
����������	
��
������
��

��������	�
������

�����
�������
��

Fifth Edition - March 2002

LIBD - Laboratory of Database Application Engineering

���������	
����
������	�����
�����������
	�������

0-2
���������� ����������������
	�� ��� !�"�#�����������

0�3
����

�

This series of tutorials is a result of the Knowledge & Technology transfer action of
the LIBD (Laboratory of Database Application Engineering). The LIBD is (and has
been) supported by:

l’Université de Namur (FUNDP)

la Communauté Française de Belgique

la Région Wallonne

l’Union Européen

���

by a consortium of companies and public administrations comprising:

ACEC-OSI, AGD, ARIANE-II, ASCII, Banque UCL (Fortis), BBL,
Carrières du Hainaut, Centre de Recherche Public H. Tudor, Clinique
Universitaires St-Luc, Cockerill-Sambre, CONCIS, Daimler-Chrysler,
DIGITAL, D'Ieteren, EDF, EPFL, Euro View Services, Fortis-CGER,
Groupe S, IBM, Institut National de Criminalistique.Ministère de la Ré-
gion Bruxelles-Capitale, OBLOG Software, ORIGIN, Régie des bâti-
ments, TEC Charleroi, Ville de Namur, Winterthur, 3 Suisses.

���
��
�

Professor Jean-Luc Hainaut
University of Namur - Institut d’Informatique

rue Grandgagnage, 21 l B-5000 Namur (Belgium)

 jlhainaut@info.fundp.ac.be - http://www.info.fundp.ac.be/libd
����������������
	�� ��� !�"�#����������� ����������

0-4
���������� ����������������
	�� ��� !�"�#�����������

toc�1
��
������	�������

��
������	�������

�������	�
��

�����
��
��������
��������
���
1.1 Introduction 1-2
1.2 Creating a new project 1-3
1.3 Defining a new schema 1-5
1.4 Defining entity types COMPANY and PRODUCT 1-7
1.5 Entering entity type attributes 1-8
1.6 Entering relationship type MANUFACTURES 1-10
1.7 Defining entity type identifiers 1-12
1.8 Documenting the schema 1-12
1.9 Producing a SQL database 1-14
1.10 Saving the project 1-16
1.11 Quitting DB-MAIN 1-17
Summary of Lesson 1 1-18
Exercises for Lesson 1 1-19

�����	���������������	�����
2.1 Starting Lesson 2 2-2
2.2 On including database schemas into a document 2-2
2.3 Graphical views of a schema 2-3
2.4 Textual views of a schema 2-6
2.5 Manipulating the graphical components of a schema 2-10
2.6 Navigation through textual views 2-15
2.7 Reordering attributes and roles 2-16
2.8 Generating reports 2-18
2.9 Copying objects 2-20
2.10 Pasting notes 2-21
2.11 Quitting the lesson 2-21
Summary of Lesson 2 2-22
 Exercises for Lesson 2 2-24

�������
������	����� �	��
3.1 Starting Lesson 3 3-1
����������������
	�� ��� !�"�#����������� ����������

toc-2
3.2 Conceptual and logical schemas 3-1
3.3 SQL code generation 3-5
3.4 Generating reports 3-8
3.5 Multi-product project 3-8
3.6 Deleting objects 3-10
3.7 Quitting the lesson 3-11
Summary of Lesson 3 3-12
Exercises for Lesson 3 3-12

!��"��	������������
��
4.1 Starting Lesson 4 4-2
4.2 Updating an object 4-2
4.3 What is a conceptual schema? 4-2
4.4 Cardinality of an attribute 4-4
4.5 Mandatory and optional attributes 4-5
4.6 Single- and multivalued attributes 4-5
4.7 Atomic and compound attributes 4-5
4.8 Multiple identifiers 4-6
4.9 Hybrid identifiers 4-7
4.10 N-ary relationship types 4-9
4.11 Relationship types with attributes 4-9
4.12 Relationship types with identifier(s) 4-11
4.13 Cyclic relationship types 4-13
4.14 The complete schema 4-16
4.15 Quitting the lesson 4-16
Summary of Lesson 4 4-17
Exercises for Lesson 4 4-18

#��$��
	�������%�&�
	��������
��
5.1 Starting Lesson 5 5-2
5.2 What is a logical schema? 5-2
5.3 Transformation into a logical schema 5-3
5.4 Reference attributes (foreign keys) 5-6
5.5 Equality reference 5-8
5.6 Defining a foreign key 5-9
5.7 Access keys 5-10
5.8 Defining entity collections 5-13
5.9 Name processing 5-15
5.10 SQL code generation 5-18
5.11 Quitting the lesson 5-21
Summary of Lesson 5 5-22
���������� ����������������
	�� ��� !�"�#�����������

toc�3
Exercises for Lesson 5 5-23

'����(��	���"��	������������
��
6.1 Starting Lesson 6 6-2
6.2 Subtypes and supertypes (is-a relations) 6-2
6.3 Properties of the subtypes of an entity type 6-5
6.4 Supertype / subtype inheritance 6-8
6.5 Coexistent components of an entity type 6-11
6.6 Schema transformations : a first glance 6-14
6.7 Exclusive components of an entity type 6-17
6.8 Groups with at least one, or exactly one, existing component 6-19
6.9 Quitting the lesson 6-21
Summary of Lesson 6 6-22
Exercises for Lesson 6 6-23

)��"��	�����������&�
��*�+
7.1 Objective of these lessons 7-2
7.2 Conceptual analysis and design 7-2
7.3 The case study 7-3
7.4 The analysis 7-3
7.5 Starting Lesson 7 7-5
7.6 Starting the analysis 7-5
7.7 The books 7-5
7.8 The copies 7-9
7.9 The authors 7-14
7.10 The current schema 7-17
7.11 Quitting the lesson 7-17
Technical addendum 7-19
7.12 The attribute/entity type transformation 7-19
Summary of Lesson 7 7-27
Exercises for Lesson 7 7-27

,��"��	�����������&�
��*�+
8.1 Starting Lesson 8 8-2
8.2 The analysis 8-2
8.3 The borrowers 8-2
8.4 Borrowings and projects 8-7
8.5 Borrowing history 8-9
8.6 The final schema 8-12
8.7 Quitting the lesson 8-15
����������������
	�� ��� !�"�#����������� ����������

toc-4
Technical addendum 8-16
8.8 Discussion on the attribute/entity type transformation (continued) 8-16
Summary of Lesson 8 8-19
Exercises for Lesson 8 8-20

-��$��
	������
��
9.1 Starting Lesson 9 9-2
9.2 Logical design 9-2
9.3 The concept of Relational Logical Schema 9-3
9.4 Transformational approach to Logical design 9-6
9.5 Dealing with one-to-many relationship types 9-8
9.6 Processing many-to-many relationship types 9-11
9.7 Transforming complex relationship types 9-13
9.8 Logical design, at last! 9-15
9.9 Quitting the lesson 9-25
Technical addenda 9-27
9.10 On the rel-type/entity type transformation 9-27
9.11 On the rel-type/reference attribute transformation 9-31
9.12 On the technical ID transformation 9-38
Summary of Lesson 9 9-40
Exercises for Lesson 9 9-41

�.��$��
	������
���*�+
10.1 Starting Lesson 10 10-2
10.2 What to do next? 10-2
10.3 Transforming the compound attributes 10-2
10.4 Transforming the multivalued attributes 10-4
10.5 An (almost) SQL-compliant schema 10-9
10.6 The names 10-12
10.7 Quitting the lesson 10-12
Technical addenda 10-13
10.8 On the equivalence of Instance and Value representations 10-13
10.9 On transforming compound attributes 10-14
Summary of Lesson 10 10-18
Exercises for Lesson 10 10-18

����$��
	������
���*�+
11.1 Starting Lesson 11 11-2
11.2 Working more systematically 11-2
11.3 Transforming the IS-A relations 11-4
���������� ����������������
	�� ��� !�"�#�����������

toc�5
11.4 A transformation plan 11-6
11.5 The Global transformation Assistant 11-14
11.6 Quitting the lesson 11-21
Technical addenda 11-22
11.7 IS-A transformation revisited 11-22
11.8 Elementary schema analysis 11-28
11.9 Advanced schema analysis 11-29
11.10 Advanced schema transformation 11-37
Summary of Lesson 11 11-43
Exercises for Lesson 11 11-44

����%�&�
	������
��
12.1 Starting Lesson 12 12-2
12.2 What is a physical schema? 12-2
12.3 And what about physical design? 12-3
12.4 Building the physical schema of a database 12-4
12.5 Redundant access keys 12-6
12.6 The TECH descriptions 12-11
12.7 Generating the DDL schema 12-11
12.8 Getting help from DB-MAIN 12-15
12.9 Quitting the lesson 12-17
Summary of Lesson 12 12-18
Exercises for Lesson 12 12-19

/������	��

����0
����������������
	�� ��� !�"�#����������� ����������

toc-6
���������� ����������������
	�� ��� !�"�#�����������

�������	�
��

�������������	

Database design is a part of the Software Engineering domain, through which
application developers specify, build and maintain large programs. More par-
ticular, database design is the art of drawing, validating and implementing cor-
rect and efficient permanent data structures, i.e., files and databases.

Transforming an art into a science, or at least into a discipline, is not an easy
task, especially in software engineering. On the one hand, engineering requi-
res a coordinated set of models, techniques, methods and tools, the develop-
ment of which is far from obvious. On the other hand, practitioners have to be
convinced that a disciplined approach to application design brings major bene-
fits in the long term. Which is no easy task either!

�����������
���������
������������
���

������
The ����$�
���
��
 will be used to specify information/data structures at dif-
ferent levels of abstraction. They must offer an easy and intuitive way to state
that %�
�
��	
�& �%��
	��	
, &	
��%�
��	�������������$������	�'	
��%�����$�	
or that ���
	��	��
�& �%���$��
���%�
�
��	 only. They must also make it pos-
sible to describe more technical aspects such as (�)�*�+,�	�%
	�
��	��
�
�
	������������ ��(�)�-���, or ��������.���/0(��1��
��

%������2����������$ �
'+,)*��+".

����$�
����3����	��3���%������
 encompass schema manipulation operators
that are intended to improve the quality and the efficiency of the data structu-
res. Normalization, validation, optimization, schema transformations and co-
ding patterns are some of the most important techniques.

����$�
������
�
 organize the whole work of building an actual database
from the users requirements. They specify which tasks must be performed, in
which order, and with which criteria in mind. They heavily rely on sophisti-
cated ��%������
 and produce documents expressed in database �
��
.

Building large databases (say, from 200 to 20,000 tables) cannot be carried out
without the support of powerful (�)+��

 (for Computer-Aided Software
Engineering) that help the developer in applying the database design method
and techniques. For instance, the mere SQL-DDL code that builds the databa-
se structures can span several thousands pages.

Intro-2
����������
	�
����
	��
������

A database is a piece of art, and, according to many designers, %�	���3 a data-
base is a matter of experience, of feeling and of the personal temperament and
taste of the artist. On the other hand, the requirements of this discipline often
are overlooked by unexperienced developers. Indeed, building a 3-table data-
base is not that difficult. Adding, from time to time, a table or two according
to the needs of the program being developed is quite easy too. This incremen-
tal approach, as can be guessed, most often results into an awkward database
structure that will prove unable to adapt to the evolving requirements of today
information systems, and that will lead to poor performance.

Hence the importance of database engineering education, not only in the scho-
ols and universities, but also among active practitioners.

����������
	�
����
	
Designing a database is just the beginning of the story: ����������3 a database,
transforming it according to new organization requirements (��
 ���
�), redo-
cumenting a legacy database (���	
����3����	��3), porting it to a new plat-
form according a new architecture (���3���	��3), ����3	����3 independent
databases, ����	����3 existing databases, ��3	����3 data from a format to ano-
ther, coping with
&���� and ���&
	� aspects of data, are other major proces-
ses that deserve being addressed in a disciplined way. Database engineering
is a large domain that must rely of powerful models, techniques, methods and
tools, that go beyond mere database design.

�������������������
DB-MAIN is a major research programme of the LIBD since 1993. The very
objective of this long term project is the development of models, methods,
CASE tools and educational materials that should help building, maintaining
and reengineering complex, evolving, data-intensive applications.

One of the main result of the programme is the DB-MAIN CASE tool.

��������
���	�����
� ������������ �!���
As an academic institution, the University of Namur, and particularly the Ins-
titute of Informatics and the LIBD, are strongly committed to making
knowledge available to as large as possible an audience. Accordingly, most
results of the research projects are translated into educational materials such
as case studies, lectures and training seminars, mainly intended to the students
���������� ����������������
	�� ��� !�"�#�����������

Intro�3
of the university and to the industry. This document is one of the products that
find their place in the technology transfer results of the LIBD.

������������
�����
�
This tutorial aims to introduce the reader to database engineering problems
and processes by developing a small database step-by-step. Though the first
lessons may appear primarily as a user’s guide for the DB-MAIN tool, this
book basically is a learning-by-doing attempt to tackle some of the most im-
portant problems and reasoning encountered when designing and implemen-
ting a database through a disciplined approach. Coping with these problems
through the use of a CASE tool mainly is a way to familiarize the reader with
these problems in a (hopefully) more attractive way. However, as a side effect,
it will also introduce to the use of a powerful and original development envi-
ronment that can solve complex problems that generally are out of the scope
of most current CASE tools.

This tutorial is sliced into graduated lessons that go from the basics to more
advanced topics. Each lesson is accompanied by suggested exercices. A rea-
der in good physical and mental condition should not spend more than 60 mi-
nutes on each lesson.

"��
�
	
These lessons are no substitute for the more technical documents of the pro-
gramme. In particular, mastering topics such as normalization, transforma-
tions, optimization, methodology modeling, reverse engineering, maintenance
or CASE programming will require a more in-depth treatment that will be ad-
dressed in specific documents and materials. When needed, the lessons will
refer to these documents.

#�$���������%
The best way to start this tutorial is to spend some time (no more than one
hour) walking through a very small document called 4
��)��&. This micro-tu-
torial is intended to introduce the reader to the very basics of database analysis
and development, and to the main operations of the DB-MAIN CASE tool.
This document is available as a Microsoft help file (4
��
��&-� &). It can be
used as an independent document, but it can be opened from the welcome pa-
nel of the DB-MAIN tool (large button "First Steps"). A PDF version also is
available (4
��)��&-&��).
����������������
	�� ��� !�"�#����������� ����������

Intro-4
"�������
��
�&�%
A more technical tutorial is being written with the title (
�&���	������������
$�
��+�3����	��3���5
 ����46�����$�
���
��
. Its goal is to help the reader
to master the basic and advanced concepts of the data model that has been de-
veloped in the LIBD, and to learn how to use it through the DB-MAIN tool.

"�������� �

������
������
������������%
The documents and software mentioned in this introduction as well as other,
generally more advanced, documents, can be obtained from the site of the la-
boratory:

���122333�
�����������	�
�2�

�

Most of them can be freely downloaded and used for education purpose.
���������� ����������������
	�� ��� !�"�#�����������

�

$�������

��
��
��������
��������
���

�����

��

In this first lesson, the reader will learn how to start and quit the
DB-MAIN CASE tool, how to introduce a simple Entity-Rela-
tionship conceptual schema, and how to translate it into table and
column structures expressed into the SQL language. S/he will
also save her/his work for further use.
Above all, the reader will get an insight into what ����$�
�����

�3� is all about.
����������������
	�� ��� !�"�#����������� ����������

1-2 "�

��46���� ���3�
�	���	
������$�
�
����
�
����������
��
For this lesson, be sure that the DB_MAIN directory includes the
DB_MAIN.EXE program (the CASE tool) as well as all the run-time libraries
(*.dll). See the README.TXT file for further detail.

This lesson assumes that you use DB-MAIN Version 5, but is valid for other
versions as well.

��� �������	�
��

We will develop a very simple database intended to describe companies that
manufacture products. Through this process we will familiarize ourselves
with some important concepts in database engineering.

For instance, we will learn that besides the data structures that are built in the
computer, and in which we will store the data about these %
�&����
�2��%�
������%��	�����
��&	
��%�
, there exists another, more abstract and more in-
tuitive way to describe these concepts, namely the ������
	���������. While
data are stored into tables or into files, a conceptual schema describes the con-
cepts in terms of entity types (classes of similar objects), attributes (entity pro-
perties) and relationship types (associations holding among entities).

The most straightforward ������
	��������� comprises the entity type COM-
PANY, which describes the class of companies, and the entity type PRODUCT,
representing the class of products. The fact that companies manufacture pro-
ducts is represented by a ������
�
�� relationship type called manufactu-
res connecting their entity types. We will give these entity types some
attributes that describe the properties of the companies (such as their company
identifier, their name and their revenue) and of the products.

��� 4����
���������5

Through the Explorer (or File Manager), we go into the DB_MAIN directory,
and we start the DB_MAIN program by double-clicking on the
DB_MAIN.EXE name or on the DB-MAIN icon. We acknowledge the presen-
tation box by clicking on the OK button, or by pressing the Enter key. The
main DB-MAIN window appears, showing, among others, the �����$�	 (with
two items only:
�� and !���), the �

 �$�	 (with a few buttons, among which
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-3
are $�� ������2�&	
7�%� and
&�������.�
���3�&	
7�%�), the 8
	9
&�%�, in which
the project window will be displayed (currently empty), and the)����
�$�	.

�	���"#"�$�The main window of DB-MAIN.

��� "����
�������3���� �	�

We are ready to open a new project through the command
���%�&�'�������
.
This command opens a '	
7�%��'	
&�	���$
. (or '	
7�%��$
. for short), which
asks us some information about the new project. Our project will be called
MANU-1 and will be given the short name M1. We validate the operation by
clicking on button OK.

�	���"#(�$�The properties of the new project.

Menu bar

Tool bar

Workspace

Status bar
����������������
	�� ��� !�"�#����������� ����������

1-4 "�

��46���� ���3�
�	���	
������$�
�
���� '. There is a simpler way to open a new project, namely by pressing the New
project button in the Tool bar.�

Now, a new window, namely the '	
7�%��2���
2, appears in the DB-MAIN
workspace. Currently, it includes a small rectangle, which is the iconic repre-
sentation of the project itself (any DB-MAIN object has a graphical represen-
tation). To examine its properties, try
�� / ������
 ������

��1. Later on,
this window will also show all the products of the project, such as the various
schemas and texts, together with their relationships2.

�	���"#)�$�The project window in which all the documents of the project will
appear.

The Menu bar and the Tool bar have changed too, offering more functions that
will be used later on. Make sure that the)�����	���

�$�	 is available. Othe-
rwise use *
���'� / �
������
���� to make it visible.

�	���"#+�$�The complete Menu bar and the full ��������.

1. Double-clicking does not work here, for reasons that will be explained later.
2. This window can also show all the activities that have been carried out to build these pro-

ducts. In other words, the Project window can show, if requested to, the history of the pro-
ject. We will ignore this feature in the following lessons.
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-5
��! ���
�
�������3��	����

We create a new schema in which we will draw the conceptual structures of
the database. Through the command ����	�
�%�&�'�����	�
 the)%�����$
.
appears and asks us the name (Manufacturing), the short name (Manu)
and the version of the schema. This schema will include the conceptual des-
cription of our database in project, so that Conceptual should be a clear ver-
sion name that suggests the objective of the schema.

�	���"#,�$�Creating a new schema.

We ignore the other properties and we validate the operation by clicking on the
OK button.

Two things happen. First, a new icon with the name Manufacturing/
Conceptual appears in the Project window, indicating that the project com-
prises a new document, or product, which is a schema. Later on, double-clic-
king on such an icon will open its)%�����2���
2.
����������������
	�� ��� !�"�#����������� ����������

1-6 "�

��46���� ���3�
�	���	
������$�
�

�	���"#-�$�The project window includes the new schema3.

Secondly, a)%�����2���
2 is opened, showing the same icon, but nothing el-
se.

�	���"#.�$�The schema window is empty, except for the icon of the schema
itself. This window is like a blank page on which we will draw the conceptual
schema of the future database.

This icon represents the schema. Double-clicking on it opens its)%�����:&	
�
&�	��;�$
.. So far, this schema is empty. We will work in this window, so
that it is a good idea to enlarge it.

3. In some rare situations (for instance, if you work on a DB-MAIN version already used by a
professional who configured it differently) a small rectangle with the label New schema
also appears in the Project windows. To get rid of it, check that the Project window display
mode is <	�&��%� ���&�����%� (through /
�' / 0����# ����������). The other modes
are quite nice as well, but probably a bit disturbing for an introductory lesson!
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-7
From now on, in order to simplify the illustrations used in this lesson, we will
hide the schema object, except when needed.

����. To free the workspace, especially when it is crammed with many windows, it
is best to iconize (minimize) the Project window.�

��# ���
�
������
�&��&����"6�%�57�����%/6�8"�

To enter the %	��������������&� mode, we click on the button. That changes
the cursor that now looks like a little rectangular box. We choose a point in
the schema window, we put the cursor on it and we double-click. This lays an
entity type at that point and opens the +��������&��$
. that allows us to define
a new entity type (Figure 1.8).

�	���"#1�$�The first entity type is defined.
����������������
	�� ��� !�"�#����������� ����������

1-8 "�

��46���� ���3�
�	���	
������$�
�
We enter the name COMPANY and short name COM. We validate the operation
by clicking on the OK button.

In the same way, we double-click at another point to define entity type PRO-
DUCT with short name PRO. To quit the entry mode, we click on the ��2�+��
�������&� button again, or we press the Escape key.

Now, the schema window shows the newly defined entity types as two boxes.
We move the boxes (by dragging them with the mouse) in the window in order
to give the schema a nice layout (Figure 1.9)

�	���"#2�$�So far, the current schema is made up of two entity types.

��' 9����
������
�&��&�������

����

To specify that some specific information items are associated with the entities
of each type, we will define the ���	�$���
 of these entity types. We open the
property box of entity type COMPANY by double-clicking on its name in the
schema window, then we click on the New att. button. The ���	�$����$
.
invites us to define the first attribute (Figure 1.10). We give it the name Com-
ID, the type char(acter) and the length 15. This attribute represents the com-
pany identifier, and is considered as a string of 15 characters. For now, we can
ignore the other properties.

There are other attributes that we want to associate with COMPANY. Therefore,
we click on button Next att(ribute), which validates the current definition,
and which calls the Attribute box again (since this button is the active one, just
pressing the Enter key will do it). We define successively attributes Com-
Name (char 25), Com-Address (char 50) and Com-Revenue (numeric 12).
The last attribute will be validated by clicking on the Ok button instead to stop
the entry process.
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-9

�	���"#"3�$�The first attribute of COMPANY is defined. The next attributes
will be defined by pressing the Next att. button, or more simply by pres-
sing the Enter key.

In the same way, we define attributes Pro-ID (char 8) and Pro-Name (char
25) of entity type PRODUCT.

The schema window now looks like Figure 1.11.

�	���"#""�$�The entity types have been given specific attributes.
����������������
	�� ��� !�"�#����������� ����������

1-10 "�

��46���� ���3�
�	���	
������$�
�
��) 9����
��������
����
���&�����58:�"�8/94

Now we want to represent the fact that %
�&����
�������%��	��&	
��%�
. This
can be done by drawing a relationship type (or 	� ���&� for short) between the-
se entity types.

We enter the ��2�	� ���&� mode by clicking on the button in the Tool
bar4. The cursor takes a cross-hair shape, so that we can draw a line from
COMPANY to PRODUCT in the schema window (Figure 1.12).

�	���"#"(�$�A line is drawn between the boxes of the entity type we want to
connect.

A link appears between both rectangles with a hexagon on it. Normally, the
default name R is selected (white on black). If it is not, we click on it. We press
the Enter key to open the ,� ���&��$
. (or we double-click on name R) We
enter the correct name manufactures, then we validate through the Ok but-
ton (Figure 1.13).

We quit the entry mode just like we did for the entity types by pressing the
Escape key or by clicking on the button again (or on any another entry
button).

Each end of the rel-type is called a ����. Each role is taken by an entity type
and is given a %�	���� ����%
�
�	����, that appears as a pair of symbols, such as
0-N and 1-1.

The 0-N cardinality specifies that any COMPANY entity will appear in at least
0 and at most N (standing for ��������) manufactures relationships.

4. or button in Version 3.
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-11

�	���"#")�$�A relationship type links the entity types. It will be given the
name���	
���

���.

�	���"#"+�$�Now the schema explicitly tells that �����	������	
���

�������
�
�
��

We will study later the concept of cardinality in greater detail. For now, we
understand the 0-N cardinality as "�� %
�&���� ������%��	�
� ��� �	$��	�	�
���$�	�:�-�=-��	
�����
��;�
��&	
��%�
". Similarly, the schema shows that a
PRODUCT entity will appear in exactly one (i.e., from 1 to 1) manufactu-
res relationship.
����������������
	�� ��� !�"�#����������� ����������

1-12 "�

��46���� ���3�
�	���	
������$�
�
The cardinality can be changed by double-clicking on the role, i.e., on its car-
dinality symbol. This will be examined in detail in another lesson.

��, ���
�
������
�&��&���
����
�
���

Normally, the entities of the same class, for instance all the companies, have a
special property that allows us to designate each of them. This property is cal-
led an
���

4
�� of the entity type. Usually, it is a name, a code, a reference or
anything else that makes the entities unique in their class.

For instance, we want to tell that Com-ID is the unique code of companies.
We select this attribute by clicking on its name (which appears white on black)
than we click on the Identifier button on the Tool bar.

In the same way, we define PRO-ID as the identifier of entity type PRODUCT.
The schema can now be considered as complete (Figure 1.15).

�	���"#",�$�An identifier has been associated with each entity type.

Note that the identifier is graphically mentioned twice (assuming the novice
analyst has not noticed the fact!): first through the id clause that appears at the
bottom of the entity type box, and secondly by the underlining of the compo-
nent attribute. This latter way will be used when the identifier comprises at-
tributes only.

��- ��	�����
��������	����

You have probably observed that most boxes that define the properties of an
object have a special button named Sem. Clicking on the Sem button opens a
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-13
small text window in which we are allowed to enter a free text that describes
the meaning of the current object, i.e., its
������%
.

Let us double-click on the COMPANY entity type (another way: select COMPA-
NY, then press the Enter key). We get the Entity type property box of COM-
PANY. We click on the Sem button, and we enter a text that defines what a
company is (Figure 1.16).

�	���"#"-�$�The ����	
����������
��	 text window of an object.

The text can be as long as needed (with a 32 Kb limit however). It can be cut,
copied and pasted from/to any other program in the usual way (ctrl-X, ctrl-C,
ctrl-V).

In the same way, we can enter a description for PRODUCT and manufactu-
res, for each of the attributes, for each role, for each identifier and even for
the schema and the project themselves.

����. There is a similar button on the)�����	���

 bar which has the same ef-
fect: select any object in the current schema, then click on this button to open the Se-
mantic description window of the object.�
����������������
	�� ��� !�"�#����������� ����������

1-14 "�

��46���� ���3�
�	���	
������$�
�
���. %����	
�����4;$#�����
���

There are several ways in which this conceptual schema can be translated into
table and column structures. For now, we have no special requirements as far
as performance, or any other consideration, are concerned. We will be happy
with an unsophisticated translation of this schema into SQL commands.

This translation can be done in a straightforward way through the command
�����4����%�5	
����5�. DB-MAIN simply asks you, with the standard file
dialog box, in which file you want the SQL program to be stored. By default,
the file will be named manu-1.ddl, following the name of the project (Fi-
gure 1.17).

�	���"#".�$�The SQL program that is being generated from the conceptual
schema will be saved as manu-1.DDL file.

Now, we go back to the Project window. We observe that a new product has
been made available. The slightly different icon shape indicates that this new
document is a text file called manu-1.ddl. Obviously, this is the SQL pro-
gram we just generated in the last step.

We can examine the contents of this text file by double-clicking on its icon. A
new text window opens, showing the SQL code implementing the conceptual
schema. It should read like in Figure 1.19.

5. SQL must be read SEQUEL.
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-15

�	���"#"1�$�Now, the project window includes two products, namely the con-
ceptual schema and the SQL program that derives from it.

�	���"#"2�$�The contents of the manu-1.ddl text file can be examined by
double-clicking on its icon in the project window.

create database Manufacturing;

create table COMPANY (
 Com-ID char(15) not null,
 Com-Name char(25) not null,
 Com-Address char(50) not null,
 Com-Revenue numeric(12) not null,
 primary key (Com-ID));

create table PRODUCT (
 Pro-ID char(8) not null,
 Pro-Name char(25) not null,
 Com-ID char(15) not null,
 primary key (Pro-ID));

alter table PRODUCT add constraint FKmanufactures
 foreign key (Com-ID) references COMPANY;

create unique index IDCOMPANY on COMPANY (Com-ID);
create unique index IDPRODUCT on PRODUCT (Pro-ID);
create index FKmanufactures on PRODUCT (Com-ID);
����������������
	�� ��� !�"�#����������� ����������

1-16 "�

��46���� ���3�
�	���	
������$�
�
To be quite precise, this SQL program will not necessarily be executable on
all machines, and would probably need some syntactic adjustements. For ins-
tance, dashes ("-") are not allowed by most SQL DBMS, and should be repla-
ced by, say, underscores ("_"). We will see later how this kind of problem can
be addressed in a systematic way.

In addition, the set of indexes may not be the most efficient one, and would
need some refinement. Such decisions relate to physical design, an activity
that obviously is far beyond the scope of this first lesson!

���� 4�(
���������� �	�

As is natural after working such a long time, we carefully save our work throu-
gh command
���%������������
 (or button) or command
���%���������$
���
��� (or button) in order to make it available for further use.

�	���"#(3�$�The whole project is saved on disk.

By default, the project is saved as file manu-1.lun. We validate the opera-
tion through the button OK.

The *.lun extension is typical to the saved DB-MAIN projects, so do not use
them for other files.
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-17
���� ;�
��
���������5

It is now time to exit from the DB-MAIN tool by command
���%�67

.

