phasing.

Date Iteration/Event
23.9. - 30.10.2003 (~4 weeks) PROJECT PLANNING
27.10.2003 Delivery of documents and reporting
29.10.2003 Project review
31.10. - 4.12.2003 (5 weeks) IMPLEMENTATION 1
1.12.2003 Delivery of documents and reporting
4.12.2003 (not approved) Project review
5.12.2003 – 12.2.2004 (10 weeks) IMPLEMENTATION 2
9.2.2003 Delivery of documents and reporting
12.2.2003 (not approved) Project Review
13.2. – 18.3.2004 (5 weeks) IMPLEMENTATION 3
15.3.2003 Delivery of documents and reporting
18.3.2003 (not approved) Project Review
19.3.2004 - 7.4.2004 (3 weeks) DELIVERY
5.4.2003 Delivery of documents and reporting
7.4.2003 (not approved) Final demo

6.2 Project Planning

Goals:

• Project planning
• Understanding the domain
• Requirements specification on general level including most important use cases (business

level use cases)
• Setup CVS-system
• Detailed planning of I1
• Define tools (preliminary)

T-76.115 Software Project
Project Plan, Group Muuntaja

37

Deliverables:

• Project plan
• Requirements document
• Progress report (slideshow)

Tasks:

• Table 20 shows tasks of PP phase and realized hours of them. Task “Write project plan”
contains also actual project planning hours.

Table 20. Projectd Plan phase and realized working hours.

DS: Study GUI tools and technology 1.50
DS:Req. documentation 19.00
DS:Req. elicitation and analysis 4.00
DS:Study domain FASTAXON 9.50
GE: Meetings (customer) 42.90
GE: Meetings (internal) 17.50
GE:Lectures 41.50
GE:Meetings (status/mentor) 16.50
PM: Adopt tool CVS 8.50
PM:Other project management 7.50
PM:Personal SE practice 4.00
PM:Plan the next iteration 3.00
PM:Plan work methods and tools 8.00
PM:Project review and preparation 2.00
PM:Start and organize project 3.50
PM:Write the project plan 73.50
Project management 7.50

6.3 Implementation 1

Goals:

• To have defined and verified architecture for FASTAXON system
• Increase understanding of domain
• To have detailed technical specifications of system behaviour
• To have format (templates) for technical documents
• To have business-level class model

T-76.115 Software Project
Project Plan, Group Muuntaja

38

Deliverables:

• Architecture prototype
• Preliminary Database schema

Documents:

• Tech. specification (core architecture)
• Installation instructions for architecture modules and database
• Test case specifications (any format allowed, see the example from the testing guidelines)
• Test report of architecture prototype
• Updated requirements document
• Updated project plan
• Progress report (slideshow)

Table 21 shows I1 tasks, their responsibilities and planned hours. Biggest task is “Make prototype
of selected architecture”. It will be divided to smaller sub-tasks, after selection of architecture.
Meetings are included inside tasks, except course meetings, which are fixed for whole project
team. Gant-diagram of I1 is shown in appendix 1.

Table 21. Tasks.

 Mika PekkaK Tero Esko Hannu PekkaU Pentti Total
Prepare architecture proposal(s) for customer 3 6 4 6 19
Select architecture with customer 2 2 2 2 8
Define preliminary database schema 2 4 2 8
Define test plan 2 7 9
Setup development environments 2 2 2 2 2 2 0 12
Make prototype of selected architecture 20 18 38
Setup test environment for architecture testing 4 2 6
Setup test data to database 6 2 8
Test architecture prototype 4 6 10
Verify architecture against business level use
cases

4 2 4 10

Update requirements document 4 1 5
Update project plan 2 4 6
Make templates for technical documents 4 2 6
Prepare progress reporting and slideshow 8 8
Project management 2 8 10
Document management 6 2 8
Personal assignments 4 2 4 8 8 26
Course meetings (mentor + review) 2 2 2 2 2 2 2 14

T-76.115 Software Project
Project Plan, Group Muuntaja

39

Risk management 1 2 2 5
Release building for architecture proto 1 1 2 4
Platform test for architecture proto 1 1
Business class model 5 4 9
Class responsibility descriptions for business
classes that have significant state dependency

 1 1

GUI design / specification 1 2 6 9
Total 35 40 30 30 35 30 40 240

6.4 Implementation 2

Goals:

• To have first functional prototype of FASTAXON system fully fixed architecture
• To have most of the requirements labelled ‘must’ to be implemented
• Use case realization

6.5 Implementation 3

Goals:

• To have rest of the requirements labelled ‘must’ to be implemented
• To have as many as possible of the requirements labelled ‘should’ to be implemented
• If possible implement selected requirements labelled ‘optional’
• fully fixed requirements

7. Risk management plan
Purpose of the risk management plan is to define the risk management practices in faxtaxon
project, evaluate the risks and plan the actions to minimize risks. Plan also defines who are the
responsible persons and how the risks are monitored.