We have built our first SQL database, and we are now able to build other sim-
ple SQL databases just by applying the basics that have been presented in this
lesson.
����������������
	�� ��� !�"�#����������� ����������

1-18 "�

��46���� ���3�
�	���	
������$�
�
4�����&����$�������

• In this first lesson, we have studied some important concepts:

- the concept of CASE tools

- projects and schemas

- entity types, relationship types, attributes and identifiers

- conceptual schemas

- SQL expression of a conceptual schema

• We have also learnt to:

- run the DB-MAIN CASE tool

- create a new project:
���%�&�'�������
�

- create a new schema: ����	�
�%�&�'�������

- define an entity type: &�'�%�6�

��
����

- define an attribute: &�'�%�8

�
�	
�

- define a relationship type: &�'�%�9��$
����

- define an identifier: &�'�%�0��	��

- add a semantic description:

- save the current project:
���%��������

- save the current project:
���%�����

- produce SQL code: 5	
������%��5�

or �����4��� %�5	
����5�

- exit from DB-MAIN:
���%�67

• We have produced two types of files:

- saved projects (*.lun)

- executable code such as SQL (*.ddl).
���������� ����������������
	�� ��� !�"�#�����������

"�

��46���� ���3�
�	���	
������$�
� 1-19
90��	
��������$�������

Define a project, a conceptual schema and generate an SQL database creation
program for each of the situations described below.

1.1 The small database we developed in this lesson was based on the hypo-
thesis that a product is manufactured by one company only (cardinality
1-1). Now, consider that ��&	
��%��%���$��&	
��%���$���������$�	�
�
%
�&����
 (i.e., by 0, 1, 2, or more companies). Change the schema ac-
cordingly. Don’t save this project.

1.2 Customers buy products in such a way that each customer can buy any
number of products and each product can be bought by an arbitrary
number of customers. Imagine some natural attributes for the entity ty-
pes. Call this project SALES1 and save it.

1.3 Students belong to classes: each student belongs to exactly one class (no
less, no more), while a class comprises any number of students. Each
student can be registered in any number of courses while any number of
students can be registered for a given course. Imagine some natural at-
tributes for the entity types. Call this project STUDENT1 and save it.

1.4 Complete the MANU-1 project by considering countries to which pro-
ducts are exported.

Don't save the modified project (we will make use of the original ver-
sion in further lessons), unless you give it another name.
����������������
	�� ��� !�"�#����������� ����������

1-20 "�

��46���� ���3�
�	���	
������$�
�
���������� ����������������
	�� ��� !�"�#�����������

�

$�������

��	���������������	�����

�����

��

This is an easy and relaxing lesson (just playing with existing
schemas!). It presents some useful schema display formats and
the way to use them. In this lesson, we also study how to manip-
ulate graphical and textual objects, how to change their apparent
size, how to navigate through a schema and to generate reports.
����������������
	�� ��� !�"�#����������� ����������

2-2 "�

���6���%

�	�

9����
%����

����
�
����������
��
In this lesson, we will use the project MANU-1 (file manu-1.lun) that has
been created in Lesson 1, and the LIBRARY project (or its French equivalent
BIBLIO) that comes with the DB-MAIN software.

��� 4����
���$�������

Let us start DB-MAIN and open the project MANU-1 through the command

�� / ���� ������
 or by clicking on the button . When the project is ope-
ned, we double-click on the icon of the Manufacturing/Conceptual
schema to display its contents.

For this lesson, we will need some new functions that are offered by the menu,
but that are available on a new tool palette as well. We display this new palette
through *
���'� / 0����
���
���� (Figure 2.1). These tools can be placed
anywhere on the screen, for instance under the)�����	���

 �$�	.

�	���(#"�$�The graphical tool bar. It can be resized according to your taste.

��� 6��
�	���
�������
�����	������
��������	�����

In the first lesson, several figures include a schema, showing the step-by-step
construction of the conceptual description of our database. As everybody
should have observed, these schemas have been obtained from screen copies.
This technique provides nice looking results, but is rather painful (the screen
shots have to be processed with an image processing software) and yields huge
documents.

The DB-MAIN tool includes a function that copies selected schema objects
onto the clipboard in a more concise format (as vector-based objects). So, se-
lect all the objects of the schema, then call the 6�

 / ���� �����
� menu item
or click on the button in the <	�&��%� ��

 bar. Then, open a Word or
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-3
Powerpoint document, and paste the clipboard contents (use '�
�� or '�
��
)&�%�� according to the software).

The schema objects appear in the text document as in Figure 2.2 (bottom). The
result can be modified as any vector-based graphical object1. From now on,
we will use this technique to include schema fragments in this lesson and in
the next ones.

�	���(#(�$�Bitmap (top) and vector-based (bottom) schemas as they appear
in a text document.

��� <����
	���(
�3��������	����

In Lesson 1, the schema was represented in a Schema window through graphi-
cal objects. There are several other ways to display this schema. They can be
classified into 3	�&��%� ����2
 and ��.��� ����2
. This section is devoted to
graphical views.

1. In some products, such as MS-Word or FrameMaker, the labels may appear to be too long
or too short for the rectangles in which they are enclosed after the schema has been redi-
mensioned. This is due to the way Windows redimensions a graphical object: continuously
for geometrical components and point by point for texts. In this case, just expand or stretch
the schema frame ���
:��
���� until the texts correctly fit in their boxes.

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

2-4 "�

���6���%

�	�

9����
%����

Let us first examine a new way of presenting large schemas, namely the %
��
&�%�����2. It can be obtained through the /
�' / 0����#�������
 command.
The attributes and identifiers are hidden in such a way that only the schema

9� ��
� appears (Figure 2.3).

�	���(#)�$�The ������
���������� view of the MANU-1/Conceptual schema.

Now, we go back to the standard graphical view through /
�' / 0����#��
��$
����, to get the view we have used so far (Figure 2.4). Since this view is the
most useful, it has been given a special button on the Standard tools bar: .

�	���(#+�$�The �
�	�������������� view of the MANU-1/Conceptual schema.

Starting from this standard view, we can derive some simplified forms by
using the graphical settings panel (/
�' / 0����
������

���) (Figure 2.5).

The buttons of the)�
2�*$7�%�
 block of this panel can be unchecked, which
hides the attributes, or the identifiers (called 3	
�&
 in the panel), or both (Fi-
gure 2.6). You can also show the attribute types if needed.

Graphical variants exist to represent entity types and rel-types. For instance,
we can choose to draw entity type and/or rel-type boxes with round corners
instead of square ones by selected 	
����� shape in the Graphical settings pa-
nel (Figure 2.7). These settings are valid for the current schema. They can be
useful to distinguish different levels of schemas.

1-10-N manufactures PRODUCTCOMPANY

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-5

�	���(#,�$�The ������������

�	�� panel.

�	���(#-�$�The Standard view ��
��

��

���

�� (top) and ��
��

����
��
���������
��

����	
������� but ��
���

���

��
���� (bottom).

1-10-N manufactures
PRODUCT

id: Pro-ID

COMPANY

id: Com-ID

1-10-N manufactures
PRODUCT

Pro-ID: char (8)
Pro-Name: char (25)

COMPANY
Com-ID: char (15)
Com-Name: char (25)
Com-Address: char (50)
Com-Revenue: num (12)
����������������
	�� ��� !�"�#����������� ����������

2-6 "�

���6���%

�	�

9����
%����

�	���(#.�$���
	�����	�������� and ��������� �� as alternate graphical re-
presentations.

A last trick before leaving the graphical views of a schema: �
2��
�	��	������
�������
�������������
%����. Let us suppose that the (small) schema window
shows a fragment of a (large) schema. Let us also suppose that an object is
selected, somewhere in the schema, but not shown in the window. How to
move the window in such a way that the selected object is at the center of this
window? Nothing can be simpler: just press the ��
 key.

What if there is more than one selected object? The ��
 key brings the ��.�

� �%����
$7�%��in the window.

��! ��0�����(
�3��������	����

The contents of a schema can be presented as a pure text as well. In this mode,
four formats are available.

The simplest one is the %
�&�%�����2. It shows a mere list of the names of the
entity types followed by that of the relationship types (Figure 2.8).

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-7

�	���(#1�$�The ��0� 	����	� view of a schema

This list is a sort of dictionary. It can be obtained through the command /
�'
/ ��7
 ������
.

The compact view does not display the detail of a schema and can be used as
a quick index to locate an object in a large schema.

For a more detailed textual view, try the)�����	�����2. It can be obtained
through the command /
�' / ��7
 �
������, and presents the current schema
as in Figure 2.9. Since it is frequently used, it can also be obtained through a
specific button on the Standard tools bar: .

�	���(#2�$�The ��0� �������� view of a schema

Schema Manufacturing/Conceptual

COMPANY
PRODUCT

manufactures

Schema Manufacturing/Conceptual

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

manufactures(
[1-1]:: PRODUCT
[0-N]: COMPANY)
����������������
	�� ��� !�"�#����������� ����������

2-8 "�

���6���%

�	�

9����
%����

The �.����������2 is an even more complete presentation. In addition to the
information of the standard view, the �.����������2 shows, among others, the
short names, the type and length of the attributes and the roles in which each
entity type appears. The symbol [S] indicates that a semantic description has
been associated to the object.

This view is obtained through the command /
�' / ��7
��7
�����, and ap-
pears as in Figure 2.10.

�	���(#"3�$�The ��0���0������ view of a schema. The directed arcs show
the possible jumps through the hyperlinks activated by a right-button click.

Note that the 	
 �� ���
 that appear both in the entity type and rel-type paragra-
phs makes it possible to navigate through the whole schema by jumping from
an entity type to the relationship types in which it appears, and conversely:

- to jump from an entity type to one of its relationship types: click on the line
of the role in the entity type paragraph 2����������	���$���
� of the mouse.

- to jump from a relationship type to one of its entity types: click on the line
of the role in the rel-type paragraph 2����������	���$���
� of the mouse.

Schema Manufacturing/Connceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1]: PRODUCT
[0-N]: COMPANY)
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-9
These ��&�	 ��9 functions are very handy for large schemas. More on schema
navigation later in this lesson.

The last format is the

	�������2, which presents an unstructured sorted list of
� ���������
 that appear in the schema, together with their type and origin.
This view is particularly important for large and complex schemas, specially
in 	���	
����3����	��3 activities2. It can be used too when checking names in
conceptual analysis. In addition, it is the easiest way to retrieve an object when
only its name is known.

The sorted view can be obtained through the command /
�' / ��7
����
��,
and appears as in Figure 2.11.

�	���(#""�$� The ��0�������� view of a schema

�$���������
������������

- Objects that are selected (highlighted) in a view still are selected in any
other view in which they appear. For instance, an attribute with a particular
name can be retrieved in a schema by using the ��.��

	�������2. Now,
choosing the
�����	��3	�&��%� ����2 allows us to examine this attribute in
its context.

2. ,���	
����3����	��3 can briefly be described as the converse of what we did in the first les-
son, that is 	�%
��	��3�����%
�%�&��� �
%�����
������.�
���3�����$�
�. It involves complex
techniques and tools that are described in other documents but that will be ignored in this
tutorial.

Schema Manufacturing/Conceptual

Com-Address Att. of COMPANY
Com-ID Att. of COMPANY
Com-Name Att. of COMPANY
Com-Revenue Att. of COMPANY
COMPANY Entity type
manufactures Rel-type
Pro-ID Att. of PRODUCT
Pro-Name Att. of PRODUCT
PRODUCT Entity type
����������������
	�� ��� !�"�#����������� ����������

2-10 "�

���6���%

�	�

9����
%����

- Building a schema, or examining, deleting and modifying its components,
can be performed whatever the view in which this schema is displayed. For
instance, double-clicking on the line of an object in a text view opens the
same property box as in a graphical view.

��# ���
�����
������������
	���	����������������	����

Now, let us go to a graphical view of the schema. The position of the objects
of this schema can be changed by
� �%���3������	�33��3 them in the usual
way. Several objects can be selected (or deselected) by pressing the shift
key when selecting, or by drawing a selection rectangle with the mouse, and
moved simultaneously.

;��
��������
��
;��
��������
� in their window obeys the general Windows rules:

- selected objects are moved by dragging them in the window space;

- selected objects are moved by pressing the cursor keys (← ↑ → ↓);

- small-step moves are obtained by pressing the cursor keys while pressing
the Ctrl key;

- using the scroll bars moves the window in the four directions.

The ��(����
� designates the way DB-MAIN reacts when an object is mo-
ved on the screen: does it move the object only (����&�������mode), or does it
reposition the connected objects as well (��&������ mode)? This mode can be
set either in the <	�&��%� �
�����3
�&��� (Independent button) or through
the INDEP. button on the <	�&��%� ��

 bar: .

In the ��&������ �
��, the graph is adjusted as follows (Figure 2.12 left):

- when an entity type is moved, its relationships types and their roles are
moved proportionally and redrawn;

- when a relationship type is moved, its roles are moved too,

- when a role is moved, nothing else is redrawn.

In the ����&��������
��, the graph is adjusted as follows (Figure 2.12 ri-
ght):

- when an object (entity type, relationship type, role) is moved, nothing
else is redrawn, except the arcs that link it to the other objects.
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-11

�	���(#"(�$�Moving rel-type manufactures in the ����	��	
����� (left)
and in the �	����	��	
����� (right).

8�
��
��������
�

After a while, a schema may look like spaghetti, and we might want to put
some order among its components. A first nice feature is the rel-type ���	

action which allows us to align a role or a relationship type according to its
connected objects. We can get this effect by clicking on the object (role or rel-
type) with the 	�3���$���
� of the mouse (Figure 2.13).

To align a larger set of objects, we will make use of the /
�' / 8�
�����

command, that provides us with eight operators, four for vertically aligning the
objects and four for horizontal alignment. They are also available on the <	��
&��%� ��

 bar (Figure 2.14).

In the ���
:��
�� dimension, we can align objects on their left side, on their
right side, we can center them and we can distribute them horizontally at equal
distance.

In the ���

��� dimension, we can align objects on their top side, on their bot-
tom side, we can center them and we can distribute them vertically at equal
distances.

0-N

1-1

PDQXIDFWXUHV

1-1

0-N

PDQXIDFWXUHV

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

2-12 "�

���6���%

�	�

9����
%����

�	���(#")�$�Aligning roles (center) and relationship types (right) by clicking
with the �
��� button of the mouse.

�	���(#"+�$�The eight object alignment operators.

!��
:��
��������
������

: align to left

: align to right

: center horizontally between left and right

: distribute evenly between left and right

/��

���������
������

: align to top

: align to bottom

: center between top and bottom

: distribute evenly between top and bottom

1-1

0-N

PDQXIDFWXUHV
0-N

���

manufactures

1-1

0-N

manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-13

�	���(#",�$�The four arc alignment operators.

�	���(#"-�$�How to draw a source rel-type (top) with �
������� style with just
a mouse click.

8�����
�����

: horizontal staircase

: vertical staircase

: top corner

: bottom corner

1-1

0-N

R

%

$

1-10-N R

%

$

1-1

0-N

R

%

$

1-1

0-N R

%

$

1-1

0-N

R %

$

����������������
	�� ��� !�"�#����������� ����������

2-14 "�

���6���%

�	�

9����
%����

�$�������
��:

1. #
	�>
��� means that the objects are moved �
	�>
��� � to reach their fi-
nal position (the same for the ��	��%� direction).

2. When the objects are distributed evenly, the distance is evaluated between
the edges of the objects, not between their centers. This provides a natural
positionning of roles and rel-types between their entity types.

The last four alignment operators (Figure 2.15) are dedicated to users who are
found of
���	%�
� rel-types. Since an image is worth one thousand words, we
suggest you had a look at Figure 2.16.

The best way to get acquainted with these operations is to play with a disali-
gned schema such as that of Figure 2.17, which is available in project Manu-
3.lun, schema Alignment.

�	���(#".�$�This schema obviously suffers from a severe disalignment di-
sease. Cure it.

<���
���
�������	

For large schemas, a)����
	� �
����
 is available to help fit a larger or a
smaller portion of the schema in the Schema window (zoom out), or to exami-
ne tiny details (zoom in). This function is available in the <	�&��%� �
�����3

&��� (Figure 2.5) and in the <	�&��%� ��

 bar (Figure 2.1) through the fol-
lowing buttons:

 expands the schema representation by 10%;

1-1

0-N

rel-BD1-1

0-Nrel-BC

1-1

0-N

rel-AC

1-1

0-N
rel-AB

�
�

�

8

���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-15
 shrinks the schema representation by 10%;

 sets the zoom factor by specifying its exact value; the fit value
adjusts the zoom factor so that the schema fits in the schema win-
dow.

=�
������������������

To get a better feeling of the usefulness of the various views, we switch to ano-
ther project. We close the current one (command
�� / ����� ������
), and
we open the LIBRARY project (command
�� / ���� ������
) and its sche-
ma. Now we experiment with each view, and try to figure out the meaning of
the components of this schema, which obviously describes the management of
a scientific library. Its contents include many more modeling characteristics
that will be discussed later.

���
��������

���

We observe that:

- switching from a view to another one is immediate, and can be asked for at
any time;

- the operations of the tool are independent of the view through which they
are executed;

- an object that is selected (highlighted) in a view still is selected when we
switch to another view;

- if several schemas of a project are opened (more on this later on), they can
be displayed in different views.

��' 5�(
���
�������������0�����(
�3�

When a schema is small, it spans one or two screens only. Retrieving an object
in such a schema needs no special skill nor any special tool. The problem is
less trivial when the schema is larger, and is several dozens of screens large
(large schemas can include thousands of entity types and rel-types): browsing
through such a schema can be time consuming and does not garantee that the
objects we are looking for will be found quickly, if ever.
����������������
	�� ��� !�"�#����������� ����������

2-16 "�

���6���%

�	�

9����
%����

Retrieving a specific object can often be made easier by working first on the
��7
�������
 and ��7
����
�� views, using them as some kind of dictiona-
ries, then switching to the standard graphical or text views when the object of
interest has been found.

Another useful tool for object retrieval in context is the navigation feature of
DB-MAIN. To illustrate them, we need a larger schema, such as LIBRARY.
We display it in the ��7
��7
�������
�', and we reduce the Schema window
a little bit to simulate a� �	3��
%�����������

�
�� �2���
2.

Let us experiment the navigation capabilities of DB-MAIN. Unless told othe-
rwise, the following manipulations are valid for the ��7
��
������ and ��7

�7
����� views.

- We select the COPY entity type by clicking on its name; we observe that
each line in which the name COPY appears (i.e., each instance of COPY) is
tagged with symbols ">>"; such is the case for each role in which COPY
appears;

- If we press the TAB key; the next tagged instance of COPY appears in the
center line of the Schema window; this allows the cursor to jump to each of
the relationship types in which COPY takes part;

- We click with the 	�3���$���
� on a line describing a role in which COPY
appears, in a rel-type paragraph; the COPY entity type is then selected; the
right button acts as a 3
��
�� button;

In the ��7
��7
����� view, we click with the 	�3���$���
� of the mouse on a
role in which COPY appears, in its entity type paragraph, then click; the rela-
tionship type of the role is then selected.

In Figure 2.18, the navigation rules are shown on the small project Manu-1.

��) /������
�������

��������������

Though the order in which attributes (and roles) appear in the textual and gra-
phical views does not matter in most situations, you may want to change this
order.
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-17

�	���(#"1�$�Navigating in the ��0���0������ view of a schema of project
Manu-1 with the ����
��

�	 of the mouse.

To �������
������

����4�����

�
�	
� (graphical and text views), select it,
then

- press the Alt + ↑ keys3 to move it one position up,

- press the Alt + ↓ keys to move it one position down (Figure 2.19).

To �������
������

����4������� (text views), select it, then

- press the Alt + ↑ keys to move it one position up,

- press the Alt + ↓ keys to move it one position down.

The keys must be pressed simultaneously, not sequentially.

There are other ways to reorganize the attributes of an entity type, but they re-
quire more sophisticated functions (namely schema transformations) that will
be studied later.

Schema Manufacturing/Conceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1]: PRODUCT
[0-N]: COMPANY)

3. The keys must be pressed simultaneously, not sequentially.
����������������
	�� ��� !�"�#����������� ����������

2-18 "�

���6���%

�	�

9����
%����

�	���(#"2�$�Changing the order of the attributes with Alt + ↓↑.

��, <������
����������

A decent CASE tool must produce external documents that can be printed on
paper. This one does it too. Several kind of reports can be of interest, ranging
from simple object lists to sophisticated documents including a table of con-
tents, an index and footnotes. Though DB-MAIN can produce such docu-
ments, we will show how to generate simple outputs.

1. First, we visualize our schema in any textual view (for instance with button
).

2. Then we execute the command
�� / 9����
 / ��7
	����
�'. We get the
panel of Figure 2.20.

�	���(#(3�$�Generating a simple text report.

COMPANY
Com-Name
Com-ID
Com-Revenue
Com-Address
id: Com-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-19
3. We accept (or change) the default name (MANU-1.dic) of the output file
in which the text will be stored. We ask for the semantic description to be
included (check button Include semantic description). We define the cha-
racter string that will be included just before each semantic description (a
��$ control can be used to clearly separate it from the object description4).

4. We click on OK.

�	���(#("�$�A simple text report.

4. According to the Windows conventions, a
�� control is entered as (�	 �?���$.

__

 Dictionary report

 Project ������
__

��	
��
������������������
�����
A simple example of conceptual database
schema used in the first lessons of the
DB-MAIN tutorial. This schema has been
created on December 15, 1998.

* ������� A registered business organization with
which we have had commercial contacts for
less than 5 years.

 Com-ID Internally assigned company Id.
 Com-Name Official name of the company.
 Com-Address Main address of the company.
 Com-Revenue The total net income of company for the

last fiscal year.
 id: Com-ID
* ������� A product of interest for our company.
 Pro-ID Internally assigned product Id.
 Pro-Name The conventional name of the product.
 id: Pro-ID

* ����������
 (Specifies which products are manufactu-
red by each company.

 [0-N]: COMPANY
 [1-1]: PRODUCT)
����������������
	�� ��� !�"�#����������� ����������

2-20 "�

���6���%

�	�

9����
%����

The result is a plain ASCII file which can be, if needed, further formatted with
any word processor, to produce something like the text of Figure 2.21.

For immediate needs, we can directly send the current schema to the printer,
be it in graphical or textual view, through command
�� / ��
�
. The printer
can be chosen and configured through
�� / ��
�
�� ��
	� as usual.

There are other ways to produce reports. Let us remember one of them: the
(
&��3	�&��% function, that allows us to include fragments of schemas into
standard texts (Section 2.2).

��- "��&
����
 �	��

When building a schema, it can happen that several entity types have to be gi-
ven similar attributes, or that the schema includes parts that are almost the sa-
me. Instead of entering the similar objects manually, it could be more
convenient to copy the original fragment, then to modify the copy.

The procedure is as expected:

1. select the components to copy and put them on the clipboard (ctrl+C or
6�

 / ����);

2. paste them in the schema (ctrl+V or 6�

 / ���
�);

3. if the the pasted objects are attributes, first select an entity type, a rel-type
or an attribute; the pasted objects will be inserted after this insertion point
(Figure 2.22).

�	���(#((�$�It appears that SALESMAN must be given attributes similar to
Name and Address of CUSTOMER (left). Select the latter, type ctrl+C, select
EmpID of SALESMAN then type ctrl+V (right).

SALESMAN
EmpID
id: EmpID

CUSTOMER
CustID
Name
Address

Number
Street
City

id: CustID

SALESMAN
EmpID
1DPH

$GGUHVV

Number
Street
City

id: EmpID

CUSTOMER
CustID
Name
Address

Number
Street
City

id: CustID
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-21
If needed, DB-MAIN makes the names of the pasted objects unique through
the addition of a small suffix.

���. %���
��������

To improve the understandability of the schema by adding free text informa-
tion, notes can be asociated with an object or simply pasted on the schema, in
the same way you &�
�����&

���� on an object on in a document. To do so, we
select the target object, we click on the note button () then we click in the
schema where you want the note to be pasted. The note can be opened by dou-
ble-clicking on it and a text can be added (Figure 2.23, bottom). If no object is
selected, the note is associated with the schema as a whole (Figure 2.23, top).

�	���(#()�$�Associating a note with an object or with the whole schema

���� ;�
��
�������������

We will still use this project later on. Therefore, we save it with the name
manu-2.lun and we quit DB-MAIN.

Gross annual revenue

Nice schema,
isn’t it?

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

2-22 "�

���6���%

�	�

9����
%����

4�����&����$�������

• In this first lesson, we have studied some important concepts:

- graphical views of a schema: compact, standard

- text views of a schema: compact, standard, extended, sorted

- navigation through the objects of a schema

- graphical aspects of a schema (zoom and reduce)

- text navigation through 	
 � links

- reordering attributes and roles

- simple reports

• We have also learnt:

- to open an existing project:

������
 / ���� ������

- to open an existing schema

- to include fragments of a schema into a text:

6�

 / ���� �����
�

- to select a schema presentation format:

/
�' / ��7
 ������

/
�' / ��7
 �
������

/
�' / ��7
 �7
�����

/
�' / ��7
 ���
��

/
�' / 0����# ������

/
�' / 0����# �
������

- to give graphical objects rounded corners and shades:

/
�'�%�0����
������

���

- in a graphical view, to add associate a note with an object

&�' / &�
�

- in a text view, to navigate �	
�����������&���
�	� ���&� and �	
��	� ���&���

���������&�: right button on the role line
���������� ����������������
	�� ��� !�"�#�����������

"�

���6���%

�	�

9����
%����
 2-23
- in a graphical view, to get the next selected object in the center of the sche-
ma window: tab key

- to move objects in the schema {← ↑ → ↓} and Ctrl + {← ↑ → ↓}
- to change the move mode of objects /
�' / 0����
�. ��

���

- to align rel-types and roles right button of the mouse

- to align a set of objects /
�' / 8�
�����

- to zoom on a schema in and out /
�' / 0����
�. ��

���

- to reduce or expand a schema /
�' / 0����
�. ��

���

- to retrieve instances of an entity type in a text schema

tagged lines ��� ��
 key

- to navigate between entity types and rel-types in a text schema

right button of the mouse

- to change the order of attributes and roles in an entity type

alt + ↑ ↓
- to copy selected objects elsewhere in the schema or in another schema of

the project:

6�

 / ���� (ctrl+C)

6�

 / ���
� (ctrl+V)

- to generate simple text reports
�� / 9����
�%���7
	�� �
�'

- to print a schema on the printer
�� / ��
�

- to choose and configure the printer
�� / ��
�
�����
	�

• We have produced a new type of file:

- dictionary reports (*.dic).
����������������
	�� ��� !�"�#����������� ����������

2-24 "�

���6���%

�	�

9����
%����

�90��	
��������$�������

Finding interesting exercises for such a lesson is quite a challenge! If you in-
sist, try these; otherwise start the next lesson.

Open the LIBRARY project (or its French equivalent BIBLIO) and its con-
ceptual schema Library/Conceptual.

2.1 Examine the semantic description of the objects in the schema. Change
and complete some of them.

2.2 Change the position of some attributes and roles in text views. Examine
the graphical view and change the position of some objects.

2.3 Find the other side of a rel-type from an entity type.

2.4 Open project Library (or its French equivalent BIBLIO) and schema
Library/Conceptual. Generate and print a report based on each
of the text views. Try to find specific uses for each of them.

2.5 Open a Text standard report with a text processor. Include after each
entity type title the graphical representation of the entity type (through
the ���� �����
� command).

2.6 8�
��
��������
�. I’m not quite sure that you have completed the exer-
cise suggested in Figure 2.17! Now it’s time to do it.
���������� ����������������
	�� ��� !�"�#�����������

�

$�������

����
������	����� �	��

�����

��

This lesson introduces the concept of multi-product projects by
considering the example of a design in which we distinguish the
conceptual schema and the logical schema of a database as well
as two text files. Some characteristics of relational logical sche-
mas are examined. Additional functions related to schema and
object management are described as well.

��� 4����
���$�������

We start DB-MAIN, we open the project MANU-2, then the schema Manu-
facturing/Conceptual.

��� "��	��������������
	����	�����

The way we worked in Lesson 1 to produce an SQL database structure was a
bit simplistic: we designed a conceptual schema, then we generated the equi-
valent SQL code to be executed by an RDBMS1. This procedure is fine for
small databases, but is not realistic for large projects. Of course, it is much too
early to tackle the problems induced by managing complex projects, but we
����������������
	�� ��� !�"�#����������� ����������

3-2 "�

���6��� ���&	
��%��&	
7�%�

can already introduce the concept of �� ���
%�����&	
7�%�
, i.e., projects that
include more than one schema, through a more sophisticated procedure than
that suggested in Lesson 1.

Let us suppose that we want to keep in the project not only the description of
the %
�%�&��� �
%���� (i.e., the current schema Manufacturing/Con-
ceptual), but also the description of the
3�%� �
%����. In traditional da-
tabase design methododologies, the logical schema is intended to describe the
same real-world situation as the conceptual schema does, but in technical
terms of tables, columns, primary keys, foreign keys and indexes instead2.
The logical schema is made up of the database structures that are encoded into
a SQL program.

To develop these concepts, we need to go back to the project Manu-2 that is
currently opened.

To give us the opportunity to go through this lesson again later on, we work
on a new project called, say, Manu-3, which has the same contents as Manu-
2, at least initially.

To do so, we call the Project property box through the command
�� / ������

������

��, we modify the name into Manu-3, and save the current project (
$
�� / ���� ������
 ��) as Manu-3.lun. From now on, we have two projects,
namely Manu-2, which is closed and Manu-3, the current project on which
we will work. So far, these projects have the same contents.

Building a 	� ���
�� �
3�%� �
%���� is fairly easy, though we may have no
idea on how to translate a conceptual schema into relational structures, i.e.,
into tables, columns, keys and the like. Indeed, DB-MAIN proposes a func-
tion which carries out this translation automatically by replacing a schema by
its SQL logical equivalent version. Since we want to keep both schemas in the
project, we proceed as follows:

4- (�����3������
������3�����&	
7�%��Manu-3-

We can get rid of the schema Alignment, that is no longer useful. In the
same way, we delete the SQL program generated in Lesson 1.

Deleting objects is quite simple and intuitive: we select the objects, then we
press the Del key. Another way is through the command 6�

 / ����
�.

1. Relational Database Management System. DB2, Sybase, Informix, Oracle, SQL Server,
InterBase and Access are some examples of RDBMS.

2. See the lessons of [DBM, 1999], or reference textbooks such as [Teorey,1999],
[Batini,1992] or [Blaha,1998], [Elmasri, 2000].
���������� ����������������
	�� ��� !�"�#�����������

"�

���6��� ���&	
��%��&	
7�%�
 3-3
Now, the project looks like Figure 3.1.

�	���)#"�$�The Manu-3 project in its starting state.

Our conceptual schema is a bit simplistic, and we could find it interesting to
enhance it a little. We open the schema, and we state that a &	
��%��%���$�
������%��	���$������	$��	�	�����$�	�
��%
�&����
. Accordingly, we change
the cardinality of the role manufactures.PRODUCT3 from [1-1] to [0-
N]. To do so, we double-click on the role and we change the cardinality value,
either by typing it or by selecting it in the listbox. The new version should ap-
pear as in Figure 3.2.

�	���)#(�$�The new Manufacturing conceptual schema.

�- ��9��3���%
&��
��������	
��
%����-�

Let us make a copy of the conceptual schema:

- we select the source schema in the Project window, or we open it (it is the
current case);

3. A role can be designated by the name of the rel-type followed by the name of the entity
type. Another way to denote roles will be seen later.

Manufacturing/Conceptual

MANU-4

0-N0-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

Manufacturing/Conceptual
����������������
	�� ��� !�"�#����������� ����������

3-4 "�

���6��� ���&	
��%��&	
7�%�

- we execute the command ����	�
 / ���� ����	�
;

- the)%�����&	
&�	���$
. opens and proposes default characteristics for the
new schema: the name is that of the source schema, "Manufacturing",
while the version proposed is "Conceptual-1". We change the version
into "Relational" and we click on the button OK.

The project window shows the new schema as well as its relationship with the
source conceptual schema (Figure 3.3).

We open the so-called ,� ���
�� schema. Not surprisingly, it includes the
same objects as the conceptual schema, which is fairly common with copies!

�- �	��
 ����3����
�%
&�����
�	� ���
�� �
�	�%��	�
-�

Now we transform this schema into relational structures. We execute the com-
mand �����4��� / 9���

���� �����. The contents of the window are repla-
ced by SQL structures. To improve the readability, we shade the "entity types"
(through /
�'� / 0����
��� ��

���), now to be interpreted as tables.

If things have gone right so far, the schema Manufacturing/Relatio-
nal should now read as in Figure 3.4.

�	���)#)�$�The new ����
��	��������� deriving from the !�	���

��������
��.

Manufacturing/Relational

Manufacturing/Conceptual

MANU-3
���������� ����������������
	�� ��� !�"�#�����������

"�

���6��� ���&	
��%��&	
7�%�
 3-5

�	���)#+�$�The Relational schema.

This schema is no longer a conceptual schema since it represents data structu-
res of a specific DBMS: instead of ���������&�
, we will talk about tables,
while ���	�$���
 will be called columns and ���������	
, primary keys.
This kind of schema is called a 	� ���
�� �
3�%� �
%����.

The main modification of the schema is the translation of relationship type
manufactures into entity type manufactures.

We observe that the table manufactures is made up of the column Com-
ID which acts as a reference, i.e., a foreign key (ref), to the table COMPANY,
and of the column Pro-ID which references the table PRODUCT. Both refe-
rence columns form the identifier (i.e., the &	���	��9��) of the table. In addi-
tion, an index (access key or acc) is defined on each identifier and on each
reference column to give these structures reasonable performance.

Later on, we will examine in greater detail the way identifiers, foreign keys
and indexes are built and represented.

��� 4;$�	�����������
��

Currently, we have two schemas in our project, but still no SQL program that
could be used to build the corresponding database in the target computer. The-
refore we need a final operation to generate this SQL code. We could use the

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

acc

manufactures
Com-ID
Pro-ID
id: Pro-ID

Com-ID
acc

ref: Pro-ID
acc

ref: Com-ID
acc

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

acc

Manufacturing/Relational
����������������
	�� ��� !�"�#����������� ����������

3-6 "�

���6��� ���&	
��%��&	
7�%�

command �����4��� / 5	
�� �5� as in Lesson 1, but we will explore a more
professional way.

�	���)#,�$�Generating a SQL program from the Relational schema.

We execute the command
�� / 0�����
�, then we select the �
��������5�
>�����? style (Figure 3.5). There are other more sophisticated ways to produ-
ce SQL code, but for the purpose of this lesson, this style is quite sufficient.

The project windows now shows a new product, namely the file manu-3.ddl
which contains the SQL script (Figure 3.6).

By double clicking on the icon of this file, we can examine its contents (Figure
3.7). It is interesting to compare this script with that of Figure 1.19, and to try
to understand how the cardinality of the roles of manufactures have sha-
ped the resulting logical schema.

This SQL code may not work as such on some DBMS. Indeed, some proces-
sing should have been done before generating this text. We will discuss these
problems in further lessons.
���������� ����������������
	�� ��� !�"�#�����������

"�

���6��� ���&	
��%��&	
7�%�
 3-7

�	���)#-�$�Generation of the SQL script from the relational schema.

create database Manufacturing;

create table COMPANY (
 Com-ID char(15) not null,
 Com-Name char(25) not null,
 Com-Address char(50) not null,
 Com-Revenue numeric(12) not null,
 primary key (Com-ID));

create table manufactures (
 Com-ID char(15) not null,
 Pro-ID char(8) not null,
 primary key (Pro-ID,Com-ID));

create table PRODUCT (
 Pro-ID char(8) not null,
 Pro-Name char(25) not null,
 primary key (Pro-ID));

alter table manufactures add constraint FKman_PRO
 foreign key (Pro-ID)
 references PRODUCT;

manu-3.ddl/1

Manufacturing/Relational

Manufacturing/Conceptual

MANU-3
����������������
	�� ��� !�"�#����������� ����������

3-8 "�

���6��� ���&	
��%��&	
7�%�

�	���)#.� $�The SQL program. The comment lines and the line numbers
have been removed to shorten the listing.

��! <������
����������

To complete the project, we generate a report from the conceptual schema just
like we done in Lesson 2 (Figure 2.20). Remember that the schema must be
shown in text view (button .). When executing the command
�� / 9����

/ ��7
	����
�', we check the button Show report generation to include the
icon of the report in the '	
7�%��2���
2. Since any derived product is placed
under its source, we could have to move it to a better position (Figure 3.8).

��# ����
������	����� �	�

So far, our project comprises four documents or &	
��%�
, namely two sche-
mas and two text files. A large project can include hundreds of products.

It is sometimes useful to examine two products in parallel. The best way to
proceed is as follows:

- open both products,

- minimize the '	
7�%��2���
2 (click on the leftmost of the three buttons at
the top right corner on the window),

alter table manufactures add constraint FKman_COM
 foreign key (Com-ID)
 references COMPANY;

create unique index IDCOMPANY
 on COMPANY (Com-ID);

create unique index IDmanufactures
 on manufactures (Pro-ID,Com-ID);

create index FKman_PRO
 on manufactures (Pro-ID);

create index FKman_COM
 on manufactures (Com-ID);

create unique index IDPRODUCT
 on PRODUCT (Pro-ID);
���������� ����������������
	�� ��� !�"�#�����������

"�

���6��� ���&	
��%��&	
7�%�
 3-9

�	���)#1�$�A report has been generated from the conceptual schema.

�	���)#2�$�Comparing the conceptual and logical schemas.

Manu-4.dic/1

manu-4.ddl/1

Manufacturing/Relational

Manufacturing/Conceptual
����������������
	�� ��� !�"�#����������� ����������

3-10 "�

���6��� ���&	
��%��&	
7�%�

- organize the windows by *
���' / �
��.

Figure 3.9 shows the conceptual and logical schemas while Figure 3.10 pre-
sents the logical schema and its SQL equivalent side by side.

If we want to make the schema disappear from the screen, we can close its
)%�����2���
2 by clicking on the close button of that window (the X button
at the top right corner). Opening it again can be done by double-clicking on
its icon in the '	
7�%��2���
2�(Figure 3.8).

��' �����
����
 �	��

Deleting components of a project is the simplest thing on earth: we select the
objects, then we press the Del key on the keyboard. This applies to entity ty-
pes, relationship types, roles, attributes, groups (e.g., identifiers), constraints
and even schemas. An alternate way consists in executing the command 6�

/ ����
�.

There is no way to delete a project but by deleting its *.lun file from Win-
dows.

�	���)#"3�$�Comparing the logical schema with its SQL text.
���������� ����������������
	�� ��� !�"�#�����������

"�

���6��� ���&	
��%��&	
7�%�
 3-11
��) ;�
��
�������������

We can now quit DB-MAIN through command
�� / 67

. The modified pro-
ject can be saved as suggested by DB-MAIN.
����������������
	�� ��� !�"�#����������� ����������

3-12 "�

���6��� ���&	
��%��&	
7�%�

4�����&����$�������

• Ιn this lesson, we have studied the following concepts:

- conceptual and logical schemas

- products, which are either schemas or text files,

- multi-product projects

• We have also learnt:

- to create and use a multi-product project

- to make a copy of a product: ����	�
 / ���� ����	�

- to transform a schema �����4��� / 9���

���� �����

- to generate SQL code
�� / 0�����
�

- to delete an object 6�

 / ����
� or Del key

- to arrange the schema windows: *
���' / �
��

90��	
��������$�������

3.1 Open the project SALES1 you built as a solution to Exercise 1.2. Com-
plete this project by building a relational logical schema, and by gene-
rating a SQL program. Examine the schemas side by side, and compare
them.

Can you understand some of the rules that have been applied during the
schema transformation? If you don’t, never mind, we will study them
in detail later on.

3.2 Same exercise on project STUDENT1 of Exercise 1.3.

3.3 Same exercise on project LIBRARY (or its French version BIBLIO).
Make sure you don’t save the result inadvertently, except through a ����
�� command.
���������� ����������������
	�� ��� !�"�#�����������

�

$������!

"��	������������
��

�����

��

This lesson will introduce the reader to more powerful features of
the DB-MAIN conceptual model. In particular, he will learn to
define optional/mandatory attributes, atomic/compound at-
tributes, single-valued/multivalued attributes, multiple identifi-
ers, hybrid identifiers, N-ary relationship types, relationship
types with attributes, and others with identifiers, cyclic relation-
ship types.
����������������
	�� ��� !�"�#����������� ����������

4-2 "�

��@6�(
�%�&��� ��
�� ��3
'	� �����	�� %��%9��3. In this lesson, we will use project MANU-3 (file
manu-3.lun) that has been created in Lesson 3.

!�� 4����
���$������!

We start DB-MAIN and we open the project MANU-3. We delete all the pro-
ducts but the Conceptual schema. We rename the project MANU-4 and we
save it under the name MANU-4.lun (
�� / �����������
���). We open the
schema MANUFACTURING/Conceptual.

!�� 8����
�������
 �	�

We have seen in Lesson 3 how to update the properties of a schema (namely
its Version). This technique also applies to any object of a project:
• either double-click on the object name in its Schema window, or select the

object (by clicking on its name) and press the RETURN key; either of these
actions opens the object box;

• change the concerned properties of the object;
• either validate the operation by clicking on the OK button, or discard the

modifications by clicking on the Cancel button.

This works fine for schemas, entity types, relationship types, attributes and
groups1. The only exception is the project itself, that only appears as a passive
object on the screen2. To modify its properties, use the command
��/ ���$
���
�������

�� instead.

!�� =����
����	��	��������	����>

Despite its limited scope, Lesson 1 has introduced some important notions
about conceptual schemas. First, it showed that such schemas are technology-
independent in that they comprise abstract objects that denote application do-
main concepts independently of their representation through DBMS cons-

1. ... and for collections, constraints, etc, as we will see later on.
2. In fact it is less passive than it seems to be, but we shall ignore its behaviour in these les-

sons.
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-3
tructs. The schema of Figure 4.1 has been developed by the analysis of the
facts the application domain is made up of. The way these facts will be repre-
sented in terms of tables, columns and foreign keys is irrelevant at this stage.

�	���+#"�$�The conceptual schema we built in Lesson 1.

This first experiment has taught us that a conceptual schema comprises entity
types (COMPANY, PRODUCT), relationship types (manufactures), attribu-
tes (Com-ID, Pro-Name) and identifiers ({Com-ID}, {Pro-ID}).

An ��

��
��� represents a class of similar objects, or entities, that are percei-
ved as significant when we talk about the application domain. Such objects
are modeled through an entity type when we want to record information about
them, when they are associated with other entities and when they obey to spe-
cific behaviour rules.

A ����

����
��
��� (rel-type) models similar associations between the enti-
ties of two entity types. A relationship is a pair of entities, each of them be-
longing to one of the participating entity types. Each participating entity type
plays a definite ���� in the rel-type. This role is characterized by a cardinality
constraint expressed as a pair of symbols such as [1-1] or [0-N].

An �

�
�	
� denotes a property of an entity type. It has a type (numeric, cha-
racter, date, etc.), a length and a cardinality.

An
���

4
�� is a group of attributes that uniquely qualifies the entities of a
type. At any time, two entities of this type must have distinct values for the
attributes of the identifier.

In this lesson, we will discuss variants of these concepts as well as new con-
cepts that will be useful to build more expressive conceptual schemas.

1-10-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

4-4 "�

��@6�(
�%�&��� ��
�� ��3
!�! "���
���
�&�����������

���

Until now, we have implicitly considered that each entity of a given type had
one and only one value for each of its attributes: each COMPANY entity has one
value of Com-ID, one value of Com-Name, one value of Com-Address and
one value of Com-Revenue.

We now consider that this is not true for the latter attribute: some companies
have revenues while others may have none. Therefore, some COMPANY enti-
ties have one value of Com-Revenue, while others have none. In general,
we can say that any COMPANY entity has from 0 to 1 Com-Revenue value
and from 1 to 1, i.e., exactly one, Com-Name value.

The values 0-1 and 1-1 are called the ����
���

� of the attribute. Any couple
of non-negative values is valid, provided the first one is not greater than the
second one and the second one is at least 1. The default value is 1-1, and is not
displayed in the Schema windows.

To illustrate this concept, we double-click on the attribute Com-Revenue to
call its Attribute box, and change its cardinality from 1-1 to 0-1. Then, we de-
fine a new attribute, named Phone-Number, that is given cardinality 1-4,
stating that any company has from 1 to 4 phone numbers (Figure 4.2).

�	���+#(�$�Various kinds of attributes.

COMPANY

Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Local

id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-5
!�# ��������&��������
���������

����

An attribute whose cardinality has a lower bound of 0 is called ��

����. Con-
versely, an attribute whose cardinality has a non-zero lower bound is called
�����
���. For instance,
• Com-Revenue is optional,
• Com-Name is mandatory,
• Phone-Number is mandatory.

!�' 4
��������������
(����������

����

An attribute whose cardinality has an upper bound greater than 1 is called �	�$

���	��, while those with cardinality 0-1 or 1-1, are said to be �
����$���	��.
For instance,
• Phone-Number is multivalued,
• Com-Name is single-valued.

!�) ����
	�����	������������

����

Some attributes can be broken down into fragments that still are significant.
For instance, any value of Com-Address can be seen as composed of a value
of Number + a value of Street + a value of City.

Com-Address is a �����	�� attribute and Number, Street and City
are its components. Note that a component can itself be compound; such is
the case of City, which consists of Zip-Code and City-Name.

An attribute that is not compound is called �
��
� (i.e., ��$	��9�$ �). For ins-
tance, Com-Name, Com-Address.Number3 and Com-Address.Ci-
ty.City-Name are atomic attributes.

Both single-valued (Com-Address) and multivalued (Phone-Number) at-
tributes can be compound.

Changing Com-Address from atomic to compound cannot be easier:

• we select attribute Com-Address then we click on button in the

3. This notation designates the component Number of the compound attribute Address.
����������������
	�� ��� !�"�#����������� ����������

4-6 "�

��@6�(
�%�&��� ��
�� ��3
Standard tool bar;
• we define its first component, Number;
• we click on the button Next att. in the Attribute property box to define the

other components.

We modify the structure of COMPANY as shown in Figure 4.2.

Note that a compound attribute has a length too. However, this length is cal-
culated, and cannot be changed through the Attribute box itself.

You probably have observed that entity types and relationship types also are
assigned a length field. Its value is the sum of the lengths of their attributes, if
any.

!�, ����
����
����
�
���

An entity type can have more than one identifier. For instance, the entity type
COMPANY is identified by Com-ID, which means that, in the database descri-
bed by the schema, no two COMPANY entities will be allowed to share the same
value of Com-ID.

In addition, let us assume that there are no two companies with, simultaneous-
ly, the same name and the same address. Therefore, we will specify a second
identifier, comprising Com-Name and Com-Address: we select both attri-
butes, then we proceed as in Lesson 1, by clicking on button in the Stan-
dard tool bar. The new identified appears with prefix id’.

If an entity type has identifier(s), one of them generally is declared &	���	�
(notation id), while the others, if any, are declared
�%
���	�, and are noted
id’ instead. Such is the case of the new identifier (Figure 4.3).

Note that an entity type can have secondary identifiers only. However, it can
have only one primary id. It is a good practice to define the most natural iden-
tifier as primary. The problem of choosing identifiers can be a bit more com-
plex, and will be discussed later on.
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-7

�	���+#)�$�Primary (id) and secondary identifiers (id’) of an entity type.

!�- ?&
�
��
����
�
���

Until now, the identifiers have been made up of one or several attributes of
their entity type. In some situations however, an identifier can be more com-
plex.

To illustrate this point, we need a more sophisticated schema. We suppose that
a company comprises at least one branch, and that branches, not companies,
manufacture products. Therefore:
• we create the entity type BRANCH, with attributes Name and Country

(button);

• we create the one-to-many relationship type belongs between BRANCH
and COMPANY (button);

• in manufactures, we replace COMPANY with BRANCH (we delete the
old role then we draw a new arc with button).

In addition, let us suppose that all the branches of a company are located in dis-
tinct countries.

COMPANY

Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Local

id: Com-ID
LG
��&RP�1DPH

&RP�$GGUHVV
����������������
	�� ��� !�"�#����������� ����������

4-8 "�

��@6�(
�%�&��� ��
�� ��3
Such a situation can be described by stating that a BRANCH entity is identified
by its COMPANY (via belongs) + its Country. An identifier made up of
attributes and roles, is called ��$	��. By extention, we will call ����
� any
identifier comprising at least one role.

A hybrid identifier is defined in the same way as � ����	�$��� identifiers: by
selecting the components, be they attributes or roles then by clicking on button

.

We complete the schema as shown in Figure 4.4.

�	���+#+�$�Hybrid identifier. To save space, the components of the compond
attributes have been ignored.

In short, the identifier of an entity type can be made up of:
• either �������$�	�
�����	�$���
 (at least 1);
• or
���	
 � + �������$�	 (at least 1)�
�����	�$���
�����
	�	
 �
.

Any non empty combination of roles and attributes is allowed, except that
which is made of one role only. The concept of identifier can be more complex
than it appears in this lesson. It will be discussed in detail in a future lesson.

1-1

0-N

belongs

0-N

0-N

manufactures

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name
id: belongs.COMPANY

Country

COMPANY

Com-ID
Com-Name
Com-Address
Com-Revenue[0-1]
Phone-Number[0-4]

id: Com-ID
id’: Com-Name

Com-Address
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-9
"�
��	���	9. An entity type need not have identifiers. Entity types without
identifiers are unfrequent, but quite valid however.

!��. 5���&������
����
���&���

The relationship types we have defined so far are made up of two roles. It is
possible to define relationship types with three (or more) roles.

In the following schema, we have defined a new entity type, namely MARKET,
that represents the different markets on which products can be distributed. We
give it the attributes Name and Size. In addition, we have considered that a
branch manufactures products for some markets only. Therefore, a manu-
factures relationship links one BRANCH entity, one PRODUCT entity and
one MARKET entity. Such relationship expresses the fact that ���
�$	��%� ma-
nufactures ���
�&	
��%� for ���
���	9��4.

We can change the relationship type manufactures from binary (2 roles)
to ternary (3 roles) as follows:

• we draw an arc (button) from manufactures to MARKET;

• if needed, we change the cardinality and the name of the new role.

In general, non-binary relationship types are called &$���, where N is the
number of roles. The resulting schema is proposed in Figure 4.5.

!��� /����
����
���&����3
�������

����

Attributes can be associated to relationship types as well. Let us suppose that
the manufacturing of a product by a branch for a given market is measured by
a ratio.

The attribute describing this ratio is created in the same way as for entity types:
• we select manufactures by clicking on its name;

• we click on the button in the Standard tool bar and we define the attri-
bute.

4. We suppose that there is no constraint on the possible associations between branches, pro-
ducts and markets. For instance, a branch can manufacture a product for some markets,
and another one for other markets. In technical terms, specialists will say that there is no
dependencies holding in this relationship type. More on this later on.
����������������
	�� ��� !�"�#����������� ����������

4-10 "�

��@6�(
�%�&��� ��
�� ��3
The relationship type manufactures should look like in Figure 4.6.

�	���+#,�$�An N-ary relationship type. To save space, the attributes have
been ignored.

�	���+#-�$�A relationship type with an attribute.

0-N

0-N 0-N

manufactures

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country

0-N

0-N 0-N

manufactures

Ratio

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-11
!��� /����
����
���&����3
���
����
�
��*�+

Relationship types can have identifiers too. For instance, we could consider a
new rule stating that

 2������$	��%��������%��	�
���&	
��%�=�����
�
�����
	�
�����	9���
� �.

This property can be expressed by an identifier of manufactures compri-
sing PRODUCT and BRANCH. If we designate a PRODUCT entity and a
BRANCH entity, the database can include only one manufactures rela-
tionship in which they both appear, and therefore only one MARKET entity.

Such an identifier is defined in a more complex way than for entity types5:
• we select manufactures by clicking on its name;
• we execute the command &�' / 0��	�; we define a group as '	���	� (by

clicking on the buton Id), and we move components PRODUCT and
BRANCH from the right list to the left list (Figure 4.7).

�	���+#.�$�Defining an identifier as a group of roles.

5. In fact, this technique is the standard way to define any identifier, but so far, we have used
a simpler one which is valid for entity types only.
����������������
	�� ��� !�"�#����������� ����������

4-12 "�

��@6�(
�%�&��� ��
�� ��3

�	���+#1�$�Relationship type identifier.

The new version of manufactures is shown in Figure 4.8.

In fact, every relationship type has (at least) one identifier, but most of them
should not be declared explicitly as illustrated hereabove. DB-MAIN will
consider as an implicit identifier of relationship type R,
• each role of R with cardinality 0-1 or 1-1,
• all the roles of R when there are no such 0-1 or 1-1 role, and when no

explicit identifier is declared.

For instance, the (implicit) identifier of relationship type BELONGS is
BRANCH, and the (implicit) identifier of MANUFACTURES in MANU-1 is
(COMPANY,PRODUCT)6. Therefore, such identifiers need not be declared,
DB-MAIN being able to cope with them adequately.

6. According to the maximum cardinality of 1, there is only one belongs relationship in
which a given BRANCH entity appears. Concerning the manufactures relationship
type, there is no need to state more than once that a given company manufactures a given
product, hence the rule.

0-N

0-N 0-N

manufactures

Ratio

id: PRODUCT
BRANCH

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-13
!��� "&	�
	������
����
���&���

Each role of a relationship type is defined as the participation of an entity type.
A relationship type in which the same entity type participates more than once
is perfectly valid.

Let us consider that a product can be replaced, when unavailable, by another
product. This fact can be represented easily by relationships between some
PRODUCT entities and other PRODUCT entities. Such relationships form a ��$
��
� relationship type.

To represent this, we define a new relationship type, with name replaces,
and with two roles, both defined on PRODUCT, with cardinality 0-1 and 0-N
respectively. To distinguish the function of each of these roles, we will give
them distinct names. The role corresponding to the product that is replaced
will be called replaced, while the role corresponding to the product that re-
places the former will be called substitute (Figure 4.9).

�	���+#2�$�A cyclic relationship type.

8��	
�����������

Until now, we have ignored the names of roles. When we give a role no name,
DB-MAIN gives it as default name that of the participating entity type. For
instance, the belongs relationship type has two roles with default names
COMPANY and BRANCH, though we gave them no explicit names.

This being said, we can state a property each relationship type must satisfy: ��

	
 �
��������
���%������
, be they explicit or default. Applying this property
to cyclic relationship types means that all the roles played by the same entity
type (more precisely all of them but one) must receive an explicit name which
is different from that of the entity type.

0-N
substitute

0-1
replaced

replaces

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID
����������������
	�� ��� !�"�#����������� ����������

4-14 "�

��@6�(
�%�&��� ��
�� ��3

�	���+#"3�$�The complete schema.

Since the same role name may appear in several relationship types, its name
alone cannot identify it in its schema. Therefore, the full name of a role inclu-
des also that of its relationship type. For instance, the roles of BELONGS have
full names belongs.BRANCH and belong.COMPANY, and those of re-
places have names replaces.substitute and replaces.repla-
ced. Accordingly, these full names appear in the list boxes of the Group
boxes and in the specification of the groups in the schemas.

0-N
substitute

0-1
replaced

replaces

1-1

0-N

belongs
0-N

0-N 0-N

manufactures

Ratio

id: PRODUCT
BRANCH

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country

COMPANY

Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Local

id: Com-ID
id’: Com-Name

Com-Address
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-15

�	���+#""�$�The complete schema in text view.

 Schema Manufacturing/Conceptual-Final

 BRANCH
 Country
 Name
 id: belongs.COMPANY,Country

 PRODUCT
 Pro-ID
 Pro-Name
 id: Pro-ID

 COMPANY
 Com-ID
 Com-Name
 Com-Address
 Number
 Street
 City
 Zip-Code
 City-Name
 Com-Revenue[0-1]
 Phone-Number[1-4]
 Country
 Area
 Local
 id: Com-ID
 id’: Com-Name,Com-Address

 MARKET
 Name
 Size
 id: Name

 manufactures (
 [0-N]: BRANCH
 [0-N]: PRODUCT
 [0-N]: MARKET
 Ratio)
 id: PRODUCT,BRANCH

 belongs (
 [0-N]: COMPANY
 [1-1]: BRANCH)

 replaces (
 substitute [0-N]: PRODUCT
 replaced [0-1]: PRODUCT)
����������������
	�� ��� !�"�#����������� ����������

4-16 "�

��@6�(
�%�&��� ��
�� ��3
!��! ����	���������	����

If all the extensions described above have been included, the schema should
appear as in Figure 4.10 or as in Figure 4.11 in the ��.��
�����	� view.

!��# ;�
��
�������������

This lesson is finished. We save the current project and we quit DB-MAIN.
���������� ����������������
	�� ��� !�"�#�����������

"�

��@6�(
�%�&��� ��
�� ��3 4-17
4�����&����$������!

• Ιn this lesson, we have studied the following concepts:

- the cardinality of an attribute

- single-valued / multivalued attributes

- mandatory / optional attributes

- atomic / compound attributes

- multiple identifiers

- hybrid identifiers

- N-ary relationship types

- attributes of relationship types

- identifiers of relationship types

- cyclic relationship types

- role names.

• We have also learnt to:

- update the properties of an object

double-clik on the object description

or
�� / ������
 ������

��

- define the cardinality of an attribute

- define a compound attribute

button

- add a role to a relationship type

button

- add attributes to a relationship type

button

- define an id. for a relationship type

&�' / 0��	�

- give a name to a role
����������������
	�� ��� !�"�#����������� ����������

4-18 "�

��@6�(
�%�&��� ��
�� ��3
90��	
��������$������!

4.1 Build a schema describing persons who have each a person id, a name,
1 to 3 christian names, possibly a maiden name, and an arbitrary number
of addresses.

4.2 These persons may have children, who are persons too.

4.3 Build a schema which represents customers, products and suppliers
(with some natural properties such as name, address, quantity on hand,
etc). Represent the fact that suppliers supply products to customers, and
that they do so in a given supplied quantity.
���������� ����������������
	�� ��� !�"�#�����������

�

$������#

$��
	�������%�&�
	��������
��

�����

��

The 5th lesson discusses some concepts of the DB-MAIN model
dedicated to the representation of technical constructs, i.e., com-
ponents that appear in DBMS schemas as opposed to those that
make up computer-independent conceptual schemas. We will
describe and manipulate additional integrity constraints (e.g., ref-
erential constraints), access keys (representing indexes for in-
stance) and entity collections (representing record files). We will
also examine how to transform the names in a schema.
����������������
	�� ��� !�"�#����������� ����������

5-2 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
'	� �����	��%��%9��3. In this lesson, we will use the project MANU-4 (file
manu-4.lun) that has been created in lesson 4.

#�� 4����
���$������#

We start DB-MAIN and we open the project MANU-4. As usual, we change
its name (MANU-5) and we save it (manu-5.lun).

In this project, we then open the schema Manufacturing/Conceptual.

#�� =����
�������
	����	����>

Lesson 3 shown how a conceptual schema can be translated into a relational
schema. Both schema represent the same information, but the latter expresses
it through the constructs of a DBMS1, while the former is claimed to be
DBMS-independent. A relational schema is considered to be ���
���. The
same conceptual schema can be transformed into several relational logical
schemas, according to the design criteria we have in mind: readability, simpli-
city, ease of evolution, response time, space occupied on disk, etc. To keep
things simple, we will mainly concentrate on ����

������������, i.e., on lo-
gical schemas that comply with the relational model.