The main responsibility about risks management will be at the Quality Manager Pekka Uusitalo.
He will attend to the Risk Management course (T-76.633) with the Project Manager Tero
Leppänen, Process Manager Hannu Törnroos and Documentation Manager Esko Simpanen. This
group form the risk management board (RMB).

7.1 Risk management practices

The RMB will handle risk identification, analysis, controlling and monitoring tasks. Part of this
work is done in risk management course exercises.

T-76.115 Software Project
Project Plan, Group Muuntaja

40

Identification

RMB will have regular meetings once during each iteration phase for monitoring the risks. In
these meetings the old risks will be re-evaluated and new risks are elicited. All members of the
project group are encouraged to identify new risks and monitor old ones during whole project. If
something alarming is noticed the project Manager should be informed as soon as possible. As
part of the identification risk events will be defined.

Analysing

To each identified risk event probability and priority will be identified. The risks will be then
ranked using the product of probability and priority. Corrective actions are defined for every risk
event. Risk after corrective action will be analysed again with the same method. Corrective
actions should drop the effect of the risk from critical or major to minor or small.

Table 22. Risk probabilities.

 1 Highly probable
2 Probable
3 Possible
4 Unlikely
5 Highly unlikely

Table 23. Risk priorities.

1 Critical
2 Major
3 Medium
4 Minor
5 Trivial

Table 24. Risk effect table.

1 - 3 A = Critical risk
4 - 6 B = Major risk
7 - 12 C = Minor risk
13 -
25

D = Small risk

Control

Risks are defined in the risk table in the project plan. Risk event and controlling actions are also
defined. Control of the risk is related to the risk effect table. Risks with critical or major initial

T-76.115 Software Project
Project Plan, Group Muuntaja

41

risk are assigned to responsible monitor who should monitor the risk and use corrective actions or
inform the RMB if needed.

7.2 Risks

Table 25. Risks.

ID Risk factors Risk event Effects Initial
risk Controlling actions Final

risk Responsible

 R#1

1. The group
is working
while
studuing.
2. Some group
members have
family with
small
children.

1-2 persons
leave the
project.

 1. Too much
work for rest of
the group.
2. Some parts of
the project
become
unknown to
group.
=> The project is
terminated.

 B 1. Project manager
will monitor the
workload for
individual members.

2. There should be a
backup person for
every task.

 D Project
Manager

 R#2

1. Project
schedual is
fixed by
course
2. The group
is working
while
studuing

Project
deadlines
are
exceeded.

The group fail to
pass the course

 C There will be
responsible person
for handling the
course deliveries.

 D RMB

R#3

1. The group
has limited
knowledge of
Jave coding
2. The theory
behind the
software is
new

Coding is
slow and
project is
delayed.

The group fails
to meet the
customer goals

 B The project scedual
will be planned so
that there is enough
time to study the new
tools.

 C Project
Manager

R#4

1. The theory
behind the
software is
new
2. The
customer has
limited
tehcnical
expertees

The
software
don't meet
the
requirement
s

The group fails
to meet the
customer goals

 C The progress of the
project is monitored.

 D RBM

T-76.115 Software Project
Project Plan, Group Muuntaja

42

References

[1] Yannis Tzizikas, Anastasia Analyti, Nicolas Spyratos, Panos Costantopoulos. ”An Algebraic
Approach for Specifying Compound Terms in Faceted Taxonomies”, EJC2003, Japan.

[2] VTT Public Licence Agreement

[3] VTT Open Source Server
http://opensource.erve.vtt.fi [referenced 12.10.2003]

[4] FASTAXON Terminology and Definitions.

[5] XFLM
http://www.xfml.org/ [referenced 19.10.2003]

[6] XFML + Camel
http://www.csi.forth.gr/~tzitzik/XFML+CAMEL/ [referenced 19.10.2003]

[7] Törnroos H, Kousa M, Naraneva L. 2002.
”CM Exercise plan for course T-76.614 Software configuration management”.

[8] Appleton B, Berczuk S, Caberera R, Orenstein R. 1998.
“Streamed lines: Branching Patterns for Parallel Software development”.
http://www.enteract.com/~bradapp/branching/references.html [referenced 19.10.2003]

[9] Bugzilla
http://www.bugzilla.org [referenced 21.10.2003]

[10] Trapoli, time reporting system
http://valinor.soberit.hut.fi:4288/trapoli_oht/ [referenced 19.10.2003]

[11] Code Conventions for the Java™ Programming Language, Sun Microsystems
http://java.sun.com/docs/codeconv/ [referenced 19.10.2003]

[12] Java™ Look and Feel Design Guidelines, Sun Microsystems
http://java.sun.com/products/jlf/ [referenced 19.10.2003]

[13] UML home page
http://www.uml.org/ [referenced 19.10.2003]

T-76.115 Software Project
Project Plan, Group Muuntaja

43

Appendices

1. PhaseI1Scheduling.pdf.

2. FASTAXONTerminologyAndDefinitions.pdf.