�	���,#"�$�The logical schema built in Lesson 3.

1. In other words, the conceptual structures are expressed into the model of a DBMS, or,
more precisely, into the model of a family of DBMSs.

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

acc

manufactures
Com-ID
Pro-ID
id: Pro-ID

Com-ID
acc

ref: Pro-ID
acc

ref: Com-ID
acc

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

acc
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-3
A relational logical schema comprises ��$ �
 made up of %
 ���
, &	���	� (or

�%
���	�) 9��
 and �
	��3��9��. Figure 5.1 shows the logical schema we built
in Lesson 3. It includes three tables, eight columns, three primary keys (id),
two foreign keys (ref). In addition, it includes indexes (acc, for access keys),
which have been defined on each key.

In this lesson, we will discuss in greater detail the concepts of which all rela-
tional logical schemas are made up.

#�� �����������
���
���������
	����	����

Let us produce a relational logical schema for the conceptual schema we de-
veloped in Lesson 4. We proceed as suggested in Lesson 3:

- we make a copy of the schema (we select schema Manufacturing/
Conceptual then execute ����	�
 / ���� ������) and we change its
version value to "Logical";

- in this new schema, we execute �����4��� / 9���

���������� to produce
the relational structures;

- we change the graphical representation by adding shade to the entity types
(/
�' / 0����
��� ��

���), to make them look like tables2 (with a little
imagination!).

Schema Manufacturing/Logical is transformed into 	� ���
�� � ����

�	�%��	�
 (Figure 5.3 and Figure 5.4).

From now on, we should use the terms ��$ � instead of entity type, %
 ��� ins-
tead of attribute, etc. However, the logical model is independent of specific
technologies, and in particular of relational DBMS. Figure 5.2 gives the trans-
lation rules for RDBMS. Similar tables can be built for other data manage-
ment systems. We will keep using the standard terms of ������� ��&�
 and
���	�$���
, except when mentioned otherwise.

This schema is inevitably more complicated and less readable than its concep-
tual counterpart (otherwise it would have been preferable to reason from the
beginning in the relational model!). The objective of this lesson is not to des-
cribe in detail how and why the transformation was carried out. Therefore, we
just have to accept this schema as it is.

2. The idea is that shading gives the objects a 3D look, which makes them more %
�%	���.
����������������
	�� ��� !�"�#����������� ����������

5-4 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3

�	���,#(�$�Translation table of DB-MAIN names into relational names.

�	���,#)�$�First version of the logical schema.

��$;8�&�������
� 9���

�����
�����>�5�?

entity type

attribute

primary identifier

secondary identifier

reference group

access key

entity collection

table

column

primary key

candidate key (�
��&�	��)B")

foreign key

index

(table-/db-)space (�
��
�����	�)

PRODUCT
Pro-ID
Pro-Name
Substitute[0-1]
id: Pro-ID

acc
ref: Substitute

acc

Phone-Number
Com-ID
Country
Area
Local
id: Com-ID

Country
Area
Local
acc

ref: Com-ID
acc

MARKET
Name
Size
id: Name

acc

manufactures
Com-ID
Country
Pro-ID
Name
Ratio
id: Pro-ID

Com-ID
Country
acc

ref: Name
acc

ref: Pro-ID
acc

ref: Com-ID
Country
acc

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id’: Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-5
 Schema Manufacturing/SQL

BRANCH
 Com-ID
 Country
 Name
 id: Com-ID,Country
 access key
 ref: Com-ID -> COMPANY.Com-ID
 access key

COMPANY
 Com-ID
 Com-Name
 Com_Number
 Com_Street
 Com_Zip-Code
 Com_City-Name
 Com-Revenue[0-1]
 id: Com-ID
 access key
 id’: Com-Name,Com_Number,Com_Street,Com_Zip-Code,Com_City-Name
 access key

manufactures
 Com-ID
 Country
 Pro-ID
 Name
 Ratio
 id: Pro-ID,Com-ID,Country
 access key
 ref: Name -> MARKET.Name
 access key
 ref: Pro-ID -> PRODUCT.Pro-ID
 access key
 ref: Com-ID,Country -> BRANCH.(Com-ID,Country)
 access key

MARKET
 Name
 Size
 id: Name
 access key
����������������
	�� ��� !�"�#����������� ����������

5-6 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3

�	���,#+�$�First version of the logical schema - Text standard view.

Now, we will discuss in greater detail some important constructs that we alrea-
dy encountered in lesson 3, and that appear again in this schema, namely the
	���	��%�����	�$���
 and the �%%�

�9��
.

#�! /������	������

�����*����
�����&�+

A ��4��������

�
�	
� is an attribute whose values act as references to other
entities. For instance, attribute Com-ID in entity type BRANCH is aimed at de-
signating a COMPANY entity. Since each entity type represents a table in this
logical SQL schema, Com-ID is what is called a 4���
������ in the RDBMS
language. In general, since a foreign key can comprise more than one attribu-
te, we will talk about ��4����������	��.

The way this attribute is denoted in DB-MAIN views expresses that each value
of Com-ID in any BRANCH entity must be a Com-ID value in some COMPA-
NY entity. We observe that the attribute mentioned in the target entity type
(here COMPANY) is its primary identifier. In some situations, the target attri-
bute can be a secondary identifier as well.

Phone-Number
 Com-ID
 Local
 Area
 Country
 id: Com-ID,Local,Area,Country
 access key
 equ: Com-ID = COMPANY.Com-ID
 access key

PRODUCT
 Pro-ID
 Pro-Name
 Substitute[0-1]
 id: Pro-ID
 access key
 ref: Substitute -> PRODUCT.Pro-ID
 access key
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-7

�	���,#,�$�Reference group, �"� foreign key.

If the identifier of the target entity type is made of several attributes, then the
reference must be supported by several reference attributes, as in manufac-
tures entity type, where the values of attributes (Com-ID, Country) desi-
gnate a BRANCH entity (Figure 5.6).

�	���,#-�$�Multicomponent reference group.

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id’: Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

UHI��&RP�,'

DFF�

manufactures
Com-ID
Country
Pro-ID
Name
Ratio
id: Pro-ID

Com-ID
Country
acc

ref: Name
acc

ref: Pro-ID
acc

UHI��&RP�,'

&RXQWU\

DFF�

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc
����������������
	�� ��� !�"�#����������� ����������

5-8 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
#�# ����������������	�

There is a more sophisticated form of reference attributes that can be found in
entity type (i.e. table) Phone-Number. Let us first observe that each entity
of this type represents a phone number of a company, and that all the phone
numbers of company X are represented by the Phone-Number entities with
Com-ID = X. Therefore, Com-ID is a reference attribute (or foreign key)
to COMPANY.

However, the conceptual schema tells us that each company must have �
�����

��� phone number (cardinality [1-4]). This property translates, in the cur-
rent logical schema, into a constraint stating that each COMPANY entity must
have at least one corresponding Phone-Number entity. More precisely, the
value of Com-ID of each COMPANY entity must match the Com-ID value of
at least one Phone-Number entity.

Since the COMPANY.Com-ID values form a subset of the PHONE-NUM-
BER.Com-ID values and the PHONE-NUMBER.Com-ID values form a sub-
set of the COMPANY.Com-ID values, we can conclude that,

����
���
�����������	
��
� �� ��
� ��� ������ ��� ����
���
��������
��������	
��
��� ��
-

To represent this constraint, DB-MAIN uses the term equ, that expresses that
the value sets of Com-ID in both entity types are ����� (Figure 5.7).

�	���,#.�$�Equality reference group.

Phone-Number
Com-ID
Country
Area
Local
id: Com-ID

Country
Area
Local
acc

UHI��&RP�,'

DFF�

COMPANY
Com-ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue[0-1]
id: Com-ID

acc
id’: Com-Name

Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
acc
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-9
#�' ���
�
���������
�����&

So far, referential attributes are automatically defined as the representation of
relationship types. Later on we could find it useful to define referential cons-
traints manually, for instance to document an existing SQL database.

To practice defining referential attributes, we delete the last constraint of enti-
ty type manufactures by clicking on the "ref: Com-ID,Country"
line, and pressing the Del key. The line disappears.

To build it again, we define for entity type (table) manufactures, a group
of attributes comprising COM-ID and Country:

- we select both attributes, and we click on the button in the)�����	�
�

�$�	 (Figure 5.8);

- we open the Property box of this group (press the Enter key or double-click)
(Figure 5.9).

Now we have to tell DB-MAIN that this group is a reference to table BRANCH.
We click on the Constraint button (for ����	�3	
�&�%
�
�	����). The Constraint
box opens (Figure 5.10). We have two properties to specify:

�	���,#1�$�A group comprising {Com-ID,Country} has been defined

- what 9����
��%
�
�	���� do we want? Let us click on the Ref button;

- what is the ��	3������������&�, and what is the ��	3������������	? DB-MAIN
will help us considerably by suggesting candidate entity types, and for each
of them suggesting candidate identifiers. These suggestions are based on

manufactures
Com-ID
Country
Pro-ID
Name
Ratio
id: Pro-ID

Com-ID
Country
acc

ref: Name
acc

ref: Pro-ID
acc

JU��&RP�,'

&RXQWU\
����������������
	�� ��� !�"�#����������� ����������

5-10 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
the structure of the source group we have built, i.e., its composition, the type
and the length of its components. In this case, there is not much choice: only
the BRANCH entity type has an identifier composed of two attributes whose
types and lengths match those of the current group. Therefore, DB-MAIN
proposes this target entity type and this identifier only.

To make this schema equivalent to its former version, don’t forget to click on
the Access key button as well (more on this below).

#�) �		������&�

The transformation has generated �%%�

�9��
. This term designates technical
data structures that provide efficient selective access to data records. An ac-
cess key will generally be implemented as an ����. or a ��
����$ � in relational
DBMS. However, the term �%%�

�9�� has been chosen instead of ����. since
each DBMS generally proposes its own names to denote these techniques3.

�	���,#2�$�The properties of the newly defined group.

3. Let us cite 	�%
	��9��
 in COBOL files and %� %� �����9��
 in CODASYL databases.
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-11

�	���,#"3�$�Choosing the target of the reference group.

Let us consider entity type MARKET (Figure 5.11). Its attribute Name is de-
clared both
���

4
�� (id) and ���������� (acc or access key). Indeed,
RDBMS generally require that each identifier be an index as well. This means
that Name is an identifier, and, in addition, an access key. Therefore, asking
for the MARKET whose Name is known will lead to a quick answer from the
database.

�	���,#""�$�Identifiers often are supported by access keys.

In addition, all the reference groups (foreign keys) have been made access
keys as well (Figure 5.12). It is not mandatory, but DB-MAIN has found it
handy to propose this in its transformation process. Indeed, such attributes im-
plement relationship types, and therefore will most probably be used as selec-
tion criteria in the programs (in join-based queries for instance).

MARKET
 Name
 Size
 id: Name

���

!
"

MARKET
Name
Size
id: Name

acc
����������������
	�� ��� !�"�#����������� ����������

5-12 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
So far, an access key is just an additional property of another construct (iden-
tifier or referential group). We can also decide to declare other access keys if
we think they can boost the performance of queries.

For instance, we can consider that asking for a product of which only the name
is known, is a frequent query. To accelerate the processing of this query, we
decide to build an access key on Pro-Name of PRODUCT.

�	���,#"(�$�Reference groups (foreign keys) are supported by access keys.

An access key is just a special kind of a 3	
�&. To illustrate it, we add a new
group to PRODUCT:

- we select attribute the Pro-Name, and we click on the button ;

- we open the Property box of this group (press the Enter key or double-click)
(Figure 5.9);

- we click on the button Access key and we confirm the operation.

The entity type PRODUCT now reads as in Figure 5.13.

�	���,#")�$�An additional access key.

BRANCH
Com-ID
Country
Name
id: Com-ID, Country
 access key
�
�#
����$�
�%
�������&����$�
 access key

PRODUCT
Pro-ID
Pro-Name
Substitute [0-1]
id: Pro-ID
 access key
ref: Substitute -> PRODUCT.Pro-ID
 access key
���

!
"#
�������

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
acc

ref: Com-ID
acc

PRODUCT
Pro-ID
Pro-Name
Substitute[0-1]
id: Pro-ID

acc
ref: Substitute

acc
acc: Pro-Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-13
Some access keys enjoys an interesting property, provided they are based on a
special kind of implementation, called B-trees4:

����%%�

�9�����������
������&	���.�
����
���	��%%�

�9���%���$����
�
%�	���-

Let us suppose that an access key has been defined on <A, B, C>. According
to this property, candidate access keys <A,B> and <A> are useless, and can be
removed from the schema. Indeed, the DBMS can use the first access key to
answer queries that would use any of the prefix access keys, without any pe-
nalty. This removing can be considered as a simple but efficient optimization
technique.

As an application of this technique, we will remove the three prefix access
keys of the logical schema (compare the final schema of Figure 5.19 with that
of Figure 5.3).

#�, ���
�
������
�&�	����	�
���

In a real database, that is, one which is implemented in an actual computer, ta-
ble rows and records are stored in a large secondary memory, such as on a ma-
gnetic disk. More specifically, they are stored in storage units called,
depending on the data management system, �� �
=�������� �
=�����
��
=��	��
=
	�� �
=���
&�%�
�or���$ �
&�%�
.

DB-MAIN proposes a concept to represent such storage units, namely the ��$

��������

��, or, more simply, the ������

��.

Let us suppose that the six tables of the relational database have to be stored
into two distinct files, one, called PR_STORE, which can accomodate the rows
of PRODUCT, MARKET and manufactures, and the other, called
CY_STORE, in which the rows of COMPANY, BRANCH and Phone-Number
will be stored.

A collection is created through the button and specified through the (
 �
 �%��
��&	
&�	���$
., called up by pressing the Enter key or by double-clicking
on the name of the collection (Figure 5.14). It allows us to specify the name,
short name, semantic and technical (see below) descriptions, and the list of the
entity types (or ��$ �
) whose entities (
2
) are to be stored in the collection.

4. ... whose description falls out of the scope of this tutorial. It suffices to know that standard
indexes, i.e., those which are not based on hashing techniques, most often are B-tree
indexes.
����������������
	�� ��� !�"�#����������� ����������

5-14 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3

�	���,#"+�$�Defining the entity collection CY_STORE.

Any number of entity types can be stored in a collection, and an entity type can
be
�
	�� in any number of collections. However, some DBMS can impose
more limited configuration. For instance, many relational DBMS force the
rows of each table to be stored in one table space only, though the latter can
receive rows from several tables.

These collections appear in all schema views (Figure 5.15 and Figure 5.16).

�	���,#",�$�Entity collections: storage units to store table rows in.

PR-STORE

PRODUCT
MARKET
manufactures

CY-STORE

COMPANY
BRANCH
Phone-Number
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-15

�	���,#"-�$�Entity collections, according to the Text extended view.

#�- 5�������	���
��

Now we could believe that we are ready to generate the SQL schema that cor-
responds to the final version of our relational database.

However, a quick look at this schema will show a little but potentially an-
noying problem: some names include the character "-" (dash), which is invalid
in SQL data names. A standard remedy consists in replacing each character
"-" by, say, the character "_" (underscore). For instance, Com-ID should be
replaced by Com_ID, and so on.

 Schema Manufacturing/SQL / Manu

����
�����
�������'

�������

(����)

�	��
����*
�
����
�����
�������'

�������

���+'�

����������

BRANCH
 ��
�������'
 Com-ID: char (15) [S]
 Name: char (1)
 ...$

COMPANY / COM [S]

��
�������'
 Com-ID: char (15) [S]
 Com-Name: char (25) [S]
 ...

manufactures [S]

��
�������'
 Com-ID: char (15) [S]
 Country: num (3)
 ...
����������������
	�� ��� !�"�#����������� ����������

5-16 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
DB-MAIN has a specific processor for that task. It is called up through �����$
4��� / &��� �������
��, which opens the �����'	
%�

��3�&��� (Figure
5.17).

We proceed as follows:

- we set the scope to Global (i.e., processing the whole schema);

- we want to process both the Names and the Short names ...

- ... of the Entity types, Attributes and Collections;

- first, we tell the processor that we want all the names to be converted into
uppercase characters (button lower -> uppercase)

- then we define the translation pattern:

- we click on button Add, therefore opening the New pattern box (Fi-
gure 5.18):

- the character - is typed in the Search for field,

- the character _ is typed in the Replace by field,

- and we confirm by clicking on the button OK;

- the translation pattern "-" -> "_" now appears in the Patterns
field (Figure 5.17);

�	���,#".�$�Processing the names of the schema.
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-17

�	���,#"1�$�Defining a substitution pattern.

�	���,#"2�$�The final physical schema. Note that the prefix access keys
have been removed.

PRODUCT
PRO_ID
PRO_NAME
SUBSTITUTE[0-1]
id: PRO_ID

acc
ref: SUBSTITUTE

acc

PHONE_NUMBER
COM_ID
COUNTRY
AREA
LOCAL
id: COM_ID

COUNTRY
AREA
LOCAL
acc

ref: COM_ID

MARKET
NAME
SIZE
id: NAME

acc

MANUFACTURES
COM_ID
COUNTRY
PRO_ID
NAME
RATIO
id: COM_ID

COUNTRY
PRO_ID
acc

ref: NAME
acc

ref: PRO_ID
acc

ref: COM_ID
COUNTRY

COMPANY
COM_ID
COM_NAME
COM_NUMBER
COM_STREET
COM_ZIP_CODE
COM_CITY_NAME
COM_REVENUE[0-1]
id: COM_ID

acc
id’: COM_NAME

COM_NUMBER
COM_STREET
COM_ZIP_CODE
COM_CITY_NAME
acc

BRANCH
COM_ID
COUNTRY
NAME
id: COM_ID

COUNTRY
acc

ref: COM_ID

PR_STORE

PRODUCT
MARKET
MANUFACTURES

CY_STORE

PHONE_NUMBER
BRANCH
COMPANY
����������������
	�� ��� !�"�#����������� ����������

5-18 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
- we leave the button Confirm unchecked to avoid being asked for confirma-
tion before each substitution;

- we validate by clicking on the button OK.

All the characters "-" have been replaced with the character "_", just as we
wanted them to be and all the names are now in uppercase (Figure 5.19).

The same procedure will also be used to remove space characters or to replace
the reserved words it may comprise: no user name can belong to a list that in-
cludes such words as %	����=���$ �=�����3�	=�%��	=�����=�����.=�	���	��%�
=�����
���=�%��%9, etc.

#��. 4;$�	�����������
��

Now we can ask for the SQL translation function as proposed in lesson 3
through the command
�� / 0�����
� / �
������ �5�>�����?.

-- ***
-- * Standard SQL generation *
-- *---*
-- * Generator date: Mar 8 2000 *
-- * Generation date: Mon Apr 03 21:50:31 2000 *
-- ***

-- Database Section --

create database Manufacturing;

-- DBSpace Section --

create dbspace CY_STORE;
create dbspace PR_STORE;

-- Table Section --

create table BRANCH (
 COM_ID char(15) not null,
 NAME char(20) not null,
 COUNTRY numeric(3) not null,
 primary key (COM_ID,COUNTRY))
 in CY_STORE;
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-19
create table COMPANY (
 COM_ID char(15) not null,
 COM_NAME char(25) not null,
 COM_NUMBER numeric(5) not null,
 COM_STREET char(20) not null,
 COM_ZIP_CODE numeric(7) not null,
 COM_CITY_NAME char(18) not null,
 COM_REVENUE numeric(12),
 primary key (COM_ID),
 unique (COM_NAME,COM_NUMBER,COM_STREET,COM_ZIP_CODE,
 COM_CITY_NAME))
 in CY_STORE;

create table MANUFACTURES (
 COM_ID char(15) not null,
 COUNTRY numeric(3) not null,
 PRO_ID char(8) not null,
 NAME char(24) not null,
 RATIO numeric(4,4) not null,
 primary key (COM_ID,COUNTRY,PRO_ID))
 in PR_STORE;

create table MARKET (
 NAME char(24) not null,
 SIZE numeric(6) not null,
 primary key (NAME))
 in PR_STORE;

create table PHONE_NUMBER (
 COM_ID char(15) not null,
 LOCAL numeric(8) not null,
 AREA numeric(3) not null,
 COUNTRY numeric(3) not null,
 primary key (COM_ID, LOCAL, AREA, COUNTRY))
 in CY_STORE;

create table PRODUCT (
 PRO_ID char(8) not null,
 PRO_NAME char(25) not null,
 SUBSTITUTE char(8),
 primary key (PRO_ID))
 in PR_STORE;
����������������
	�� ��� !�"�#����������� ����������

5-20 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3

�	���,#(3�$�The SQL program creating the database.

As we have already mentioned in the first lessons, this SQL text is not quite
consistent with the relational schema which it is a translation of. For instance,

-- Constraints Section
-- ___________________

alter table BRANCH add constraint FKBELONGS
 foreign key (COM_ID) references COMPANY;

alter table COMPANY add constraint
 check(exists(select * from PHONE_NUMBER
 where PHONE_NUMBER.COM_ID = COM_ID));

alter table MANUFACTURES add constraint FKMAN_MAR
 foreign key (NAME) references MARKET;

alter table MANUFACTURES add constraint FKMAN_PRO
 foreign key (PRO_ID) references PRODUCT;

alter table MANUFACTURES add constraint FKMAN_BRA
 foreign key (COM_ID,COUNTRY) references BRANCH;

alter table PHONE_NUMBER add constraint FKCOM_PHO
 foreign key (COM_ID) references COMPANY;

alter table PRODUCT add constraint FKREPLACES
 foreign key (SUBSTITUTE) references PRODUCT;

-- Index Section --

create unique index IDBRANCH on BRANCH (COM_ID,COUNTRY);

create unique index IDCOMPANY on COMPANY (COM_ID);
create unique index IDCOMPANY on COMPANY (COM_NAME,COM_NUMBER,
 COM_STREET,COM_ZIP_CODE,COM_CITY_NAME);
create unique index MANUFACTURES on MANUFACTURES (COM_ID,
 COUNTRY,PRO_ID);
create index FKMAN_MAR on MANUFACTURES (NAME);
create index FKMAN_PRO on MANUFACTURES (PRO_ID);
create unique index IDMARKET on MARKET (NAME);
create unique index IDPHONE_NUMBER on PHONE_NUMBER (COM_ID,LOCAL,
 AREA,COUNTRY);
create unique index IDPRODUCT on PRODUCT (PRO_ID);
create index FKREPLACES on PRODUCT (SUBSTITUTE);
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-21
the equ constraint that appears in the PHONE_NUMBER table has been ex-
pressed as a mere ref constraint. These problems will be addressed in a fur-
ther lesson.

#��� ;�
��
�������������

We can save the current project and quit DB-MAIN.
����������������
	�� ��� !�"�#����������� ����������

5-22 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
4�����&����$������#

• In this lesson, we have studied new notions:

- ref reference group (or foreign key)

- equ reference group

- access key (e.g., index)

- entity collections

• We have also compared
3�%� �
%����
 with %
�%�&��� �
%����
.

• We have learnt,

- to define a group &�' / 0��	�

- to define a reference group

 the Constraint button in the Group Property box

- to define an access key

the Access key button in the Group property box

- to define a collection

&�' / ������

��

- to replace substrings in names

�����4��� / &��� �������
��
���������� ����������������
	�� ��� !�"�#�����������

"�

��A6�"
3�%� �����'��
�%� ��
�� ��3 5-23
90��	
��������$������#

5.1 Enter manually5 a relational logical schema describing the database that
was built by the following SQL program:

5. Frustratingly (for you!), DB-MAIN includes a powerful tool that can build logical schemas
from SQL code. However, using it would make you miss the objective of the exercise.

create database RESULTS;

create table STD (
STD_ID char(15) not null,
STD_NM char(25) not null,
STD_PHONE char(10),
primary key (STD-ID));

create table LCT (
LCT_CD char(5) not null,
LCT_NM char(25) not null,
primary key (LCT_CD));

create table CRS (
CRS_NM char(25) not null,
LCT_CD char(5) not null,
HOURS decimal(3) not null,
primary key (CRS_NM,LCT_CD),
foreign key (LCT_CD) references LCT));

create table RES (
STUD_ID char(15) not null,
CRS_NM char(25) not null,
LCT_CD char(5) not null,
GRADE decimal(5,1),
primary key (STUD_ID,CRS_NM,LCT_CD),
foreign key (STUD_ID) reference STUD,
foreign key (CRS_NM,LCT_CD) references CRS)

);
����������������
	�� ��� !�"�#����������� ����������

5-24 "�

��A6�"
3�%� �����'��
�%� ��
�� ��3
5.2 This schema is particularly obscure, due to the choice of (too) short na-
mes. In fact, the names can be changed to make them more informative.
Applying the following substitution leads to a much more readable
schema:

STD → STUDENT
LCT → LECTURE
CRS → COURSE
RES → RESULT
NM → NAME
CD → CODE

Use the Name processing function to carry out these replacements.
Note that you can add several patterns in the Patterns field, so that
all the transformations can be executed in one operation.

5.3 Define the access keys (applying �����4��� / 9���

���������� will
do the job), then generate a new SQL creation program. Though struc-
turally equivalent to the first one, it enjoys a highly desirable quality:
readability.

5.4 Try to guess which conceptual schema this logical schema could have
come from6.

5.5 Consider Project MANU-6 again. Rework the schema hierarchy and
some schema constructs in order to propose a neater organization:

- the hierarchy shows the conceptual, logical, physical and coded sche-
mas;

- the physical schema does not include &	���.��%%�

�9��
.

6. Note that this kind of problem resorts to the Database Reverse Engineering domain, which
will be addressed later on.
���������� ����������������
	�� ��� !�"�#�����������

�

$������'

��(��	���"��	������������
��

�����

��

This lesson will introduce to more powerful features of the DB-
MAIN conceptual model : supertype/subtype relations (is-a), to-
tal/partial and exclusive/overlapping subtypes, inheritance, coex-
istence constraint, exclusive constraint, at-least-one constraint,
exactly-one constraint. In addition, a first approach is proposed
to schema transformation, and to the reversibility concept.
����������������
	�� ��� !�"�#����������� ����������

6-2 "�

��C6������%���(
�%�&��� ��
�� ��3
'�� 4����
���$������'

We start DB-MAIN and we create a new project called SEM-6.

'�� 4�
�&��������������&����*
���������
���+

We create a new schema with name ISA and version 1.

Let us suppose that we are describing the activities of ��%�
	��
 which are in
relation to their
�&& ��	
 and their %�
�
��	
, which all are %
�&����
.

In other words, factories, suppliers and customers are companies. In addition,
each factory can have customers and can have suppliers. From now on howe-
ver, we will ignore the latter facts.

If we represent factories, suppliers, customers and companies by entity types
FACTORY, SUPPLIER, CUSTOMER and COMPANY respectively, we get the
schema of Figure 6.1.

�	���-#"�$�Four unrelated entity types (so far!).

We then have to express some additional facts:

- a factory is a company as well;

- similarly, each supplier is a company;

- and each customer is a company.

Another way to describe these facts is to say that a factory (as well as a supplier
and a customer) is a
&�%�� �9����
� company. This translates in the Entity-re-
lationship model as follows:

- FACTORY is declared a �	�
��� of COMPANY;

- SUPPLIER is a �	�
��� of COMPANY;

- CUSTOMER is a �	�
��� of COMPANY.

SUPPLIER FACTORY CUSTOMER

COMPANY
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-3
Conversely, we can say that COMPANY is a �	���
��� of FACTORY, SUP-
PLIER and CUSTOMER.

To define this
�$��&��
�&�	��&� relation, we open the Entity box of FACTORY
(double-click as usual), and we move the name COMPANY from the right list
to the Supertypes list on the left (Figure 6.2).

�	���-#(�$�FACTORY is being declared a subtype of COMPANY.

Defining similarly that SUPPLIER and CUSTOMER both have COMPANY as
their supertype leads to the schema of Figure 6.3.

It is common to talk about ��$8�����

�� between the supertype and its subty-
pes. The origin of this name lies in the natural language interpretation of the
facts modeled in this way:

��%��
�&& ��	������%
�&���=���%����%�
	�������%
�&���=���%.

The standard view is shown in Figure 6.4 and the extended view in Figure 6.5.
����������������
	�� ��� !�"�#����������� ����������

6-4 "�

��C6������%���(
�%�&��� ��
�� ��3

�	���-#)�$�SUPPLIER, FACTORY and CUSTOMER are subtypes of COM-
PANY

�	���-#+�$�The ��
��
�	�����#��� of IS-A relations.

�	���-#,�$�The ��
��
�	����#��� of IS-A relations.

COMPANY

CUSTOMER
� ��
�������

FACTORY
� ��
�������

����

COMPANY / CY
 �*��"�
 #
����,$'�-
������'�-
.������

CUSTOMER / CUS
� ��
�������

FACTORY / FAC
� ��
�������

���.

SUPPLIER FACTORY CUSTOMER

COMPANY
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-5
As we can guess by playing with the Entity box, it is possible to state that an
entity type has more than one supertype. However, such situations, often cal-
led �� ��& ������	����%�, are much more complicated, and will be ignored in
this volume1.

'�� %������
������������
�&�������������
�&��&��

So far, we have defined the relation between each subtype and its supertype:
each entity of the subtype is an entity of the supertype. So we know that each
customer is also a company, and so forth for factories and suppliers.

Now, what about a customer being a supplier as well? ... and about a company
which is neither a customer, a factory, nor a supplier?

These questions address two main properties that concern the entity types in-
volved into a supertype/subtype relation. The questions can be stated more
formally:

- �	�������2
�
�$��&�
���
7
���=�
	�%��������
��	 �&2? If the subtypes are pai-
rwise disjoint, then any supertype entity belong to at most one of its subty-
pes; otherwise it can belong to several subtypes. To assert this property, we
will say that the subtypes of entity type COMPANY are �
���
�
. Since this
property concerns all the subtypes of COMPANY, it is considered to be a pro-
perty of the supertype.

- ��
����%���������
������
�&�	��&��$�
�3��
���
�$��&�=�
	�%������$������
��

������? If each supertype entity must belong to at least one subtype, we
will say that the subtypes of entity type COMPANY are ��
��. This too is a
property of the supertype.

When the collection of the subtypes of E is both disjoint and total, this collec-
tion forms a ���

��. In a partition, each E entity belongs to exactly one sub-
type.

To allow us to declare these properties, the +������$
. of the supertype includes
two buttons, named �isjoint and �otal (Figure 6.6). Each can be checked and
unchecked independently. When both are checked, the subtypes form a %arti-
tion, that is, each COMPANY entity is of �.�%� ��
�� subtype.

1. So far, there is no agreement on what multiple super-types exactly mean, and how to deal
with them when validating, transforming and generating a schema. More on this later on.

2. To be more precise, this question concerns the set of entities of each type.
����������������
	�� ��� !�"�#����������� ����������

6-6 "�

��C6������%���(
�%�&��� ��
�� ��3

�	���-#-�$�The subtypes of COMPANY �����ly cover the entity set of COM-
PANY.

To practice these concepts, we define the subtypes of COMPANY as being
�$

��:

- we open the +������$
. of COMPANY (by double-clicking on its name);

- we click on Total;

- we click on OK.

The schema appears as in Figure 6.7 and Figure 6.8.
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-7

�	���-#.�$�Each COMPANY entity also is a SUPPLIER, a FACTORY or a
CUSTOMER entity (or several of them).

�	���-#1�$�The Text extended view of the IS-A relations of Figure 6.7.

The triangle symbol represents a collection of subtypes. This symbol can in-
clude an additional character: � for Total, � for Disjoint and % for Partition.
The absence of character means both non-disjoint and non-total, i.e., an over-
lapping and partial collection of subtypes.

This point being very important in modeling, we will synthesize the different
situations in Figure 6.9. It shows a simple IS-A hierarchy made up of super-
type A and subtypes B1 and B2. Each pattern is defined as follows.

COMPANY / CY
 �*��"�

/�0#
����,$'�-
������'�-
.������

CUSTOMER / CUS
� ��
�������

����

'�	����
�: ���� A entity is either a B1 entity or a
B2 entity �	
���
���
�.

�
�� : ���� A entity is either a B1 entity or a B2
entity �����
�.

T

CUSTOMERFACTORYSUPPLIER

COMPANY
����������������
	�� ��� !�"�#����������� ����������

6-8 "�

��C6������%���(
�%�&��� ��
�� ��3

�	���-#2�$�Synthesis of subtype properties.

'�! 4�����&���2���
�&���
����
���	�

The Supertype/subtype IS-A relation is not as simple as it appears at first glan-
ce. One of its most dramatic consequences is the so-called
����

���� me-
chanism. To describe it, we need first to enrich our schema a little bit by
giving entity types some attributes. Let us record the following facts:

- each company has a name (identifier) and an address;

- each supplier has an account number;

- each factory has a production type;

- each customer has a customer number (identifier), a status and an amount
due.

The current schema can be completed easily (Figure 6.10).

��
7
���: an A entity can be a B1 entity or a B2 en-
tity �	
���
���
�. Some A entities are neither B1
nor B2 entities.

D	��: an A entity can be a B1 entity or a B2 entity
�����
�. Some A entities are neither B1 nor B2
entities.

��
���>�? ���

���>¬�?

�
���
�

>�?

��������
��
>¬�?

B1 B2

 A

P

B1 B2

 A

D

B1 B2

 A

T

B1 B2

 A
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-9
Though it is quite correct, this schema does not show explicitly all its contents.
For instance, each %�
�
��	= being a %
�&���, has also a ���� (which identi-
fies it) and an ���	�

.

�	���-#"3�$�An IS-A hierarchy with attributes.

Thus, the whole list of attributes of entity type CUSTOMER is in fact made of:
CustNbr, Name, Address, Status and AmountDue. Among them,
CustNbr, Status and AmountDue are called the ��������

�
�	
��, whi-
le Name and Address are the
����

����

�
�	
��. In addition, CUSTOMER
has two identifiers, namely CustNbr (a proper identifier) and Name (an in-
herited identifier).

Should the schema show all the attributes and all the identifiers of each entity
type, it would appear as in Figure 6.11.

The first version is more concise, while the latter is more informative and in-
cludes redundant specifications3. However, both views have the same infor-
mation contents. The only difference is how we have to interpret them.

The concept of inheritance also applies to all the structural properties of the
entity types, and is not restricted to attributes and identifiers as discussed so
far. More specifically, the subtypes also inherit all the 	
 �
 and the ����3	���
%
�
�	����
 of their supertype.

3. For instance, it tells us �2�%� that a %�
�
��	���
�������: once through an inherited attri-
bute and once as a proper attribute of the supertype.

T

CUSTOMER
CustNbr
Status
AmountDue
id: CustNbr

FACTORY
ProductType

SUPPLIER
AccountNbr

COMPANY
Name
Address
id: Name
����������������
	�� ��� !�"�#����������� ����������

6-10 "�

��C6������%���(
�%�&��� ��
�� ��3
For instance, if COMPANY is linked to entity type REGION, then CUSTOMER,
FACTORY and SUPPLIER are linked to REGION as well (Figure 6.12). Its
explicit semantic contents are shown in Figure 6.13.

�	���-#""�$�Attribute and identifier inheritance explicitly shown. The inheri-
ted components are marked for readability.

�	���-#"(�$�The supertype plays a role in a rel-type.

By comparing both views, the gain of conciseness induced by the supertype/
subtype relation is obvious, especially in large schemas. There are other ad-

T

CUSTOMER
CustNbr
1DPH
$GGUHVV
Status
AmountDue
id: CustNbr
LG
��1DPH

FACTORY
1DPH
$GGUHVV
ProductType
LG��1DPH

SUPPLIER
1DPH
$GGUHVV
AccountNbr
LG��1DPH

COMPANY
Name
Address
id: Name

0-1 0-Nin

T

REGION
Name
Population
id: Name

CUSTOMER
CustNbr
Status
AmountDue
id: CustNbr

FACTORY
ProductType

SUPPLIER
AccountNbr

COMPANY
Name
Address
id: Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-11
vantages as well. For instance, inherited components are described only once
at the supertype level. Therefore, changing the definition of an attribute (or a
role), adding an attribute or deleting an existing attribute, must be done only
once. All these changes are automatically applicable to all the subtypes of the
supertype.

�	���-#")�$�Attribute, identifier and role inheritance shown explicitly.

The drawback of IS-A constructs is that the schema can be less readable. In-
deed, the actual attributes (and other components) comprise the proper attribu-
tes + the inherited ones.

'�# "��0
������	�������������������
�&��&��

We create a new schema, called Coexistence, in which we will describe
persons who may work in companies and who may be married (a fairly com-
mon combination). More precisely, each person is described by its personal

��1

��1

VBLQ

��1

��1

IBLQ

��1

��1

FBLQ

0-N 0-Nin

T

SUPPLIER
1DPH

$GGUHVV

AccountNbr
LG��1DPH

REGION
Name
Population
id: Name

FACTORY
1DPH

$GGUHVV

ProductType
LG��1DPH

CUSTOMER
CustNbr
1DPH

$GGUHVV
Status
AmountDue
id: CustNbr
LG
��1DPH

COMPANY
Name
Address
id: Name
����������������
	�� ��� !�"�#����������� ����������

6-12 "�

��C6������%���(
�%�&��� ��
�� ��3
number, its name, the name of his/her spouse, the date s/he was married, the
company s/he works for, and the date s/he was hired by this company.

However, not all the persons are married and/or work in a company. Therefo-
re, attributes SpouseName, DateMarried and DateHired are optional
and role works-in.PERSON is optional too. The corresponding schema
looks like Figure 6.14.

�	���-#"+�$�A schema describing persons working in companies.

However, things are not so simple. For instance, all ��		����&�	

�
 have
both valid �������		��� and valid
&
�
������ properties, while �
����		���
&�	

�
 have neither of them.

Similarly, 2
	9��3�&�	

�
 have a �������	�� property and a %
�&��� they
work in, while �
��2
	9��3�&�	

�
 have neither.

We can say that attributes DateMarried and SpouseName are ���7
�
��
,
i.e., some entities have a value for these attributes, while all the others have no
values for them.

DB-MAIN provides us with a specific feature to declare this coexistence cons-
traint: the ���7
�
���� group. It works as follows:

- we create a group4 comprising attributes SpouseName and DateMar-
ried, and we give it the %
�.�
���%� characteristics by clicking on the
Coexistence button in the Group box (Figure 6.15);

4. Proceed as usual: select all the components then click on button GR in the Standard tools
bar. To open a selected group, just press the Enter key.

0-1

0-N works-in

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID

COMPANY
CompNumber
CompName
id: CompNumber
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-13

�	���-#",�$�Defining a coexistence group.

�	���-#"-�$�Any person who works in a company must have a date hired,
and conversely. All married persons, and only they, have a spouse name and
a date of marriage.

0-1

0-N works-in

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID
FRH[��ZRUNV�LQ�&203$1<

'DWH+LUHG
FRH[��6SRXVH1DPH

'DWH0DUULHG

COMPANY
CompNumber
CompName
id: CompNumber
����������������
	�� ��� !�"�#����������� ����������

6-14 "�

��C6������%���(
�%�&��� ��
�� ��3
- similarly, we define works-in.COMPANY and DateHired as another
coexistence group.

The completed schema is shown in Figure 6.16 and in Figure 6.17.

�	���-#".�$�Text view of coexistence constraints.

&�
�

1. All the components of a coexistence group must be optional. This condi-
tion is easy to check for attributes: their cardinality must be [0-j]. For the
role components (e.g., works-in.COMPANY), the rule is a bit different:
the role specifies a relationship type whose other role must be optional, i.e.
it has cardinality [0-1]. This rule can be explained by the following inter-
pretation: ��'+,)*��
&��
�� � (i.e., [0-1]) 2
	9
������(*�'��1.

2. A coexistence group can also be defined among the attributes of a rela-
tionship type.

'�' 4	����������������
����1����
��������	�

To help understand the concept of coexistence constraint, we will propose an
equivalent structure which may be more illustrative of the very nature of this
constraint. To do so, we will use for the first time a very powerful component

���COMPANY
 CompNumber
 CompName
 id: CompNumber
 PERSON
 PersID
 Name
 SpouseName[0-1]
 DateMarried[0-1]
 DateHired[0-1]
 id: PersID
 ��
1� �#
2��! ���&�������-
���
)��
3

��
1� �#
����
���
-
���
�����
3

 works-in (
 [0-N]: COMPANY
 [0-1]: PERSON)
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-15
of the DB-MAIN tool, namely its transformation toolkit. This component will
be studied in great detail in future lessons, but the current situation is a good
opportunity to experiment one of its simplest tool : �

�
�	
���������

��.

We consider the schema of Figure 6.16, and we proceed as follows:

- we select, by clicking on it, the group that comprises SpouseName and
DateMarried;

- we execute command �����4��� / 0��	� / 8������

�� (Figure 6.18);

- a new attribute is created; we give it the name Marriage (or any other na-
me);

�	���-#"1�$�Asking for the aggregation of the components of the selected
group into a compound attribute.

As illustrated in Figure 6.19, the set of attributes of PERSON has been restruc-
tured as follows:

- now, SpouseName and DateMarried are the components of the new
compound attribute Marriage;

- these attributes are mandatory for their parent attribute;

- Marriage is optional;

- the coexistence constraint has been removed.

It is important to be convinced that the schemas of Figure 6.16 and Figure 6.19
convey exactly the same semantics, i.e., they describe the same portion of the
application domain. Indeed, Figure 6.19 tells that a PERSON entity can have
a Marriage value. In this case, it has a value for each of its components, na-
mely SpouseName and DateMarried. If it has no Marriage value,
����������������
	�� ��� !�"�#����������� ����������

6-16 "�

��C6������%���(
�%�&��� ��
�� ��3
then, quite naturally, it has no values for the components of this attribute. This
is exactly what the coexistence constraint is intended to express.

�	���-#"2�$�Coexistent group {SpouseName,DateMarriage} has been
transformed into optional compound attribute Marriage.

To push the experiment a bit further, we select the attribute Marriage, and
we execute the command �����4��� / 8

�
�	
� / �
��������

��.

(Not really) surprisingly, we get the origin schema! We can draw from this
two essential conclusions that will be discussed later on:

1. each transformation is the inverse of the other one: each one erases the
effect of the other one; they are called ����	
���	��
�
	����
�
;

2. both schemas are equivalent, i.e., they represent exactly the same reality,
though through different structures. The choice of one of them will be
guided by criteria which are beyond the scope of this lesson. A transfor-
mation which replaces a schema with an equivalent one is called 	���	
��
$ �, or
������%
�&	�
�	���3.

�	���-#(3�$�A couple of reversible transformations: Group/Aggregate (left to
right) and Attribute/Disaggregate (right to left).

⇔

PERSON
PersID
Name
0DUULDJH>���@

SpouseName
DateMarried

DateHired[0-1]
id: PersID

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersID
FRH[��6SRXVH1DPH

'DWH0DUULHG

PERSON
PersID
Name
0DUULDH

SpouseName
DateMarried

DateHired[0-1]
id: PersID
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-17
As we will see later on, such a transformation can be summarized as in Figure
6.20.

DB-MAIN offers a fairly large number of schema restructuring techniques, or
schema transformations. These are among the most simple, but not the least
useful, as will be illustrated in further lessons.

&�
�

The other %
�.�
���%� group can be processed in a similar way. However,
it would need a more sophisticated transformation since it includes attribu-
tes ���������. Thus, we will leave it to a further lesson.

'�) 90	���
(��	�������������������
�&��&��

This concept is quite similar to the coexistence of components.

Let us record in the current schema information about the 2�3�
 of the per-
sons. Considering that some persons are paid on an hourly basis, while the
others are paid at the end of each month, we can define two attributes, namely
HourlyWages and MonthlyWages.

However, no PERSON entity can have a value for both attributes. We consider
these attributes as �.% �
���.

It is fairly easy to define an �7��	�
�������
��
�
 in DB-MAIN through an �.�
% �
����3	
�&:

1. we create a new group5 comprising attributes HourlyWages and
MonthlyWages,

2. we give it the exclusive characteristic by clicking on the Exclusive button
in the Group box.

The schema appears as in Figure 6.21.

Let us now consider an additional rule, stating that %
�&����
��
��
����	����	�
	����&�	

�
6. In other words, a person is married, or works in a company, (or
none), but not both.

5. Provided no such group already exists. In such a case, just double-click on it and proceed
as told in step 2.

6. Non-���� �
&&
	������ companies must be modeled as well. Whether describing politi-
cally incorrect situations is politically correct or not is beyond the scope of this introduc-
tion.
����������������
	�� ��� !�"�#����������� ����������

6-18 "�

��C6������%���(
�%�&��� ��
�� ��3

�	���-#("�$�A person paid monthly cannot be paid per hour, and conversely.

The information concerning the marriage is gathered into a coexistence group
{SpouseName, DateMarried} while the information related to the pro-
fessional activity of the person is represented by the coexistence group
{works-in.COMPANY, DateHired}.

The �7��	�
�������
��
�
 is defined by an �.% �
����3	
�& as follows:

1. we declare a new group comprising group {works-in.COMPANY,

DateHired} and group {SpouseName, DateMarried}7,

2. we give it the �.% �
��� characteristic by clicking on the Exclusive button
in the Group box.

We get the schema of Figure 6.22.

&�
��

1. All the components of an exclusive group must be optional.

2. An exclusive group can also be defined among the attributes of a rela-
tionship type.

3. The exclusive constraint can be expressed in a simpler way: excl:
works-in.COMPANY, SpouseName. Can you explain why this cons-

7. Same procedure as for attributes: select the groups then click on button GR in the Stan-
dard tools bar.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
H[FO��0RQWKO\:DJHV

+RXUO\:DJHV
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-19
traint is equivalent to the former expression?

�	���-#((�$�Married persons cannot work in a company, and conversely. A
simplified expression will be discussed in the following.

'�, <������3
�����	�
���	�

@����
������	�

@��0
��
���	���
������

Let us consider again the last schema. For the purpose of the demonstration,
we delete exclusive group {MonthlyWages, HourlyWages}.

Now we consider that all the persons are paid, in a way or in another. In our
schema, this rule translates as follows: ��� ��
��
�� of the attributes Hour-
lyWages and MonthlyWages must have a value.

This property is called the �
$����
$��������
��
�
, and can be specified throu-
gh an ��� ��
��
���3	
�& as follows:

1. we declare a new group {Monthly-Wages,Hourly-Wages},

2. we click on button At-least-one in the Group box.

Without surprise, we get the schema of Figure 6.23.

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY

DateHired
coex: SpouseName

DateMarried
excl: MonthlyWages

HourlyWages
H[FO��̂ ZRUNV�LQ�&203$1<

'DWH+LUHG`

^6SRXVH1DPH

'DWH0DUULHG`
����������������
	�� ��� !�"�#����������� ����������

6-20 "�

��C6������%���(
�%�&��� ��
�� ��3

�	���-#()�$�Every person must be paid, in whatever way(s)!

Very often, such a group will also be given the �.% �
��� property, to declare
that
�������
� ��
���%
�&
���� must have a value. To state this, we open the
group again and we click on the Exclusive button, so that both Exclusive and
At-least-1 buttons are checked.

This condition is defined by the 67��
��$��� property (symbolized with
�7��
$" in the schema) as shown in Figure 6.24.

�	���-#(+�$�Every person must be paid, but in one way only.

&�
��

1. All the components of an ��� ��
��
�� group must be optional.

2. A group cannot have both (
�.�
���%� and ��� ��
��
�� properties.

3. An ��� ��
��
�� group can also be defined among the attributes of a rela-

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
DW�OVW����0RQWKO\:DJHV

+RXUO\:DJHV

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
H[DFW����0RQWKO\:DJHV

+RXUO\:DJHV
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-21
tionship type.

'�- ;�
��
�������������

We save the current project and we quit DB-MAIN.
����������������
	�� ��� !�"�#����������� ����������

6-22 "�

��C6������%���(
�%�&��� ��
�� ��3
4�����&����$������'

• In this lesson, we have studied new notions:

- supertypes, subtypes, supertype/subtype relation

- �
�� =���
7
��������&�	����
� properties

- inheritance

- %
�.�
���%� constraint

- �.% �
��� constraint

- ��� ��
��
�� constraint

- �.�%� ��
�� constraint

- schema transformation, inverse transformation, reversible transformation

- the transformation toolkit of DB-MAIN

• We have also learnt:

- to specify the supertype of an entity type

in the Entity type box of the subtype : include the name of the su-
pertype in the Supertype list box

- to define the total, disjoint properties

in the Entity type box of the supertype : click on the Total,
Disjoint button

- to define coexistent, exclusive, at-least-one groups

in the Group box : click on the Coexistent, Exclusive,
At-least-one button

- to define a compound attribute from its components

if needed, make a group with the components; then :

�����4��� / 0��	� / 8������

��

- to disaggregate a compound attribute

�����4��� / 8

�
�	
� / �
��������

��
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-23
90��	
��������$������'

6.1 In the begining of this lesson, we wrote : ... ��%�
	��
=�
�&& ��	
�����%�
�
�
��	
��	��%
�&����
-� ���������
�=���%�� ��%�
	�� %��������%�
�
��	

����%��������
�&& ��	
. ...

Complete the corresponding schema in order to include these specifica-
tions.

6.2 In the same schema, describe the fact that each company can be a
�$�

����	� of another company (hint : use a cyclic relationship type). Show
how this fact must be interpreted as far as the subtypes are concerned.
In other words, make explicit the inherited relationship type. On the ba-
sis of this small example, what do you think of the conciseness of the is-
a relation ?

6.3 Build a schema (called PERSONAL) representing the following appli-
cation domain :

����%
�&������
���&
���
-��+�%��
��������
������������$�������&
���
��=�������
������������������	�

-�������&
����%����������&�	

��
�� �-����
��� ����
��������������3�%
��=��������������%
�����-����
�3����
��&
���
=����	���	��% �	9
�����2
	9�	
-��8
	9�	
��	��%��	�%��	�>���$�
��
� �	�=�������
��$������ �������
����	�������
�-����% �	9���
��� ��� ����
�����%��
�-�����	�������
����
������������������	�

-

Consider four different hypotheses :

- each employee is either a clerk or a worker, but not both (version 1);

- an employee can be a clerk or a worker, but not both (version 2);

- each employee is either a clerk or a worker, or both (version 3);

- an employee can be a clerk or a worker, or both (version 4).

6.4 Derive from these schemas other schemas (versions 1-1, 2-1, etc) which
make explicit all the properties of each entity type by showing the effect
of the inheritance mechanism.

6.5 Let us consider the schemas PERSONNEL (versions 1, 2, 3, 4). For each
of them, derive another schema (versions 1-2, 2-2, etc) in which the �
�
� relation has been eliminated. Proceed as follows:
����������������
	�� ��� !�"�#����������� ����������

6-24 "�

��C6������%���(
�%�&��� ��
�� ��3
	�& �%����%��
�&�	��&��
�$��&��	� ���
��$����
����
�
���	� ���
�
��&
��&�E

Take special care to all the derived integrity constraints.

6.6 Let us consider the schemas PERSONNEL (versions 1, 2, 3, 4). For each
of them, derive another schema (versions 1-3, 2-3, etc) in which the is-
a relation has been eliminated. Proceed as follows :

- propagate (by inheritance) all the properties of the supertype (attri-
butes, roles, constraints) to each of its subtype;

- remove the supertype.

Pay special attention to all the derived integrity constraints. Be aware
that employees who are neither clerks nor workers must be represented
anyway.

6.7 Let us consider the schemas PERSONNEL (versions 1, 2, 3, 4). For each
of them, derive another schema (versions 1-4, 2-4, etc) in which the is-
a relation has been eliminated. Proceed as follows :

- move all the properties of the subtypes to their supertype; for instan-
ce, the fact that all clerks have a function can be represented by an
optional attribute of EMPLOYEE;

- when all the properties have been pushed up to the supertype, remo-
ve the subtypes.

Take a special care to all the derived integrity constraints. The role of
an employee (clerk, worker, both or none) should be represented, e.g.,
through the new attribute Employee-type.

6.8 Can you put forward an opinion concerning these three techniques to
eliminate super-type/subtype relations? Some criteria: readability,
simplicity, conciseness, complexity of the additional integrity cons-
traints, easiness of translation into a relational database.

Do you think that some of these techniques are more fitted in some si-
tuations?

&�
�.The problem of is-a relation translation is complex, particularly
when the database is to be implemented into a standard DBMS (e.g., a
relational DBMS). It will be dealt with in a future lesson. Nevertheless,
the techniques illustrated in questions 6.5, 6.6 and 6.7 represent the
three standard families of representations.
���������� ����������������
	�� ��� !�"�#�����������

"�

��C6������%���(
�%�&��� ��
�� ��3 6-25
6.9 A relational schema includes two tables, A and B built by the following
SQL program (column domains are ignored) :

create table A (A1 not null, A2 not null, A3, A4,
 primary key (A1,A2))

create table B (B1 not null, B2, B3, B4,
 primary key (B1),
 foreign key (B3,B4) references A))

Represent these structures by a logical schema (as in lesson 5).

Observe that the foreign key is optional. Ideally, two cases only are va-
lid: either both B3 and B4 are null, or both have a value, in which case
these values must match an A row. Represent this constraint in the lo-
gical schema.

Propose an equivalent conceptual schema.

6.10 Build an entity type PERSON with, a.o., the optional attributes
COUNTRY, AREA, LOCAL. Express the fact that these attributes are si-
multaneously null or valued. Make a compound attribute from them
and name it TELEPHONE.

6.11 Add to PERSON the mandatory attribute ADDRESS, made of (NUMBER,
STREET and CITY); CITY is in turn a compound attribute comprising
ZIP-CODE and CITY-NAME.

- Disaggregate these attributes.

- Make ADDRESS optional then apply the same manipulations.

- Starting from these resulting flat structures, try to go back to the nes-
ted structures (#��� : if needed define a group [without function] be-
fore executing the aggregation of attributes).

6.12 Consider once again the entity type PERSON. Add two entity types, na-
mely COMPANY and ADMINISTRATION. A person can work in a
company (where (s)he receives a salary), in an administration (where
(s)he has a level) or is unemployed (in which case (s)he receives an
unemployment allowance). Add the necessary attributes and/or rela-
tionship type to represent these facts. Without resorting to �
�� rela-
tions, add the group constraints expressing the following situations :

- a person must either be in a company, or in an administration or
unemployed, but only in one of these situations;
����������������
	�� ��� !�"�#����������� ����������

6-26 "�

��C6������%���(
�%�&��� ��
�� ��3
- a person can either be in a company, or in an administration or unem-
ployed, or nothing at all, but only in one of these situations;

- a person must be in a company, or in an administration or unem-
ployed, or in more than one of these situations;

- a person can be in a company, or in an administration or unem-
ployed, in more than one of these situations, or in none of them.

Now, try to express these application domains through is-a relations.
What is your opinion when you compare both expressions?
���������� ����������������
	�� ��� !�"�#�����������

�

$������)

"��	�����������&�
��*�+

�����

��

8��	
���������.�
��"(
This is the first of a series of lessons dedicated to the analysis and
the design of a database. They will describe, through the solving
of a representatigve case study, how informal users requirements
can be translated into a relational database in a systematic way.
While the procedure basically is tool independent, we will see
that using a CASE tool such as DB-MAIN can help, even for
small projects.

8��	
�
�
��������
This lesson presents the application domain to be described, and
builds the first part of its conceptual schema. It will also intro-
duce the reader to the concept of schema transformation.
����������������
	�� ��� !�"�#����������� ����������

7-2 "�

��F6�(
�%�&��� ���� �
�
�:4;
)�� 6
 �	�
(������������������

Through the first six lessons, we have mainly discussed the different cons-
tructs that make up a database schema, both at the conceptual and logical le-
vels. In addition, we have learned how such schemas can be represented,
entered, viewed, manipulated and managed in the DB-MAIN CASE tool.
These lessons basically were of a descriptive nature, though the exercises
should have given you the opportunity to practice these concepts more acti-
vely.

Now it is time to tackle the problems related to the analysis and design of an
actual database. Of course, it is out of question to try to address the develop-
ment of a large scale system, such as those that are developed in companies.
Instead, we will propose to build a realistic database related to a part of a small
organization, i.e., a small library.

*������������������
�������+

The final objective of this series of lessons is to introduce the novice developer
to the principles of database analysis and design. However, for obvious moti-
vation reasons, we have chosen to start with practicing these activities, and to
conclude with the systematic description of the methodological principles.
Lessons 7 and 8 will be dedicated to conceptual analysis and design of the li-
brary database, lesson 9 to 11 will develop its logical design and lesson 12 its
physical design. Other volumes will address more sophisticated aspects of da-
tabases engineering.

)�� "��	�����������&�
���������
��

We will follow a simple procedure which applies elegantly to problems for
which we are provided with a semi-formal textual description. Such a descrip-
tion consists in factual sentences describing the application domain (i.e., the
problem to solve or the system to describe) in terms of its concepts, of their
properties and of their organizing rules. In other words, such a text can be in-
terpreted as a linguistic expression of the future conceptual schema.

We will decompose this text, and somewhat rework it, in order to obtain a list
of elementary propositions that are easy to interpret and to translate into Enti-
ty-relationship constructs.
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-3
Of course, this text may include some flaws, such as redundencies and conflic-
ting information, and can lack some important information as well. Conse-
quently, we may be forced to ask people from the application domain for
additional information.

You should be aware that, in actual situations, many other sources of informa-
tion can be used to contribute to the conceptual analysis. Let us mention ad-
ministrative and legal documents, observation of working procedures, forms
and other documents, screen layouts and printed reports, existing files and da-
tabases, existing programs. They may need more advanced techniques and
methods, and will be addressed in other volumes.

)�� ����	��������&

The problem that will be solved in the following lessons is to build a database
describing a small library organized by a consortium of companies.

A descriptive document is available. This document results from the interview
of the employees in charge of the management and storage of the books, advi-
sing and helping readers and borrowers, and managing the borrowings of
books. We assume that the employees can be contacted if needed.

The text of Figure 7.1 comprises the main excerpts of the interviews.

)�! ��������&�
�

This text will be decomposed into elementary sentences, each of them stating
an elementary fact about the application domain.

Each elementary sentence will be �����:�� in order to interpret the new facts
that it tells us. Then, if needed, ��

��� will be taken on the current schema to
integrate the knowledge extracted from this sentence.

At starting time, the current schema is empty.

To make the development more readable, we have organized the analysis into
specific sections, each dedicated to a major concept of the application domain.
This can be perceived as a bit artificial, since some concepts may appear
thanks to the contribution of several sentences scattered through the text.
����������������
	�� ��� !�"�#����������� ����������

7-4 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#"�$�The interview report.

�����"������	���������������������
�����������	
��������
���	��������
�	��
$#�������"������	� ���	
����	��	
��������
�
�������
����������� ����
��
�
����������
���"�����������	���	����
���
��
������
���
���������	���	���
������
���	���������
���

�������	���
����������������������	�����������
��
���"���
�������	�����

%�����������"��
�����������������&
����������
��	�	
������'��(���������
������������������������������#�	����"���#�����
�	�
��������	
��������%��
������������
�����
���
�������&
��������"	��	��������������
������
��	��	

������������������
����
�����
����������	��
��������	��������
����	�������
�
��������
����������������	����
���	
��������#��
�����
�������������)
����
������
��
��	����		�
���������	���	��#��
���#��
�����

�
��
��	���
�

�����������
���#��
����������������)	�����
��	��
�����������������#�	����"
������#���������	
�	
���������#��
�����������"���������������
���*��
����
������������
�
���	����
��������	��
��	������������
����������������
���	��������
����������	������	���
��	��������	
��	�
�����
�
��

�����

������������"�������	�����������
�	�����	���	������	��������
��
����	�*�
��	��������������������������	�
������"��������

�	����%��
������

�������	���
���	�������"	��	��������������������
�
��
�
��
�

�����������#��
��������	������	������
�	�������

��
�������

�
��	
�����	�
������
���������	�����������+	���
����

�����������"��"	��	
���
������������������������

���������	���������������
�����#�	���
�������������������,������������
���	
����������������	����������������������������
���	�����
�������
�	����

������������	�������
��������	����
���
��*���������	����
��	��������
��������
������	��	
�������������������������)	�����
��	�����	���������
����	
�� �	�
���� ��������� ����� ��� �����	������ ����
��� �������� ��	���
��	
��
����	�
��������������������������	����������������-��
�����	
�����
����
��
�
�����

����������
���	
��	����������.��	��������������
��
����"�
�

������"��
��������������������
����������	���	�����
��	��	�
��������/
�������	����
����
���	
���
�������������	�����-��
��
��	�
������������

�	������"�
�������������
�����
���
����
�
����	�����
�������
������
����
�	��
������
��	�����
��
��
���	�����#������������	������
����������	�����
�	���
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-5
)�# 4����
���$������)

We execute DB-MAIN and we create a new project called concep-7, throu-
gh command
�� / &�' ������
.

)�' 4����
�����������&�
�

We create a new schema called LIBRARY with a version label Conceptual.

For each sentence, we proceed to an analysis phase (8�����
�) then we update
the current schema (8�

��). As already said, we have organized the discus-
sion in homogeneous sections.

)�) ����
����

�(� �����"������	���������������������
�����������	
��������
���	��������
�	��

�
������,�this proposition puts forward the (probably) central concept of
book. In addition, the fragment "�����	��������������������������
�	�"
can be interpreted in two ways (Figure 7.2):

1. as the definition of the concept of book;

2. as the specification of three categories of books.

�����
,�we create a new entity type with name BOOK. According to the
interpretation chosen, we create, or not, three subtypes, as illustrated
below. In the following, we will adopt the simplest version, i.e., the
left-hand side one. The sentence 0�����������
�����������	
��������
���	��
�������
�	�0 is entered in the semantic description of BOOK.

We could add an attribute that define the category of the book. Howe-
ver, we will ignore it unless the rest of the text mentions it again.
����������������
	�� ��� !�"�#����������� ����������

7-6 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#(�$�Two views of the concept of book.

�1� $#�������"������	����	
����	��	
�����

�
������,�this is a mere property of the books.

�����
,�we add an attribute called BOOK-ID. We declare it the primary
id of BOOK (Figure 7.3).

�2� ��
�
���

�
������,�property of books.

�����
,�we add the attribute TITLE (Figure 7.3).

�3� ���
��������

�
������,�at first glance, a property of books. However, we could have
interpreted this proposition as the existence of a major concept of the
application domain.

�����
,�we choose the simplest interpretation, and we add the attribute
PUBLISHER to BOOK. Later on the concept of publisher may appear
essential; in this case we will transform this attribute into an entity
type (Figure 7.3).

�4� ������
��
����������
��

�
������,�obviously a property of books.

�����
,�we add the attribute DATE-PUBLISHED to BOOK (Figure 7.3).

T

TECHNICAL-BOOKSCIENTIFIC-BOOKLITERARY-BOOK

BOOK

BOOK
	
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-7
�5� "���������

�
������,�depending on whether bibliographic retrieval is considered im-
portant or not, the concept of key word will be perceived as a major
one, or as a mere property of books.

�����
,�without any other information, we choose the minimal interpre-
tation, and we define the attribute KEY-WORD of BOOK. Should the
concept become more important in the future, we will transform this
attribute into an entity type.

This attribute is obviously optional and multivalued. By further dis-
cussing with the employees, we are told that ten key words is an abso-
lute maximum. Hence the cardinality [0-10] (Figure 7.3).

�6� �	���	����
���

�
������,�a property of books.

�����
,�we add the attribute ABSTRACT to BOOK (Figure 7.3).

�7� �
������
���
���������	���	������

�
������,�the abstract is optional.

�����
,�the cardinality is set to [0-1] (Figure 7.3).

�8� �
���

����	�����

�
������,�the author names can be understood either as a multiple proper-
ty of books, or as an important concept of the application domain.

�����
,� we choose to represent them by the multivalued attribute
AUTHOR of BOOK. The cardinality is undefined, so let us set it to [0-
N].

 The resulting schema then appears as in Figure 7.3.
����������������
	�� ��� !�"�#����������� ����������

7-8 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#)�$�The first attributes of BOOK.

�('� �	���
����������������������	�����������
������"���
�������	�����

�
������,�we interpret this proposition as follows: a book can reference
an arbitrary number of other books, and any book can be referenced
by other books. We can translate this by a cyclic relationship type.

�����
,�we define the relationship type BIBLIO-REF. One of the roles
is named ORIGIN (the book which includes the reference) while the
other one is named REFERENCE (the book which appears as a refe-
rence in the former one). Both cardinalities are [0-N] (Figure 7.4).

�	���.#+�$�Books can be the origin of references to other books.

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
id: Book-ID

0-N
reference

0-N
origin

reference

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
id: Book-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-9
)�, ����	��
��

�((� %�����������"��
�����������������&
����������
��	�	
������'��(�������
��������������

�
������,�at this stage, it is still unclear whether the concept of copy is
important in the application domain. At least, the number of copies
must be known.

�����
,�wait and see.

�(1� ������������������#�	����"���#�����
�	�
��������	
������

�
������,�obviously, more must be recorded about the copies. The list of
serial numbers is a good candidate.

�����
,�we define a new attribute SER-NUMBER of BOOK. Since the
exact number of copies is unknown, we set the cardinality to [0-N]
(Figure 7.5).

�	���.#,�$�The copies of a book have distinct serial numbers.

�(2� %���������������
�����
���
�������&
��������"	��	�

�
������,�now, there is too much information about copies to keep them
as a mere property of books. We propose to include the copies among
the main concepts of the application domain (not very surprising in-
deed). The date will become a specific property of this concept.

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
Serial-Number[0-N]
id: Book-ID
����������������
	�� ��� !�"�#����������� ����������

7-10 "�

��F6�(
�%�&��� ���� �
�
�:4;
�����
,�the first thing to do is to define an entity type representing the co-
pies. There are two possible ways to do so.

The ��	
� one consists in deleting the attribute SER-NUMBER[0-N]
and in creating a new entity type COPY with the attributes SER-NUM-
BER and DATE-ACQUIRED.

The
�%
�� one is much more elegant, and allows us to illustrate a new
way of reasoning when building a conceptual schema incrementally:
namely
%������	��
�
	����
�.

Let us select the attribute SER-NUMBER (by clicking on its name),
and let us promote it to the entity type status. We call the function
�����4��� / 8

�
�	
� / $@ 6�

�
���. We choose the ��
���%��	��
&	�
������
� technique, that will be discussed later on. This transfor-
mation replaces the selected attribute with an entity type. We choose
the name COPY for the entity type, and the name of for the rela-
tionship type between BOOK and COPY.

The transformation can be represented as follows:

�	���.#-�$�Copies need to be represented by entity types.

⇔

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
Serial-Number[0-N]
id: Book-ID

1-1

0-N

of

COPY
Serial-Number
id: of.BOOK

Serial-Number

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
id: Book-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-11
Before going on, we have to discuss in further detail the notion of
%����
�	��
�
	����
�, which was already introduced in Lesson 6 (Section 6.6).

First of all let us convince ourself that both schemas are strictly equivalent as
far as their information contents are concerned. Can we imagine a situation
described by one of these schemas which cannot be described by the other
one? A book without copies? A book with 419 copies? Several books which
have each a copy with sequence number 14? A book with copies identified by
numbers 1, 3, 4, 18, 24? Note in particular that none allow two copies of the
same book to have the same number. It is possible to prove that these schemas
are equivalent in any circumstance, but relying on our intuition will suffice for
now1.

Though this specific transformation will be described in further detail at the
end of this lesson (see the ��������), we will give some indications which
may be necessary to understand its application in the current situation.

It is intended to replace an attribute with an equivalent entity type. Two tech-
niques are proposed, namely ��
���%��	�&	�
������
� and 5� ���	�&	�
�����
��
�.

Through the ��
���%��	�&	�
������
� technique, each instance of the attribute
SER-NUMBER is represented by an individual COPY entity. For instance, if
2627 books have a copy with number 5, there will be 2627 COPY entities with
SER-NUMBER value 5. Consequently, SER-NUMBER is in no way the iden-
tifier of COPY, but it is a component of its identifier. In addition, the rel-type
of is
����
�����.

With the 5� ���	�&	�
������
� technique, each distinct value of SER-NUM-
BER is represented by an individual COPY entity. For instance, in the situation
described above, there will be only 1 COPY entity with SER-NUMBER value
5. SER-NUMBER is the identifier of COPY. of is now ������
�����. Of
course, such an entity type has no particular meaning in this situation; therefo-
re, we have chosen the ��
���%��	�&	�
������
� technique.

Finally, let us observe that there exists another transformation through which
we can go back to the initial schema: transforming an entity type (at least some
kind of entity types) into an attribute. To experiment this, we select the entity
type COPY we have just produced and we call the command �����4��� / 6�$

1. This transformation, and some others, have been defined in the reference: Hainaut, J-L,
+������3���	����3��	��
�
	����
�
� �
	�+������	� ���
�
��&�)%����
, in Proc. of the 10th
Int. Conf. on the ER Approach (San Mateo, 1991), North-Holland, 1992.
����������������
	�� ��� !�"�#����������� ����������

7-12 "�

��F6�(
�%�&��� ���� �
�
�:4;

�
��� / $@ 8

�
�	
�. The final schema is the same as the starting one,
which should not be so surprising.

Now we can introduce the date the copy was acquired: we add the attribute
DATE-ACQUIRED to entity type COPY (Figure 7.7).

�(3� ������������
������
��	��	�
����������

�
������,�a property of the copies.

�����
,�add the attribute LOCATION to entity type COPY (Figure 7.7).

�(4� �������
����
�����
����������	��
��������	��������
����	���������
������

�
������,�this is a definition of what is the location of the copy.

�����
,� we make LOCATION a compound attribute with components
STORE, SHELF and ROW (Figure 7.7).

�(5� �
����������������	���

�
������,�are borrowers an essential concept in this application domain,
or are they a property of copies only? Waiting for further information,
we decide to represent the borrower of each copy by an attribute. This
attribute is optional (some copies only are borrowed at a given time)
and single-valued (a copy is borrowed only once at a time).

�����
,�we add a new attribute (BORROWER[0-1]) to entity type COPY
(Figure 7.7).

�(6�
���	
��������#��
�����
�����������

�
������,�the problem seems to be the same as for the copies of a book:
do we represent the number of volumes (as an integer) or each volume
individually (as a multivalued attribute or even as an entity type)? We
choose the first representation. A second question: have all the copies
of a given book the same number of volumes? If they have, it is best
to associate the attribute to BOOK instead of to COPY. Following the
text (but we should be ready to change our mind), we associate the at-
tribute to COPY.

�����
,�we add the attribute NBR-OF-VOLUMES to COPY (Figure 7.7).
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-13
�(7�)
���������
��
��	����		�
���������	���	��#��
���#��
�����

�
��
��	�
�
�
������������
���#��
��������������

�
������,�this rule indicates that there is no need to represent each volume
individually.

�����
,�none.

�(8�)	�����
��	��
�����������������#�	����"�������#���������	
�	
��������
#��
����

�
������,�this is a confirmation that the number of volumes characterizes
the copies and not the books.

�����
,�none.

�1'� �����"���������������
���*�������
������������
�
���	����
��������	�

��	������������
��������������������	��������
��������

�
������,�apparently a property of books. However, this is not realistic:
the physical state is a property of the physical objects, i.e., copies.
Some copies of a book can be in good condition, while others can be
severely damaged. Therefore, book must be understood as copy ins-
tead.

�����
,�we add the attribute STATE to entity type COPY. Its domain of
value is made of individual characters (Figure 7.7).

�1(� �	������	���
��	��������	
��	�
�����
�
��

�
������,�an optional property of copies.

�����
,�we add an optional attribute (STATE-COMMENT) to COPY.

Finally, the schema appears as in Figure 7.7.
����������������
	�� ��� !�"�#����������� ����������

7-14 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#.�$�COPY has some new attributes.

)�- �����������

�11� �����

������������"�������	����

�
������,�this does not change our first perception. It just precises the
kind of information conveyed by the attribute Author of BOOK.

�����
,�we can adjust the type of values of Author so that it can repre-
sent author names.

�12� ������
�	����

�
������,�the name of the authors is extended. We could make Author
a compound attribute (with components Name and First-Name).
We could also propose to represent authors by a specific entity type.
We choose the first structure.

0-N

1-1

of

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Borrower[0-1]
Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BOOK
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-15
�����
,�we select the attribute Author, and we give it a component
through command &�' / 8

�
�	
� /
��
 �

. In this way, we add a
first component to Author, which automatically becomes com-
pound. This new attribute is named Name. Then we create an addi-
tional attribute by clicking on the Next att. button in the Attribute box
of Name. We call this new attribute First-Name.

The structure of BOOK is shown in (Figure 7.8):

�	���.#1�$�Details are obtained on the authors of books.

�13� �	���	������	��������
�������	�*�
��	��������������������������	�
��
���"��������

�	���

�
������,�OK, there is a little too much information for a compound attri-
bute. We must represent authors by an entity type. Then we will re-
present the origin of the authors.

�����
,� since the authors already are represented as components of
BOOK, we will choose the transformational approach (in the same way
as for defining copies from books).

We select the attribute AUTHOR, and we call the command �����$
4��� / 8

�
�	
� / $@ 6�

��
���. Do we need to represent each ins-
tance of AUTHOR, or each distinct value of AUTHOR? In other words,
if "Hugo, Victor" is the author of 6 books (in this library), do we re-
present him by 6 AUTHOR entities, or by one only? Obviously the
answer is one only. It seems best to represent each author by one and

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]

Name
First-Name

id: Book-ID
����������������
	�� ��� !�"�#����������� ����������

7-16 "�

��F6�(
�%�&��� ���� �
�
�:4;
only one AUTHOR entity. Therefore, we must choose the 5� ���	�&	��

������
� technique. The result is in Figure 7.9.

�	���.#2�$�Due to additional information on authors, it is best to represent
them by entity type AUTHOR. Technically, the attributes of AUTHOR form its
identifier. To be confirmed.

We can then add the attribute Origin to AUTHOR (Figure 7.10).

�14� %���������

�������	���
���	�������"	��	�

�
������,�we are told that First-Name, Birth-Date and Origin
are optional attributes.

�����
,�we set their cardinality to [0-1]. The result is not quite correct,
since the primary identifier now include an optional component. To
be checked later on (Figure 7.10).

�15� ������������������
�
��
�
����

�����������#��
��������	������	�
����
�	�������

��
�������

�
��	������	�
������
���������	����������

�
������,�this is a conflicting information. To be honest, since this was
produced by the transformation, we have taken for granted that (1) all
the Author values of a BOOK entity were distinct, and (2) two
authors must have distinct name and first name. Hence the identifier
of AUTHOR. We learn here that there is no known way to uniquely
characterized the authors. We have to remove the primary identifier
of AUTHOR.

1-N0-N written

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
id: Book-ID

AUTHOR
Name
First-Name
id’: Name

First-Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-17
�����
,�we select the identifier of AUTHOR (by clicking on its declara-
tion), and we delete it by pressing the Delete key (Figure 7.10).

�16� +	���
����

�����������"��"	��	����
������������������������

�
������,�every author has written at least one book. This confirms the
[1-N] cardinality of the role AUTHOR in written.

�����
,�none.

�	���.#"3�$�New attributes of AUTHOR. In fact, AUTHOR has no formal
identifier.

)��. ����	��������	����

It is a good time to close this lesson. Of course, the analysis is far from fi-
nished, but we will leave its completion to the next lesson. Before quitting, let
us just have a look to the current state of the schema (Figure 7.11).

)��� ;�
��
�������������

We save the current project through
�� / ���� ������
 under the name con-
cep-7 and we quit DB-MAIN.

0-N 1-Nwritten

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
id: Book-ID

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

7-18 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#""�$�The final schema - First version.

1-N0-N written

0-N
reference

0-N
origin

reference

0-N

1-1

of

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Borrower[0-1]
Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BOOK
Book-ID
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
id: Book-ID

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-19
��	��
	�����������

In this lesson, we have been faced with the problem of replacing an attribute
with an entity type, particularly when a concept was represented with an attri-
bute, then happened to have more properties than earlier thought, or should be
linked with other concepts.

This replacement operation, called a
����4����

��, is an important tool in
database engineering. It deserve to be discussed in more technical detail,
which is the aim of this addendum.

)��� ������������
�

����	���
������������
��

We will avoid a formal analysis of this technique. Rather, we will present
some important examples of application.

The reader is invited to learn from these examples the principles of the main
variants of the attribute/entity type transformation. Anyway, the DB-MAIN
tool itself will prove the best companion when you want to practice this tech-
nique. So, try by yourself on your own examples.

The transformation that will be analyzed has an interesting property: it is ��$
���

��$�������
��, i.e., the resulting schema has exactly (no more, no less)
the same information contents as the source schema. One essential conse-
quence of this equivalence is that any semantics-preserving transformation has
an inverse with which we could transform the resulting schema into the source
schema.

Though the ���	�$�������������&� transformation is semantics-preserving, and
therefore can be read both way, the following examples have been prepared to
be interpreted from left to right. In other words, we present them as ���	�$���
�
����������&� transformations. Reading them from right to left gives interes-
ting hints on how to 	���%��������������&�����
�����	�����	�$��� without loss of
information.

�������
����
����$���	��������
�����

�
�	
��

In the first examples, we transform a single-valued, mandatory, attribute (NA-
ME) into an entity type. First, we apply the 5� ���	�&	�
������
� technique.
The entity type NAME represents a dictionary of all the names corresponding
����������������
	�� ��� !�"�#����������� ����������

7-20 "�

��F6�(
�%�&��� ���� �
�
�:4;
to at least one person. Each name is represented once and only once. The re-
lationship type of is
����
����� (Figure 7.12).

�	���.#"(�$�Extracting attribute Name as an entity type through 9��
��������
��	
�
��	.

Then, we apply the ��
���%�� 	�&	�
������
� technique. Each NAME-OF-
PERS entity represents the NAME instance of one PERSON entity. Each name
can be represented more than once. The relationship type of is
����
�
��,
and NAME-PERS has no identifier (in fact, PERSON is an implicit identifier
of it, since a person has only one NAME entity) (Figure 7.13).

�������
����
����$���	�����

������

�
�	
��
In the following example, we transform a single-valued, optional, attribute
(MAIDEN-NAME) into an entity type. We apply the 5� ��� 	�&	�
������
�
technique; experiment the other one by yourself. The discussion is the same
as for NAME, except that the attribute MAIDEN-NAME (left), and the rela-
tionship type of (right) both are optional (Figure 7.14).

⇔

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-N

1-1

of

PERSON
PID
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

NAME
Name
id: Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-21

�	���.#")�$�Extracting attribute Name as an entity type through)	�
�	������
�����	
�
��	.

�	���.#"+�$�Extracting attribute Maiden-Name as an entity type through 9��
�
���������	
�
��	.

⇔

⇔

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-1

1-1

of

PERSON
PID
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

NAME-OF-PERS
Name

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-N

0-1

of

PERSON
PID
Name
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

MAIDEN-NAME
Maiden-Name
id: Maiden-Name
����������������
	�� ��� !�"�#����������� ����������

7-22 "�

��F6�(
�%�&��� ���� �
�
�:4;
�������
����	�

���	����

�
�	
��

Let us now process a multivalued attribute (CHR-NAME[0-5]). First, we ap-
ply the 5� ���	�&	�
������
� technique. The entity type CHR-NAME repre-
sents a dictionary of all the christian names corresponding to at least one
person. Each christian name is represented once and only once. The rela-
tionship type of is ������
����� (Figure 7.15).

�	���.#",�$�Extracting attribute Chr-Name as an entity type through 9��
�
�������	
�
��	.

Then we apply the ��
���%��	�&	�
������
� technique. The entity type CHR-
NAME-OF-PERS does not represent a dictionary, but collects all the CHR-
NAME values of all the PERSON entities. There are as many CHR-NAME-OF-
PERS with value "��	��" as there are persons with this christian name. The
relationship type of is
����
����� (Figure 7.16).

⇔

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-N

0-5

of

PERSON
PID
Name
Maiden-Name[0-1]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

CHR-NAME
Chr-Name
id: Chr-Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-23

�	���.#"-�$�Extracting attribute Chr-Name as an entity type through)	�
�	��
�������	
�
��	.

�������
��������	����

�
�	
��

When the attribute to process is compound, the transformation also proceeds
to its further decomposition, as it is the case for ADDRESS. In this example,
we have chosen the 5� ���	�&	�
������
� technique (Figure 7.17). Can you
guess what would have been the result with the ��
���%��	�&	�
������
� tech-
nique?

�������
���
���

4
����

�
�	
��
The next example concerns an attribute defined as an identifier of PERSON
(Pers-File-Nbr). Applying either technique (5� �� or ��
���%��	�&	��

������
�) gives the same result (why?) (Figure 7.18). Observe that, in both
schemas, Pers-File-Nbr can be used to uniquely designate a PERSON en-
tity, either directly (left) or indirectly (right).

⇔

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-1

0-5

of

PERSON
PID
Name
Maiden-Name[0-1]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

CHR-NAME-OF-PERS
Chr-Name
id: of.PERSON

Chr-Name
����������������
	�� ��� !�"�#����������� ����������

7-24 "�

��F6�(
�%�&��� ���� �
�
�:4;

�	���.#".�$�Extracting attribute Address as an entity type through 9��
�����
�����	
�
��	.

�	���.#"1�$�Extracting attribute Pers-File-Nbr as an entity type through 9��
�
��or)	�
�	����������	
�
��	.

⇔

⇔

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-N

1-1

of

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

ADDRESS
Number
Street
City
id: Number

Street
City

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

Pers-File-Nbr
id: PID
id’: Pers-File-Nbr

1-1

1-1

of

PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number
Street
City

id: PID

PERS-FILE
Pers-File-Nbr
id: Pers-File-Nbr
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-25
�������
�����������
���4����
���

4
��

Let us now examine how the transformation behaves when applied on a com-
ponent of an identifier (or of a group in general). In the example of Figure 7.19
(left), the identifier is made up of three components. Two of them are succes-
sively transformed into the entity types SUPPLIER and PRODUCT. The iden-
tifier has been modified accordingly.

These three schemas conveys exactly the same semantics, though through dif-
ferent presentations.

�	���.#"2�$�Evolution of an identifier when its components are transformed
into entity types.

����
�����

�
�	
��
����4����

���
The last example shows that combining several transformations can lead to
new techniques. Let us consider once again the coexistence constraint dis-
cussed in Lesson 6. To get a better feeling of what this constraint exactly
means, we gave an equivalent structure: an optional compound attribute, na-
mely Marriage. Now, let us apply the ���	�$����+��������&� transformation
to this compound attribute. We get a third schema (in fact two schemas, ac-
cording to the technique chosen), which is strictly equivalent to the first one.

⇔ ⇔

SALES
Supplier
Product
Date
Qty
id: Supplier

Product
Date

1-N

1-1

by

SUPPLIER
Supplier
id: Supplier

SALES
Product
Date
Qty
id: by.SUPPLIER

Product
Date

1-N

1-1

of

1-1

1-N

by

SUPPLIER
Supplier
id: Supplier

SALES
Date
Qty
id: of.PRODUCT

by.SUPPLIER
Date

PRODUCT
Product
id: Product
����������������
	�� ��� !�"�#����������� ����������

7-26 "�

��F6�(
�%�&��� ���� �
�
�:4;
Therefore, we can consider a new transformation2 which replaces a coexisten-
ce group by an entity type. It can be illustrated as follows:

�	���.#(3�$�Transformation of a coexistence constraint

2. In this composed transformation, we have chosen the ��
���%��	�&	�
������
� technique.
Can you justify this choice?

⇔

PERSON
PID
Name
Spouse-Name[0-1]
Date-Married[0-1]
id: PID
coex: Spouse-Name

Date-Married

1-1

0-1 of

PERSON
PID
Name
id: PID

MARRIAGE
Spouse-Name
Date-Married
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-27
4�����&����$������)

In this lesson, we have studied no new notions.

However, we have learned how

- to build a conceptual schema incrementally

- to transform an atomic attribute into a compound attribute by giving it a
first component &�' / 8

�
�	
� /
��
��

#

- to transform an attribute into an entity type

�����4��� / 8

�
�	
� / $@ 6�

�
���

- to transform an entity type into an attribute

�����4��� / 6�

�
��� / $@ 8

�
�	
�

90��	
��������$������)

7.1 Consider the following schema. Propose another �A	
�����
 schema in which
the coexistence constraint does not appear.

�
��: the eraser cannot be considered a semantics-preserving transformation!

7.2 You find the following schema a bit too complex. Therefore, you propose to
integrate CITY into CUSTOMER as an attribute. Try to do this through the�+��

0-11-N of

CUSTOMER
C-Nbr
Name
Amount[0-1]
id: C-Nbr
coex: of.ACCOUNT

Amount

ACCOUNT
Acc-Nbr
id: Acc-Nbr
����������������
	�� ��� !�"�#����������� ����������

7-28 "�

��F6�(
�%�&��� ���� �
�
�:4;
����� ��&�����	�$��� transformation. Can you explain the behaviour of DB-
MAIN?

7.3 Suppose that, so far, the analysis has led to the following schema.

Add the constructs which represent these facts:
"%����������
��������	�����������"	���
���&
�	
�
�����������������������������
���
���*������
����������
���
�
��������$��������
�
�������
	�
����������	����
�	����&
�	
�
���	���	����$�����
�
����������	�������	������	���	���������
)	�����#�	��������
���������	��
�����
�������������	��
������������
�
0.

7.4 A first analysis has produced the following schema. We want to build simple
schemas only, i.e., schemas without compound attributes. Suggest an equiva-
lent schema which satisfies this constraint. First, use ���	�$����+����� ��&�
transformations only.

Then, try another solution by allowing also the disaggregation transformation
(�����4��� / 8

�
�	
� / �
��������

��). Which do you prefer? Why?

1-10-N of

CUSTOMER
C-Nbr
Name
id: C-Nbr

CITY
City-Name
id: City-Name

ORDER
Ord-Nbr
Ord-Date
Detail[1-10]

Pro-Nbr
id: Ord-Nbr
���������� ����������������
	�� ��� !�"�#�����������

"�

��F6�(
�%�&��� ���� �
�
�:4; 7-29
7.5 Your colleague thinks that these two schemas are equivalent. Do you agree
with her?

7.6 Consider the following schema. One claims that it is equivalent to those of Fi-
gure 7.19. True or false? You could be wise to explore the transformation
toolkit of DB-MAIN.

B
C

PRODUCT
Pro-Nbr
Description
Sales[1-100]

Date
Salesman

S-Name
Address

Street
City

id: Pro-Nbr

1-1 1-Nin

1-1

1-N

of

CITY
City-Name
id: City-Name

CUSTOMER
CID
Name
Statistics[0-20]

Supplier
Product
Date

id: CID

ADDRESS
Number
Street
id: in.CITY

Number
Street

1-N

1-1

by

1-1

0-20

for

Supplier
Supplier
id: Supplier

Statistics
Product
Date
id: by.Supplier

for.CUSTOMER
Product
Date

CUSTOMER
CID
Name
Address

Number
Street
City-Name

id: CID
����������������
	�� ��� !�"�#����������� ����������

7-30 "�

��F6�(
�%�&��� ���� �
�
�:4;
7.7 Let us go back to entity type COPY (Figure 7.11). We assume that attribute
State is optional, and that State-Comment only exists if State has a va-
lue. In other words, the valid patterns are the following:

- State is void and State-Comment is void,

- State is not void and State-Comment is void,

- State is not void and State-Comment is not void.

Modify the structure of entity type COPY to represent this property explicitly.

1-N 1-N

SALES
Date
Qty
id: PRODUCT

SUPPLIER
Date

SUPPLIER
Supplier
id: Supplier

PRODUCT
Product
id: Product
���������� ����������������
	�� ��� !�"�#�����������

�

$������,

"��	�����������&�
��*�+

�����

��

Through this lesson, we will complete the analysis and design of
the conceptual schema we initiated in Lesson 7. We will also go
on discussing the important ���	�$����+����� ��&� schema trans-
formation.
����������������
	�� ��� !�"�#����������� ����������

8-2 "�

��G6�(
�%�&��� ���� �
�
�:�;
,�� 4����
���$������,

We start DB-MAIN and we open the project concept-7.lun. We imme-
diately change the name of the project to Concept-8 and save it as con-
cept-8

,�� ��������&�
�

Let us remind the procedure followed so far: the text is decomposed into ele-
mentary sentences, each of them stating an elementary fact about the applica-
tion domain. If this fact seems to be new, it is introduced in the current
conceptual schema as new constructs, or as a modification of some parts of the
schema.

,�� ����
����3���

�17� ���������	�����������������������#�	���
�����������������

�
������,�so far, facts about the borrowings are represented by the optio-
nal attribute BORROWER of COPY. This sentence tell us more about
the fact that a copy was borrowed by a borrower: this fact occurred on
a given date. This information is about the action of borrowing itself,
so we should make this action explicit, for instance as a relationship
type

Being said in passing, have you observed that nouns often are repre-
sented by entity types - or attributes - and verbs by relationship types?

�����
,�Since we know that $
		
2�	
�$
		
2�%
&��
, we first represent
borrowers by an entity type (BORROWER), by transforming the attri-
bute Borrower into an entity type. We select this attribute, then we
execute command �����4��� / 8

�
�	
� / $@�6�

�
���. We give
the entity type the name BORROWER, and the attribute the name, say,
Borrower-ID. The rel-type will be named borrowed.
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-3

�	���1#"�$�Borrowers are explicitly represented by entity type BORROWER

Let us observe the cardinality [1-N] of BORROWER. It results from
the fact that the left-side schema does not allow representing bor-
rowers independently of their copies. Consequently, the right-hand
schema does not represent borrowers without copies [�-N] either.
The transformation normally ensures the strict equivalence of both left
and right side schemas, and cannot introduce new constructs or modi-
fy the properties of the source schema. However, we could find more
interesting to represent borrowers even when they currently borrow no
books. Therefore, we change the cardinality into [4-N].

Now, at last, we can represent the borrowing date by adding the attri-
bute Borrow-Date to the rel-type borrowed (Figure 8.2)

�18� ,����������������	
����������������	�������

�
������,�what we have called Borrower-ID, the identifying property
of borrowers, is nothing else than their Pid.

�����
,�we change the name of attribute Borrower-ID into Pid (Fi-
gure 8.2).

⇔

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Borrower[0-1]
Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

0-1

1-N

borrowed

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Borrower-ID
id: Borrower-ID
����������������
	�� ��� !�"�#����������� ����������

8-4 "�

��G6�(
�%�&��� ���� �
�
�:�;

�	���1#(�$�Recording the borrowing date.

�2'� ��������������������
���	�����:����������������������;

�
������,�each borrower has a name.

�����
,�we add attribute Name to BORROWER.

�2(�
�������
�	����

�
������,�they each have a first name as well.

�����
,�we add the attribute First-Name.

�21�
����������

�
������,�... and an address.

�����
,� we add the attribute Address.

�22� �	�������
��������	����
���
��*���������	����
��	�����

�
������,� this address comprises the name of the company of the bor-
rower, the street name, as well as the zip-code and the city name.

�����
,�we make Address a compound attribute as follows. We open
the Attribute box of Address, and we click on the button First att.,
which opens the box of the first component of Address. We enter

0-1 0-N
borrowed

Borrow-Date

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-5
the description of the attribute Company, then we click on Next att. to
add the other components: Street, Zip-Code and City.

�23� �����������
������	��	
������������������������

�
������,�a borrower can have several phone numbers. How many? The
text is vague on this, so that we could represent this fact by the attri-
bute Phone[0-N]. On the other hand we could try to precise the in-
formation by asking it to the clercks of the library. A short phone call
inform us that:

- ... a borrower MUST have a phone number, otherwise we cannot
contact him when needed;

- and how many such numbers can they have?

- any number, but I don’t remember any of them having more than
three or four.

- would you agree on a maximum of five?

- sure!

So: PHONE[1-5]!

�����
,�we add such an attribute (Figure 8.3).

�	���1#)�$�Representation of phone numbers.

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-Code
City

Phone[1-5]
id: Pid
����������������
	�� ��� !�"�#����������� ����������

8-6 "�

��G6�(
�%�&��� ���� �
�
�:�;
�24�)	�����
��	�����	��������������	
���	�
��������������������������	���
��������
�������������	������	
��
����	�
�����

�
������,�at first glance, this can be reworded as: each borrower can be
associated with another borrower (his responsible). Two questions:

1. can someone be responsible for more than one borrower?

2. has each borrower a responsible?

We suggest that the answers are YES and NO respectively, but the se-
cond question deserves being discussed a bit further. If each borrower
must have a responsible, then who will be the responsible of the first
borrower? Perhaps himself? Obviously not. According to the inten-
ded purpose, a responsible must be a different person. On the other
hand, the responsible for a given borrower may be unknown at the pre-
sent time. So we must state that each borrower %������� a responsible.

�����
,� we declare a cyclic,
����
����� relationship type named res-
ponsible-for. It has a [0-1] role named borrower (the bor-
rower) and a [0-N] role named responsible (the responsible).
Since the first role has the same name as the entity type, we decide not
to name it explicitly (Figure 8.4).

�	���1#+�$�Each borrower can be associated with another borrower, called
his responsible.

0-N
responsible

0-1

responsible-for

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-Code
City

Phone[1-5]
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-7
,�! �����3
����������� �	��

�25� ��������������������	����������������-��

�
������,�the information on the fact that a copy is borrowed is augmen-
ted by the project for which this copy has been borrowed.

�����
,�we add the attribute Project to the relationship type bor-
rowed (Figure 8.5).

�	���1#,�$�Introducing Projects as an attribute of rel-type borrowed.

�26� ����	
����������
��
�
�������

�
������,�each project has a name, and all project names are distincts.
This information does not contradict the current schema: the values of
attribute Project are project titles.

�����
,�none

�27� �����

����������
���	
��	���������

�
������,�now projects have several properties: they have names, they
have codes and they are involved in borrowed copies. This is a bit too
much to keep them as mere attributes. It would be better to make them
entities, characterized by their names and their codes. In addition, na-
mes and codes identify the projects.

�����
,�the first thing to do is to transform attribute Project into an at-
tribute: we select Project, then execute the command �����4��� /
8

�
�	
� /� $@ 6�

��
���. The attribute Project of entity type
PROJECT is renamed as Title (Figure 8.6) and we add a second at-
tribute Pcode. We define two identifiers, one made of Title and
the other made of Pcode. We suppose that the code is the preferred
identifier, so we make it the primary id of PROJECT.

0-N0-1
borrowed

Borrow-Date
Project

COPY BORROWER
����������������
	�� ��� !�"�#����������� ����������

8-8 "�

��G6�(
�%�&��� ���� �
�
�:�;

�	���1#-�$�Projects are represented through entity type PROJECT.

The transformation proposes the cardinality [1-N] for the role PRO-
JECT (this fact will be discussed in the Addendum of this lesson).
However we could find it better to change it into [0-N], allowing
projects to live without borrowings (Figure 8.7).

�	���1#.�$�Specifying the identifiers of PROJECT.

1-N

0-N

0-1
borrowed

Borrow-Date

PROJECT
Title
id: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid

0-1

0-N

0-N

borrowed
Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-9
,�# �����3
����
����&

�28� .��	��������������
��
����"�
��
������"��
��������������������
��
�������	���	�����
��	��	�
��������/�
����������	����
���
����
���	
����

���
�������������	��
������-��
<

�
������,�this sentence suggests that when a copy is brought back, some
information is recorded about the borrowing. The copy, the borrower,
the project and the borrowing date are known already. They are repre-
sented through the rel-type borrowed. The new information is the
closing date,which is the current date.

Therefore, we could add the attribute End-Date to borrowed. This
attribute is optional, since it has a value for closed borrowings and has
no value for current borrowings. However, this is not sufficient. The
cardinality [0-1] of COPY states that a copy can be borrowed only
once at a given instant. If BORROWED now represents both current
and closed borrowings, then we must admit that a given copy can have
been borrowed more than once, in the past and currently, so that we
must generalize the cardinality of COPY to [0-N].

Unfortunately, this question of cardinality still is a bit more complex.
Indeed, we should add the following constraint: if the attribute END-
DATE of a relationship BORROWED has no value, then this relationship
represents the fact that the copy is currently borrowed; this copy can-
not appear in another relationship with no End-Date value. This
constraint states that in the subset of the borrowed relationships
with no End-Date values, the cardinality of COPY is reduced to [0-
1]. Not really that simple! More on this later on.

�����
,�we add the optional attribute End-Date to borrowing (Figu-
re 8.8) ... and we keep the complex constraint on the cardinality of
COPY in our head (we could better write it in the SEM description of
the role)!
����������������
	�� ��� !�"�#����������� ����������

8-10 "�

��G6�(
�%�&��� ���� �
�
�:�;

�	���1#1�$�A copy can have one current borrowing (with no End-Date value)
but sveral closed boirrowings (with End-Date values).

�3'� ������
��	��
������������

��	������"�
�������������
�����
���
����
�
��
�	�����
�������
������
������	��
������
��	�����
��
��
���	�����#�������
����	������
����������	�������	�

�
������,� in short, a copy cannot be borrowed the day it was brought
back. This property is not as simple as those we encountered so far.
It tells us about time constraints related to sequences of events. Nor-
mally, such properties would require a richer model, allowing the re-
presentation of events, and of time constraints. However, we could try
to express it as follows:

��%
&����
��$��$
		
2���
���������2��%���
� ���	���������� ���
������
�����
�$����$	
�3���$�%9.

A possible translation could be: the Borrow-Date of the bor-
rowed relationship which concerns the COPY entity C, and which has
no End-Date value (i.e., the current borrowing of C), must be greater
than the greatest value of End-Date of all the borrowed rela-
tionships in which C appears (i.e., the closed borrowings of C).

From this constraint, several properties can be inferred. For instance:
all the borrowed relationships of a given COPY entity have distinct
Borrow-Date (or End-Date) values. This property is weaker

0-N

0-N

0-N

borrowed
Borrow-Date
End-Date[0-1]

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-11
than its origin, but is easier to express. Indeed, it can be expressed as
an identifier of borrowed comprising COPY and Borrow-Date.

Due to the limited scope of this volume, we will prefer the latter for-
mulation, despite the fact that it translates the true constraint only par-
tially, and should be considered a poor substitute for it.

�����
,�we declare this identifier of borrowed.

�	���1#2�$�Attempting to express the fact that copies can be borrowed only
the day after they were brought back.

�
��	��
��

This solution is worth being analysed a bit further. Indeed, the borrowed re-
lationship type is submitted to several complex constraints. Most of this com-
plexity comes from the fact that this rel-type represents two kinds of
borrowings, namely the current borrowings and the closed borrowings. In ad-
dition, these two classes of concepts have different behaviours and usage pro-
files:

- current borrowings have a short life, they appear then disappear in a few
weeks, while closed borrowings live much longer;

- current borrowings are created and deleted, while closed borrowing are
created but never deleted;

- most current borrowings are consulted several times, while the closed bor-
rowings are used very unfrequently (if any);

0-N

0-N

0-N

borrowed
Borrow-Date
End-Date[0-1]
id: COPY

Borrow-Date PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid
����������������
	�� ��� !�"�#����������� ����������

8-12 "�

��G6�(
�%�&��� ���� �
�
�:�;
- current borrowings are submitted to management functions, while the
closed borrowings are only used for statistical analysis;

- after a while, there are much more closed borrowings than current bor-
rowings.

All this suggests representing these two classes by two distinct relationship ty-
pes, one that represents the current borrowings, and the other representing the
closed borrowings. So, we go back to the former representation of current bor-
rowings (Figure 8.7), and we define a new relationship type, closed-bor-
rowing. To normalize the names, we give borrowed the new name
borrowing.

In this splitting, the complex identifier is associated with closed-bor-
rowing only. This weakens this constraint still more, but the result is fairly
easy to express (Figure 8.10).

�	���1#"3�$�Distinguishing current and closed borrowings.

,�' �����
�����	����

The schema can be considered as completed. It appears as in Figure 8.11.

0-1

0-N

0-N

borrowing
Borrow-Date

0-N

0-N

0-N

closed-borrowing
Borrow-Date
End-Date
id: COPY

Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-13

�	���1#""�$�The final schema.

We must verify that all the attributes have correct types and lengths. In addi-
tion, we should add to each object a description which can be represented by
a SEMantic description (button SEM in each property box). This material
could be made of excerpts from the text used to build the schema.

The textual extended version of the schema could appear in Figure 8.12.

1-N0-N written

0-1 0-N
responsible

responsible-for

0-N
origin

0-N
reference

reference

0-N

1-1

of

0-N

0-N

0-N

closed-borrowing
Borrow-Date
End-Date
id: COPY

Borrow-Date

0-1

0-N

0-N

borrowing
Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

8-14 "�

��G6�(
�%�&��� ���� �
�
�:�;
�
Schema LIBRARY/Conceptual / LIB [ST]

 AUTHOR / AUT [S]
Name char (30)
First-Name[0-1] char (30)
Origin[0-1] char (30) [S]

 BOOK / BOOK [S]
Book-ID numeric (6)
Title char (30)
Publisher char (40)
Date-Published date (6)
Key-Word[0-10] char (30) [S]
Abstract[0-1] char (80) [S]
id: Book-ID

 BORROWER / BER [S]
Pid char (6)
Name char (30)
First-Name char (30)
Address compound (124) [S]

Company char (40) [S]
Street char (40)
Zip-Code numeric (4)
City char (40)

Phone[1-5] numeric (10) [S]
 id: PID

 COPY / COPY [S]
Serial-Number numeric (6) [S]
Date-Acquired date (10)
Location compound (6) [S]

Store numeric (2)
Shelf numeric (2)
Row numeric (2)

Nbr-of-Volumes numeric (3) [S]
State char (10) [S]
State-Comment[0-1] char (80) [S]
id: of.BOOK, Ser-Number

 PROJECT / PRO [S]�
Pcode char (6)
Title char (30)
id: Pcode
id’: Title
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-15

�	���1#"(�$�The text expression of the final schema. The role clauses of en-
tity types have been removed for conciseness reasons.

,�) ;�
��
�������������

We save the current project under the name concept-8), and we quit DB-
MAIN.

 reference / REF [S] (
origin [0-N]: BOOK [S]
reference [0-N]: BOOK [S])

 borrowing / BING [S] (
[0-1]: COPY
[0-N]: BORROWER
[0-N]: PROJECT
Borrow-Date date (6))

 closed-borrowing / CLO [S] (
[0-N]: COPY
[0-N]: BORROWER
[0-N]: PROJECT
Borrow-Date date (6) [S]
End-Date date (6) [S])
id: BORROW-DATE, COPY

 of / OF [S] (
[0-N]: BOOK
[1-1]: COPY)

 responsible / RESP [S] (
[0-1]: BORROWER [S]
responsible [0-N]: BORROWER [S])

 written / WRIT [S] (
[1-N]: AUTHOR

[0-N]: BOOK)

��
����������������
	�� ��� !�"�#����������� ����������

8-16 "�

��G6�(
�%�&��� ���� �
�
�:�;
��	��
	�����������

,�, �
�	���
������������������
�

����	���
������������
���
*	���
����+

In this lesson, we have used an extended version of the transformation dis-
cussed in lesson 7 that processes rel-type attributes as well. This version is
worth being described by some representative applications.

Let us start with the following schema, expressing that products are manufac-
tured for markets by companies according to specified ratios. For simplicity,
each entity type has an identifying attribute which has been given the name of
the entity type. In actual situations, these attributes would have other names.

�	���1#")�$�A binary relationship type with attributes.

In the same way as we did with PROJECT in this lesson, we can extract the
COMPANY attribute to replace it by an equivalent entity type. We select this
attribute and we ask for its transformation into an entity type as usual.

1-N

1-N

manufacture
Company
Ratio

MARKET
Market-Name
id: Market-Name

PRODUCT
Product-ID
id: Product-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-17

�	���1#"+�$�Extracting an attribute to form as new role.

The resulting schema exhibit some interesting characteristics.

First, quite naturally, the attribute COMPANY has disappeared, and has been re-
placed by the entity type COMPANY.

Secondly, manufacture has be given a third role, and is now of degree 3.

Thirdly, manufacture has got an explicit identifier. Where does it come
from? In the left-side schema, MANUFACTURE has no declared identifiers.
This means that it has a default (i.e., undeclared) identifier made of all its roles,
namely PRODUCT and MARKET (see Lesson 4). The attribute Company is no
part of this identifier, otherwise it should have been declared explicitly. As a
result of the transformation, the composition of the rel-type has changed, and
the identifier can no longer be considered implicit (the implicit id would com-
prise all the roles). Hence the declared identifier, making both schemas fully
equivalent.

Finally, we observe that the cardinality of the new role is [1-N], and not [0-
N] as it would be thought at first glance. DB-MAIN is right, and our first fee-
ling was wrong. Indeed, a [0-N] cardinality would have meant that some
companies could exist without being involved in manufacturing products for
markets. Such a situation would be quite natural, but it cannot be represented

⇔

1-N

1-N

manufacture
Company
Ratio

MARKET
Market-Name
id: Market-Name

PRODUCT
Product-ID
id: Product-ID

1-N

1-N

1-N

manufacture
Ratio
id: PRODUCT

MARKET

PRODUCT
Product
id: Product

MARKET
Market
id: Market

COMPANY
Company
id: Company
����������������
	�� ��� !�"�#����������� ����������

8-18 "�

��G6�(
�%�&��� ���� �
�
�:�;
in the left-side schema, in which companies can only be represented when they
appear in manufacture relationships.

Now, let us practice the reverse transformation by reducing, say, entity type
MARKET to a mere attribute. We select the entity type MARKET, and we exe-
cute the command �����4��� / 6�

��
��� / $@ 8

�
�	
�. The evolution of
the identifier is worth being examined.

�	���1#",�$�Reducing a role to an attribute.

Other equivalent versions of the source schema can be derived by the applica-
tion of these transformations.

⇔
1-N

1-N

1-N

manufacture
Ratio
id: PRODUCT

MARKET

PRODUCT
Product
id: Product

MARKET
Market
id: Market

COMPANY
Company
id: Company

1-N

1-N

manufacture
Ratio
Market
id: PRODUCT

Market

PRODUCT
Product
id: Product

COMPANY
Company
id: Company
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-19
4�����&����$������,

In this lesson, we have encountered some interesting situations:

- complex time constraints, and how to get rid of them (thus degrading the
quality of the schema by tolerating weaker constraints);

- when to replace [1-N] cardinalities, resulting from reversible transfor-
mations, by more general cardinalities [0-N];

- an entity type with two identifiers (PROJECT);

- a relationship type with an explicit identifier.

We have also gone in further detail about how

- to transform an attribute of a rel-type into an entity type, therefore in-
creasing the degree (number of roles) of the rel-type:

�����4��� / 8

�
�	
� / $@ 6�

��
���

- to transform a role of a rel-type into an attribute, therefore decreasing the
degree (number of roles) of the rel-type:

�����4��� / 6�

�$
��� / $@ 8

�
�	
�
����������������
	�� ��� !�"�#����������� ����������

8-20 "�

��G6�(
�%�&��� ���� �
�
�:�;
90��	
��������$������,

8.1 Do you think that each of the following three schemas can be obtained
by transforming the schema of Figure 8.13?

8.2 �9;�%�6�

�$����

����
���������
��

The Entity-relationship (ER) model, together with all its variants, is pro-
bably the most widespread formalism to specify conceptual database
schemas. However, several other models exist with the same purpose.
One of the most interesting of them is the Object-Role model, a variant
of the NIAM model, particularly suited to precise conceptual analysis1.
In this model, there are two kinds of objects, namely the �.�%� �
$7�%�
��&�
 (LOT) and the �
�� �.�%� �
$7�%����&�
 (NOLOT). A LOT repre-
sents a class of printable symbols (such as NAME, COLOUR, LENGTH)
while a NOLOT represents a class of abstract objects (CUSTOMER,
PRODUCTS, ADDRESS). A LOT and a NOLOT can be associated
through a �����3�$	��3� and two NOLOTs can be associated through
an �����$	��3�. Each bridge is a binary relationship type (possibly N-

1. see Halpin,T., (
�%�&��� �)%���������,� ���
�� �����$�
����
�3�, Prentice-Hall, 1995,
ISBN 0-13-355702-2 . Consult also http://www.inconcept.com.

1-N

1-N

manufacture
Product
Company
id: Product

MARKET

1-N

1-N

1-N

1-N

manufacture
id: PRODUCT

MARKET

1-N

1-N

manufacture
Ratio
Product
id: MARKET

Product

RATIO
Ratio
id: Ratio

RATIO
Ratio
id: Ratio

PRODUCT
Product
id: Product

MARKET
Market
id: Market

MARKET
Market
id: Market

MARKET
Market
id: Market

COMPANY
Company
id: Company

COMPANY
Company
id: Company
���������� ����������������
	�� ��� !�"�#�����������

"�

��G6�(
�%�&��� ���� �
�
�:�; 8-21
ary for ideas in some models), with which some constraints are associa-
ted: identifiers, totality, exclusiveness, etc. The bridges have no names,
but each role has a name which suggests the semantic link from the role
object type to the other object type(s).

The ORM graphical representation is quite specific, but it is possible to
mimic an ORM schema with Entity-relationship constructs. An ORM
schema can be represented as follows:

- LOT A is represented by entity type A, which has one identifying at-
tribute named A too;

- NOLOT E is represented by entity type named E, without attributes;

- a naming bridge is represented by a binary rel-type between a LOT
entity type and a NOLOT entity type;

- an idea is represented by a rel-type between two or more NOLOT en-
tity types.

To make the schema more realistic, we have left the rel-types unna-
med2, and given each role a meaningful name.

For instance, the following schema is the Entity-relationship expression
of an ORM schema3

2. The DB-MAIN tool has a special feature for this: any object name can include the symbol
"|", in which case this symbol as well as the following characters are not displayed.

3. To highlight some objects in a schema, such as PRODUCT and CUSTOMER, select them
then click on the button Mark in the Standard tool bar.

1-1
lives at

1-N
hosts

1-1
has name

1-1
identifies

0-N
buys

0-N
sold to

1-1
has price

1-N
of

1-1
is called

1-N
of

1-1
has

1-1
identifies

ADDRESS
Address
id: Address

&86720(5

352'8&7

PRICE
Price
id: Price

NAME
Name
id: Name

PRO-ID
Pro-ID
id: Pro-ID
����������������
	�� ��� !�"�#����������� ����������

8-22 "�

��G6�(
�%�&��� ���� �
�
�:�;
The ER expression of an ORM schema offers the following characteris-
tics:

- the rel-types have no attributes,

- some entity types (NOLOT) have no attributes,

- all the other entity types (LOT) have one attribute, which is its identi-
fier, and which has the same name as its entity type.

5	��

��: What is the source ER schema which the above ORM-like
schema is an expression of? Rebuild the source ER schema through
schema transformations.

8.3 Transform the following schema into an ORM-like schema. Use sche-
ma transformations (you could need some operators currently lacking in
the tool: could you suggest some new schema transformations?).

0-N

0-N

0-N

sales
Date
id: CUSTOMER

VENDOR
MACHINE
Date

VENDOR
PID
Name
Address
Street
City

MACHINE
M-Code
Type
id: M-Code

CUSTOMER
C-ID
Name
Address

Street
City

Phone[1-5]
id: C-ID
���������� ����������������
	�� ��� !�"�#�����������

�

$������-

$��
	������
��

�����

��

This (long) lesson discusses how a conceptual schema can be
transformed into relational structures. Such a translation is called
"
3�%� � ��
�3�. It also defines the concept of SQL-compliant
schema, i.e., a schema whose constructs can be explicitly and di-
rectly expressed into SQL structures. Some new powerful rela-
tionship type transformations are presented.
����������������
	�� ��� !�"�#����������� ����������

9-2 "�

��H6�"
3�%� ���
�3��:4;
-�� 4����
���$������-

We start DB-MAIN and we open the project concept-8 in which we have
built the conceptual schema of our case study. We change the name of the pro-
ject name into Logical-9 and we save it as logical-9.

-�� $��
	������
��

All along lessons 7 and 8, we have carefully built the conceptual schema of a
small library. This schema is a real piece of art which deserves being admired
much longer than we did so far. However, it is an abstract piece of art. Being
said more practically, it does not work! Feeding a DBMS1 with the *.lun
expression of this schema is useless. DBMS only understand SQL texts (or
any other similar material), and are therefore not overly impressed by our per-
formance in the previous lessons.

Our objective now is a little clearer: it is to translate this conceptual schema
into the equivalent SQL text. Let us examine in some detail the idea before
developing this translation process.

Asserting that our schema is nice is not (only) an aesthetic claim. It means that
the schema expresses correctly, and in an elegant way, all the meaning inclu-
ded in the starting text (and more generally in any information source we could
have used), and nothing else. Specialists say that this schema formalizes the
�
�	I
�	����	�����
 of the future database. This property is more generally
called %
		�%���

: the conceptual schema is correct if it expresses all the
user’s requirements.

The concept of equivalent SQL text is an important one too. It implies that this
text is an
&�	���
�� ��.&	�

�
�2 of all the specifications included in the con-
ceptual schema, and nothing more.

1. A DBMS is a ����$�
������3������)�
���. ORACLE, SYBASE, DB2 and SQL-Server
are relational DBMS which understand some dialect of the SQL language. Non-relational
DBMS do exist as well. IMS, IDMS, DATACOM/DB, TOTAL or IMAGE are such
DBMS, generally used as the data engine of legacy systems. Even plain programming lan-
guages offer data management systems, generally called D� ������3������)�
���
. When
we do not want to distinguish these categories, we talk about ���������3������)�
���
,
or DMS.

2. I.e., an expression which can be operated or processed by a software.
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-3
You could probably think that we are a bit fussy about this problem. Indeed,
producing the SQL text of a conceptual schema is not that complicated: it suf-
fices to execute the �����4��� / 5	
�� �5� command (see Lesson 1). Right,
but such a procedure wouldn’t tell us anything on exactly how the resulting
SQL structures have been obtained. Knowing this is important to understand
a not-so-elementary translation process, in such a way that we can control it
more effectively when needed, that is, when coping with more complex data-
bases. The automatic 5	
�� �5� procedure is basically an unsophisticated
way to get a rather naive relational database. It is not a bad procedure, but
should we consider additional requirements such as space or execution time
minimization, the schema resulting from this oversimplistic translation would
most probably be highly unsatisfactory, whatever the tuning effort you carry
out afterwards. However, producing efficient database structures is a complex
task that is clearly beyond the scope of this introductory volume.

In this lesson, and in Lessons 10 and 11, we will learn how to get a correct re-
lational database structure which is equivalent to a conceptual schema. We
will proceed in two steps. Through the first one, called ���
�������
��, we will
obtain a logical schema, i.e., a schema representing tables, columns, primary
and foreign keys, as well as other constraints. The second step, called ����
���
���
��, will augment the logical schema with physical specifications such as
index and files, therefore producing the physical schema, and will generate the
corresponding SQL text.

This process can be sketched as in Figure 9.1.

In Lesson 9, 10 and 11, we will study how to perform the logical design of a
database. We will propose a simple procedure only, similar to those carried
out by the �����4��� / 5	
�� �5� and �����4��� / 9���

���� �����, but
that will give us an clear understanding of how the final result will be obtained.
Lesson 12 will cope with physical design and SQL generation.

-�� ����	��	��������
�����
��	�������	���
��

A Entity-relationship schema can be called)B"�%
�& ���� if each of its com-
ponents can be ��	�%� � and �.& �%�� � represented by a relational object in a
one-to-one way. Such a schema will also be called a 	� ���
�� �
3�%� �
%����.

For instance, the entity type COMPANY can be represented by the table COM-
PANY, the attribute Com-Address can be represented by the column Com-
����������������
	�� ��� !�"�#����������� ����������

9-4 "�

��H6�"
3�%� ���
�3��:4;
Address, the reference attribute Pro-ID can be represented by declaring
Pro-ID a foreign key, etc.

�	���2#"�$�The 2-step process that transforms a conceptual schema into a
SQL schema.

On the contrary, a relationship type, a multivalued attribute, or a supertype/
subtype structure have no direct representation in the relational model, and
should not appear in any so-called relational logical schema. In short, a 8-year
old child should be able to translate any relational logical schema in SQL-
DDL without particular effort. For instance, the schema of Figure 9.2, bor-
rowed from Lesson 3, is SQL-compliant.

�	���2#(�$�A SQL-compliant schema made up of tables, columns, primary
and foreign keys.

LOGICAL DESIGN

PHYSICAL DESIGN

 logical schema

conceptual schema

 SQL schema

352'8&7

Pro-ID
Pro-Name
id: Pro-ID

0$18)$&785(6

Com-ID
Pro-ID
id: Pro-ID

Com-ID
ref: Pro-ID
ref: Com-ID

&203$1<

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-5
Indeed, it describes 3 tables, 8 columns, 3 primary keys and 2 foreign keys. Its
SQL translation is immediate and does not require any particular skill:

����������
��4��5�$�����
��
�������

What is exactly a SQL-compliant schema? According to the definition pro-
posed hereabove, it can be grossly defined as follows:

In other words:

create database Manufacturing;

create table COMPANY (
 Com-ID char(15) not null,
 Com-Name char(25) not null,
 Com-Address char(50) not null,
 Com-Revenue numeric(12) not null,
 primary key (Com-ID));

create table PRODUCT (
 Pro-ID char(8) not null,
 Pro-Name char(25) not null,
 primary key (Pro-ID));

create table MANUFACTURES (
 Com-ID char(15) not null,
 Pro-ID char(8) not null,
 primary key (Pro-ID,Com-ID),
 foreign key (Com-ID) references COMPANY
 foreign key (Pro-ID) references PRODUCT);

A �5�$�����
��
 schema comprises only:

- entity types

- single-valued and atomic attributes

- identifiers

- reference attributes
����������������
	�� ��� !�"�#����������� ����������

9-6 "�

��H6�"
3�%� ���
�3��:4;
The interpretation of a SQL-compliant schema into SQL concepts is immedia-
te, and can be summarized by the following translation table:

Of course, this table is not complete, but it is quite sufficient to tackle the lo-
gical design process.

-�! �����������
�����������	�����$��
	������
��

Obviously enough, the hard job is not to translate SQL-compliant structures in
SQL (remember, an 8-year old kid job), but to derive the logical schema from
the conceptual schema, i.e., to transform the conceptual schema into an SQL-
compliant schema.

For instance, the logical design aims at transforming in a systematic way the
well known conceptual schema of Figure 9.3 into the SQL-compliant logical
schema of Figure 9.4.

In this example, the translation is not particularly painful, but we can imagine
that processing actual conceptual schemas, including a lot of compound, mul-

A �5�$�����
��
 schema �������
 comprise:

- IS-A relations

- relationship types

- compound attributes

- multivalued attributes

��$;8�&������
� �5�������
�

entity type

attribute

primary identifier

secondary identifier

reference attribute(s)

table

column

primary key

unique constraint

foreign key
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-7
tivalued attributes, and of N-ary rel-types, could be somewhat more complex,
and deserves more development.

�	���2#)�$�A small conceptual schema ...

�	���2#+�$�. . . and its logical relational equivalent.

To help us in this translation process, we will use very powerful tools, namely
�������
����4����

���. We are already fairly acquainted with some of the-
se operators. For instance, we know how to disaggregate compound attributes,
or how to replace an attribute by an equivalent entity type, and conversely.
However, this basic set is not sufficient. We need more techniques to carry out
the logical design of a real database. Nevertheless we can already consider
that the logical design can be considered as applying selected schema transfor-
mations on the source conceptual schema until it becomes fully SQL-com-
pliant.

Two major questions arise:

1. what transformations do we need?

2. in what order must we apply these transformations to process any concep-
tual schema?

The first question will be addressed in Lessons 9 and 10, while the second
question will be discussed in Lesson 11.

0-N0-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

352'8&7

Pro-ID
Pro-Name
id: Pro-ID

0$18)$&785(6

Com-ID
Pro-ID
id: Pro-ID

Com-ID
ref: Pro-ID
ref: Com-ID

&203$1<

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

9-8 "�

��H6�"
3�%� ���
�3��:4;
-�# ����
���3
����

������
�������
����
���&���

Let us consider this elementary structure through the schema of Figure 9.5.

�	���2#,�$�A �	��
����	� relationship type.

The entity types and all the attributes are SQL-compliant and can be represen-
ted by tables and columns. There is only one invalid construct, namely the
works in relationship type.

Representing a
����
����� rel-type is fairly easy: we add to EMPLOYEE the
reference attribute Dpt-Num towards DEPARTMENT. In this way, one can re-
trieve the department an employee works in, and one can retrieve all the em-
ployees who work in a given department.

So we get the fully SQL-compliant logical schema of Figure 9.6.

�	���2#-� $�Expressing a �	��
����	� relationship type through a foreign
key.

1-1

0-Nworks in

EMPLOYEE
Emp-Num
Name
id: Emp-Num

DEPARTMENT
Dpt-Num
Name
Address
id: Dpt-Num

(03/2<((

Emp-Num
Name
Dpt-Num
id: Emp-Num
ref: Dpt-Num

'(3$570(17

Dpt-Num
Name
Address
id: Dpt-Num
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-9
In fact, the latter schema can be obtained automatically, through a specific
schema transformation which replaces each
����
����� rel-type by reference
attributes. We select the rel-type works in, and we execute the command
�����4��� / 9��$
��� / $@ 8

�
�	
�.

So, we are provided with a tool which can process all the
����
����� rel-ty-
pes of our schemas. Let us try it on another example. We consider the con-
ceptual schema of Figure 9.7.

�	���2#.�$�A more comprehensive schema including �	��
����	� rel-types.

By transforming places, detail of and specifies, we get the logical
schema of Figure 9.8.

�	���2#1�$�. . . and its relational expression.

1-1

0-N

specifies

1-1

0-N

places

1-1

0-N

detail of

PRODUCT
PNum
Name
Price
id: PNum

ORDER
ONum
Date
id: ONum

DETAIL
Qty
id: detail of.ORDER

specifies.PRODUCT

CUSTOMER
CNum
Name
Address
id: CNum

352'8&7

PNum
Name
Price
id: PNum

25'(5

ONum
Date
CNum
id: ONum
ref: CNum

'(7$,/

PNum
ONum
Qty
id: ONum

PNum
ref: ONum
ref: PNum

&86720(5

CNum
Name
Address
id: CNum
����������������
	�� ��� !�"�#����������� ����������

9-10 "�

��H6�"
3�%� ���
�3��:4;
These transformations show how the role components of the identifier of en-
tity type DETAIL have been replaced by reference attributes (or foreign keys)
ONum and PNum.

This transformation is quite able to process
����
�
�� rel-types as well, as il-
lustrated in the schema of Figure 9.9.

�	���2#2�$�A �	��
���	� relationship type.

... which is thoroughly transformed as in Figure 9.10.

�	���2#"3�$�Expressing a �	��
���	� relationship type through an identifying
foreign key.

We can make three observations:

1. the foreign key PID of FILE is an identifier as well; indeed, there can be
only one file per person, and therefore only one file per PID value. This
identifier have been considered secondary since there already is a primary
id.

2. the foreign key has been added to FILE, and not to PERSON, otherwise,
the foreign key would have been optional, a situation designers do not like
too much; DB-MAIN knows this, and has chosen to add the foreign key
to the [1-1] side. But what about $��
&��
�� rel-types, both roles of which
are optional? Let us just try it (Figure 9.11).

1-10-1 of

PERSON
PID
Name
Address
id: PID

FILE
File-Number
Date
id: File-Number

3(5621

PID
Name
Address
id: PID

),/(

File-Number
PID
Date
id: File-Number
id’: PID

ref
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-11

�	���2#""�$�Expressing an �����
��	�� rel-type.

Since there are two [0-1] roles, DB-MAIN is forced to make the foreign key
optional, whether you choose to assign it to the table PERSON or to the table
FILE.

Just like all the transformations studied so far, this one has an inverse (see Les-
son 6). You can experiment this fact easily by recovering the origin schema:

1. select the foreign key by clicking on its group (not on the attribute it com-
prises!),

2. execute �����4��� / 0��	� / $@ 9��$
���, call the new rel-type of.

-�' %��	���
�����
�������
�������
����
���&���

You probably think we have a straighforward solution to get rid of such rel-
types: translating them into a table with two foreign keys, just in the way ma-
nufactures was processed at the beginning of this lesson. Yes and no!

Yes, this could be a nice solution, but we will not adopt it. We will prefer an
indirect, but more general procedure through which the rel-type will first be
transformed into an entity type + 2
����
����� rel-types.

0-1 0-1of

PERSON
PID
Name
Address
id: PID

FILE
File-Number
Date
id: File-Number

⇔
3(5621

PID
Name
Address
id: PID

),/(

File-Number
PID[0-1]
Date
id: File-Number
id’: PID

ref
����������������
	�� ��� !�"�#����������� ����������

9-12 "�

��H6�"
3�%� ���
�3��:4;
Let us apply such a transformation on manufactures (Figure 9.12).

�	���2#"(�$�A ��	��
����	� relationship type.

We select this rel-type, then we execute �����4��� / 9��$
��� / $@ 6�

�
�$
��. The result is shown in Figure 9.13.

�	���2#")�$�Entity type equivalent of a ��	��
����	� rel-type.

The rel-type has disappeared, and has been replaced by an entity type. The
identifier of MANUFACTURES is worth being examined. In the source sche-
ma, there cannot be more than one relationship between a given company and
a given product. Therefore, according to the resulting schema, there cannot
exist more than one MANUFACTURES entity depending on the same COMPA-
NY and the same PRODUCT. Hence the identifier.

Now, let us consider how we could further transform this schema into a pure
SQL-compliant version. The task is now easy: it suffices to apply the ,� ���&�
�
�,���	��%�����	�$��� transformation we just studied in this lesson. We get,
quite naturally the schema of Figure 9.14.

0-N0-N manufactures

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

1-1

0-N

MAN_PRO1-1

0-N

MAN_COM

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MANUFACTURES
id: MAN_COM.COMPANY

MAN_PRO.PRODUCT

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-13

�	���2#"+�$�The SQL-compliant expression of a ��	��
����	� rel-type.

Why do we proceed in two steps? First, as we have proved it, this does not
prevent us to reduce ������
����� rel-types into pure relational structures
easily. Then, the ,� ���&���
����������&� transformation can be used in many
other situations, for instance when building a conceptual schema3. Finally,
this transformation admits an interesting inverse operator: transforming a 	� �
��&�����
�������������&�. You can exercise it easily on the previous example.

-�) ���������
���	�����0������
����
���&���

This transformation is more general than suggested in the previous section. In
fact, it can be used to transform ����	� ���&� into an equivalent entity type. For
instance, it can be applied on:

- N-ary rel-types (with degree greater than 2),

- rel-types with attributes (N-ary, binary),

- one-to-many rel-types,

- one-to-one rel-types,

- cyclic rel-types.

To get an idea of these applications, we will transform an excerpt of the sche-
ma developed in Lesson 4, which includes a complex entity type which has 3
roles, an attribute and an explicit identifier! (Figure 9.15).

3. For instance, if a fact currently is represented by a rel-type, and a statement suggests to link
it to an existing entity type, this rel-type should first be transformed into an entity type.

352'8&7

Pro-ID
Pro-Name
id: Pro-ID

0$18)$&785(6

Pro-ID
Com-ID
id: Com-ID

Pro-ID
ref: Com-ID
ref: Pro-ID

&203$1<

Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID
����������������
	�� ��� !�"�#����������� ����������

9-14 "�

��H6�"
3�%� ���
�3��:4;

�	���2#",�$�A complex 2���� relationship type.

It can be transformed into the schema of Figure 9.16, which can, if needed, be
further transformed into SQL-compliant structures.

�	���2#"-�$�Transformation of a complex 3-ary rel-type into an entity type.

0-N 0-N

0-N

manufactures
Ratio
id: PRODUCT

BRANCH PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

BRANCH
Com-ID
Country
Name
id: Com-ID

Country

1-1

0-N

mp

1-1

0-N

mm

1-1

0-N

mb

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

MARKET
Name
Size
id: Name

manufactures
Ratio
id: mp.PRODUCT

mb.BRANCH

BRANCH
Com-ID
Country
Name
id: Com-ID

Country
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-15
-�, $��
	������
��@��������A

We will apply all this new knowledge on our conceptual schema. Of course,
we lack some techniques, for instance to process multivalued attributes. But
we know enough to reduce all the rel-types, which is a first move in the good
direction.

First of all, we create a new schema by copying the conceptual schema. We
select the latter, then we ask ����	�
 / ���� ����	�
. We give it the version
name Logical. The project windows now contains the hierarchy of Figure
9.17.

�	���2#".�$�The logical schema derives from the conceptual schema.

We open this logical schema (which so far is a mere copy of the conceptual
schema), in order to transform it into a true SQL logical schema.

�������
���
������$
�$��������$
����
Let us tackle the easy problems first, namely the
����
����� rel-types. The
most visible is rel-type of between BOOK and COPY, which can be processed
as in Figure 9.18.

The next one, responsible, is a bit special: it is a %�% �% rel-type. Never-
theless, the transformation works as usual: it includes in BORROWER a foreign
key to the target entity type, that is, BORROWER itself (Figure 9.19).

LIBRARY/Logical

LIBRARY/Conceptual
����������������
	�� ��� !�"�#����������� ����������

9-16 "�

��H6�"
3�%� ���
�3��:4;

�	���2#"1�$�Processing of the �	��
����	� rel-type of.

�������
���
�����
�������
�����$
����
We can now address the other rel-types. We suggest to transform the �����
�
����� rel-types first.

reference is a cyclic ������
����� rel-type. It is first transformed into an
entity type and two
����
����� rel-types as illustrated in Figure 9.20.

Then, these new rel-types are reduced to foreign keys (Figure 9.21).

⇔
1-1

0-N

of

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

COPY
Book-id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-17

�	���2#"2�$�Processing of the cyclic �	��
����	� rel-type responsible-
for.

�	���2#(3�$�Reducing a cyclic ��	��
����	� rel-type - Step 1.

⇔

⇔

0-N
responsible

0-1

responsible-for

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
Responsible[0-1]
id: Pid
ref: Responsible

0-N
reference

0-N
origin

reference

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

1-1

0-N

reference

1-1

0-N

origin

reference
id: origin.BOOK

reference.BOOK

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id
����������������
	�� ��� !�"�#����������� ����������

9-18 "�

��H6�"
3�%� ���
�3��:4;

�	���2#("�$�Reducing a cyclic ��	��
����	� rel-type - Step 2.

Then we transform the ������
����� rel-type written. We first replace it
by an entity type (Figure 9.22). The rel-types may have strange names, but we
do not care, because they are to be replaced.

Replacing wri_BOO is no problem. It is transformed into a foreign key (Fi-
gure 9.23).

However, when we ask DB-MAIN to transform wri_AUT in same way, it re-
fuses!! "���� 	���	��%���������� ��&����
����������� ����	�$���� ���������	" it
says. Unfortunately, it is right: wri_AUT cannot be replaced by a foreign key
if AUTHOR has no (primary) identifier.

To get rid of this rel-type, we have no other means but adding an identifier to
AUTHOR. DB-MAIN knows this problem, and if we have no imagination, it
can help us by adding to this entity type a technical identifier. Let us try this:
we execute the command �����4��� / 6�

��
��� / 8�� ���� �� (we can
change the default name, type and length of this new attribute). The result is
in Figure 9.24.

AUTHOR is ready to be referenced by a foreign key. So we ask again the trans-
formation of WRI_AUT, which now succeeds (Figure 9.25).

⇔1-1

0-N

reference

1-1

0-N

origin

reference
id: origin.BOOK

reference.BOOK

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

reference
Reference
Origin
id: Origin

Reference
ref: Origin
ref: Reference

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-19

�	���2#((�$�Reducing the ��	��
����	� rel-type written - Step 1.

0-N 1-Nwritten

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

⇔

1-1

0-N

wri_BOO

1-1

1-N

wri_AUT

written
id: wri_AUT.AUTHOR

wri_BOO.BOOK

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

9-20 "�

��H6�"
3�%� ���
�3��:4;

�	���2#()�$�Reducing the ��	��
����	� rel-type written - Step 2.

�	���2#(+�$�wri_AUT can only be reduced when AUTHOR is given an iden-
tifier.

1-N

1-1

wri_AUT

written
Book-id
id: wri_AUT.AUTHOR

Book-id
ref: Book-id

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

1-1

1-N

wri_AUT

written
Book-id
id: wri_AUT.AUTHOR

Book-id
ref: Book-id

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-21

�	���2#(,�$�The complete SQL-compliant expression of rel-type written.

Note the special form of the foreign key (ID_Aut) to AUTHOR: it has been
specified as equ, and not as ref. This means that each ID_Aut value in
written must be an ID_Aut value in AUTHOR, and conversely (hence the
name equ� ���). This constraint has been described in Lesson 5, but now, we
can relate it to its origin: the [1-N] cardinality of the former rel-type WRIT-
TEN.

�������
���
���&$�������$
����
Let us now process the two N-ary rel-types. The first one is borrowing (Fi-
gure 9.26).

borrowing is first transformed into an entity type (Figure 9.27).

Note that bor_COP is
����
�
��, due to the [0-"] cardinality of the role it de-
rives from.

As usual, observing the identifiers is an infinite source of intellectual joy. In
this case the surprising fact is the absence of identifier of entity type bor-
rowing. Does it mean that this entity type is similar to AUTHOR. Not quite.
In fact, this entity type has a sort of ��& �%������������	, which is COPY itself.
Indeed, since bor_COP is
����
�
��, if you designate a COPY entity, you
cannot get more than one associated borrowing entity.

written
ID_Aut
Book-id
id: ID_Aut

Book-id
ref: Book-id
equ: ID_Aut

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut
����������������
	�� ��� !�"�#����������� ����������

9-22 "�

��H6�"
3�%� ���
�3��:4;

�	���2#(-�$�The complex rel-type borrowing.

�	���2#(.�$�Reducing the complex rel-type borrowing - Step 1.

0-N

0-N

0-1
borrowing

Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

1-1

0-N

bor_PRO

1-1

0-1

bor_COP

1-1

0-N

bor_BOR

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

borrowing
Borrow-Date

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-23
Reducing each rel-type to a foreign key gives us the result of Figure 9.28. We
observe that the identifier of borrowing has been made explicit: (Book-
ID, Serial-Number) is both a foreign key and an identifier.

�	���2#(1�$�Reducing the complex rel-type borrowing - Step 2.

The same procedure can be applied to closed-borrowing (Figure 9.29)
It leads to the scenario of Figure 9.30 and Figure 9.31.

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

borrowing
Book-Id
Serial-Number
Borrow-Date
Pid
Pcode
id: Book-Id

Serial-Number
ref

ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid
����������������
	�� ��� !�"�#����������� ����������

9-24 "�

��H6�"
3�%� ���
�3��:4;

�	���2#(2�$�The complex rel-type closed-borrowing.

�	���2#)3�$�Reducing the complex rel-type closed-borrowing - Step 1.

0-N

0-N

0-N

closed-borrowing
Borrow-Date
End-Date
id: COPY

Borrow-Date PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

1-1

0-N

clo_PRO
1-1

0-N

clo_COP 1-1

0-N

clo_BOR

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY

Borrow-Date

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-25

�	���2#)"�$�Reducing the complex rel-type closed-borrowing - Step 2.

If everything worked correctly, there is no rel-types any more. Our schema
should look like that of Figure 9.32.

Of course, this schema is not fully SQL-compliant yet. For instance, it inclu-
des compound and multivalued attributes which should be further processed.
But it’s late now, and we should better leave this task to another lesson.

-�- ;�
��
�������������

We save the current project under the name logical-9.lun and we quit
DB-MAIN.

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-Id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-Id

Serial-Number

closed-borrowing
Book-Id
Serial-Number
Borrow-Date
End-Date
Pid
Pcode
id: Book-Id

Serial-Number
Borrow-Date

ref: Book-Id
Serial-Number

ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid
����������������
	�� ��� !�"�#����������� ����������

9-26 "�

��H6�"
3�%� ���
�3��:4;

�	���2#)(�$�The final schema - First version.

written
ID_Aut
Book-id
id: ID_Aut

Book-id
ref: Book-id
equ: ID_Aut

reference
reference
origin
id: origin

reference
ref: origin
ref: reference

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

closed-borrowing
Book-id
Serial-Number
Borrow-Date
End-Date
Pid
Pcode
id: Book-id

Serial-Number
Borrow-Date

ref: Book-id
Serial-Number

ref: Pid
ref: Pcode

borrowing
Book-id
Serial-Number
Borrow-Date
Pid
Pcode
id: Book-id

Serial-Number
ref

ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
Responsible[0-1]
id: Pid
ref: Responsible

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut

LIBRARY/Logical
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-27
��	��
	����������

-��. 6�������
�����
�

����	���
������������
��

This transformation is an important step torwards fully relational schemas. It
can be used in many other contexts too, such as conceptual design, schema op-
timization or logical design of other kinds of databases such as object-oriented
databases and standard files for instance.

It also induces an interesting property on the equivalence of schemas. There
have been (and still are) warm discussions on the best representation of some
concepts or facts: should they be represented by relationship types or by entity
types? The answer often is: don’t care, because both representations are pro-
ven to be equivalent, and therefore are both valid. For instance, the schemas
of Figure 9.33 are strictly equivalent, and choosing one of them is not worth
being disputed very long4.

�	���2#))�$�The fact that �
�
����������������
�
� can be represented by
a rel-type as well as by an entity type.

Anyway, this transformation needs some additional discussion on how the se-
mantics of the rel-type can be propagated to its equivalent entity type.

First of all, if we consider the populations of the entity types (i.e., sets of enti-
ties) and of the rel-types (i.e., sets of relationships5), we have to understand

4. As a matter of fact, both can be translated into the same SQL representation.

⇔
0-N0-N order

PRODUCTCUSTOMER

1-1

0-N

ord_PRO

1-1

0-N

ord_CUS

PRODUCT

order

id: ord_CUS.CUSTOMER
ord_PRO.PRODUCT

CUSTOMER
����������������
	�� ��� !�"�#����������� ����������

9-28 "�

��H6�"
3�%� ���
�3��:4;
that each order relationship in the left-side schema is represented by an OR-
DER entity in the right-side schema. Moreover, we also have to observe that
each role in the left-side schema is transformed into a
����
����� (or some-
times
����
�
��) rel-type in the right-side schema.

This being said, we will precise a little bit the three basic propagation rules of
this transformation (Figure 9.34).

4- (�	���� ����&	
&�3���
�

For each (left) role r (with cardinality [i-j]) in rel-type R, there is a new (ri-
ght) rel-type r with cardinalities ([i-j],[1-1]); this rule is illustrated by the
pattern of Figure 9.34.

�	���2#)+�$�Pattern of ����
���=�	
�
��
��� transformation.

�- ���	�$����&	
&�3���
�

The attributes of (left) rel-type R are associated with (right) entity type R;
this rule is illustrated by the transformation of the 3-ary rel-type manu-
facture in Figure 9.16.

�- ���������	�&	
&�3���
�

The identifiers of (left) rel-type R are translated for (right) entity type R:
each role is replaced with the corresponding role of the new rel-type, and

5. A relationship can be visualized as an arc between the related entities.

⇔iC-jCiB-jBiA-jA

R

 C B A

1-1

iA-jA

rA

1-1

iB-jB

rB

1-1

iC-jC

rC

R
id:rA.A

rB.B
rC.C

 C B A
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-29
each attribute is kept unchanged; this rule is illustrated by the transforma-
tion of the 3-ary rel-type manufacture in Figure 9.30.

To make sure we have understood this rather theoretical material, we will exa-
mine some representative applications.

The first one is the transformation of a 3-ary rel-type with non standard cardi-
nalities. *$
�	����
�
: propagation of the cardinalities; DETAIL has no ex-
plicit identifiers, but has an implicit one (which one?).

�	���2#),�$�Illustration of cardinality propagation.

The second application concerns a mere
����
�
�� rel-type (Figure 9.36).
*$
�	����
�
: propagation of the cardinalities, which leads to two
����
�
��
rel-types; of has no explicit identifiers, has it an implicit one? How many im-
plicit identifiers in fact?

�	���2#)-�$�Expressing a one-to-one rel-type as an entity type.

⇔

⇔

1-20 1-1 0-N

detail

SUPPLIERORDER MACHINE

1-1

0-N

det_SUP

1-1

1-20

det_ORD

1-1

1-1

det_MAC

SUPPLIERORDER MACHINE

 detail

0-10-1 has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

1-1

0-1

has_PER

1-1

0-1

has_FIL

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

 has
����������������
	�� ��� !�"�#����������� ����������

9-30 "�

��H6�"
3�%� ���
�3��:4;
The third example is about %�% �% rel-types (Figure 9.37). *$
�	����
�
: the
cyclic structure has disappeared; composed-of has got an explicit identi-
fier.

�	���2#).�$�Developping a ������ rel-type into an entity type.

And the last one concerns
����
����� rel-types with attributes (Figure 9.38).
*$
�	����
�
: propagation of the cardinalities, which generates a
����
�
��
rel-type; works-in has no explicit identifier; has it an implicit one?

�	���2#)1�$�Transforming a �	��
���	� rel-type with attributes

9�������
����4����

��D��
�����������
�����������

As most transformation techniques we can use, this one is reversible. It means
that when we encounter an entity type satisfying definite conditions, we can

⇔

⇔

0-N
compound

0-N
component

composed-of

 PART

1-1

0-N

compound

1-1

0-N

component

PART

composed-of
id: component.PART

compound.PART

1-10-N
works-in

Date-Hired

EMPLOYEEDEPARTMENT

1-1

1-1

wor_EMP

1-1

0-N

wor_DEP

works-in
Date-Hired

EMPLOYEEDEPARTMENT
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-31
transform it (or ask DB-MAIN to do it for us) into an entity type. We can call
it the +��������&���
�,� ���&� transformation.

What are these conditions on the entity type?

The first obvious condition is that it must take at least two roles. But it is not
sufficient; for instance, these roles must be [1-1]. To be more precise, the en-
tity type, say E, must satisfy each of the following conditions:

1. E plays at least two roles; 	��

�: do try with only one!

2. the cardinalities of these roles must be [1-1]; 	��

�: each E entity must be
linked to one and only one entity of the each other sides; in the same way
the (future) corresponding relationship will be made of one and only one
entity of each kind;

3. all these roles belong to distinct rel-types; 	��

�: otherwise one of the
rel-type would be cyclic, and it would be a bit difficult to replace it by a
role!

4. E has (at least) an implicit or an explicit identifier; 	��

�: any two rela-
tionships of the same type are distinct, and cannot be made of the same
entities and attribute values. Remember that any
����
�
�� rel-type
makes an explicit identifier for each of its entity types.

-��� 6�������
�����
��
�
�

�
	��������
������������
��

This transformation is at the core of the logical design process for relational
databases. In the version used in this lesson, this transformation generates
���
3 ���� �����
	��3��9��
 only. As you probably have observed, it can cope with
multivalued foreign keys as well. Since such an extension would be useless to
produce relational schemas6, it will not be discussed in this lesson. However,
the reverse transformation will address such structures, since they could be
found in actual traditional data structures to be reverse engineered (recovering
a conceptual schema from a logical schema).

With this restriction in mind, the conditions a rel-type R must satisfy to be re-
placed with a foreign key are easy to state. Let R be defined between entity
types B and A.

1. R is
����
�����, or
����
�
��; more precisely, the role of B is [0-1] or

6. On the contrary, it will be most useful to generate COBOL file structures or Object-orien-
ted structures.
����������������
	�� ��� !�"�#����������� ����������

9-32 "�

��H6�"
3�%� ���
�3��:4;
[1-1];

2. the other role (played by A) should be [0-1], [1-1], [0-N] or [1-N]; its car-
dinality can be different, but it will be considered [0-N] if it is [0-J], with J
> 1, and as [1-N] if it is [I-J], with I > 0 and J > 1, and therefore translated

incompletely7;

3. A has at least one identifier; if one of them is primary, it must comprise
attributes only; otherwise, there must exist at least one identifier made of
attributes only.

Ideally, the foreign key of B should be a copy of a primary identifier of A, but
the DB-MAIN tool can cope with more severe situations, where only secon-
dary ids are available.

We will sketch the main variants of this transformation on a common fra-
mework (relations between &�	

�
 and �� �
), presented with different seman-
tics.

The first situation concerns files which may describe persons (Figure 9.39).
This is the most common case.

�	���2#)2�$�Expressing a standard �	��
����	� rel-type as a foreign key.

Then we suppose that some persons are not described in any file. The foreign
key becomes optional (Figure 9.40).

7. this means that, in such cases, the transformation is not fully semantics-preserving. Note
however that DB-MAIN stores the non standard cardinality of the role in the description of
the foreign key (see Figure 9.45, where this point is discussed). A more sophisticated SQL
generator can therefore translate this cardinality into validation procedures.

⇔

1-1 0-Nhas

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num
id: PID
ref: File-Num

FILE
File-Num
Date
id: File-Num
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-33
If a file cannot describe more than one person, the foreign key becomes an
identifier as well (Figure 9.41).

�	���2#+3�$�Expressing an optional �	��
����	� rel-type as an optional fo-
reign key.

�	���2#+"�$�Expressing a �	��
���	� rel-type as an identifying foreign key.

�	���2#+(�$�Expressing a �����	��
��� �	��
����	� rel-type as an equ fo-
reign key.

⇔

⇔

⇔

0-N0-1 has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num[0-1]
id: PID
ref: File-Num

FILE
File-Num
Date
id: File-Num

0-11-1 has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num
id: PID
id’: File-Num

ref

FILE
File-Num
Date
id: File-Num

1-N1-1 has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num
id: PID
equ: File-Num

FILE
File-Num
Date
id: File-Num
����������������
	�� ��� !�"�#����������� ����������

9-34 "�

��H6�"
3�%� ���
�3��:4;
Now, let us suppose that each file describes at least one person. The referential
constraint induced by the foreign key is complemented with an additional in-
clusion constraint, leading to an equ� ��� constraint (Figure 9.42).

If both roles are [1-1], the foreign key can be included in either side (Figure
9.43).

�	���2#+)�$�Expressing a �����	��
��� �	��
���	� rel-type as an identifying
equ foreign key.

Now, there are situations where the transformation, at least as it is generally
implemented in CASE tools, does not preserve all the semantics of the source
schema. That is the case for non standard values of the cardinalities8. Let us
suppose that ���� ����
%	�$�
��&��
����&�	

�
 (Figure 9.44)

�	���2#++�$�Expression of a rel-type with non standard cardinalities. A loss
of semantics may occur if the SQL generator does not produce the code that
enforces this cardinality (through a trigger mechanism for instance).

⇔

8. I.e., other than [0-1], [1-1], [0-N], [1-N].

⇔

1-1 1-1has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num
id: PID
id’: File-Num

equ

FILE
File-Num
Date
id: File-Num

0-201-1 has

PERSON
PID
Name
id: PID

FILE
File-Num
Date
id: File-Num

PERSON
PID
Name
File-Num
id: PID
ref: File-Num

FILE
File-Num
Date
id: File-Num
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-35
The cardinality [0-20] has been approximated by the more standard value [0-
N]. In the same way [5-10] would have been transformed as if it were [1-N].
To prevent from this loss of semantics, the description of the foreign key now
includes the exact cardinality (Figure 9.45). Generating the SQL code that en-
forces this constraint is up to the programmer or to the generator.

�	���2#+,�$�The lost cardinality is stored in the description of the foreign key.

Let us now consider the situations where the referenced identifier is made up
of several attributes. As expected, the foreign key is made of as many compo-
nents as there are attributes in the identifier (Figure 9.46).

�	���2#+-�$�A multi-component identifier in the target entity type induces a
multi-component foreign key.

The transformation is more delicate if an expense can be made independently
of a budget. In this case, the from rel-type is optional for EXPENSE, and the

⇔

1-1 0-Nfrom

EXPENSE
Date
Amount

BUDGET
Nature
Year
Amount
id: Nature

Year

EXPENSE
Date
Amount
Nature
Year
ref: Nature

Year

BUDGET
Nature
Year
Amount
id: Nature

Year
����������������
	�� ��� !�"�#����������� ����������

9-36 "�

��H6�"
3�%� ���
�3��:4;
foreign key must be optional as well. However, this optionality implies two
properties:

- each component is ��

���� (cardinality [0-1]),

- all the components form a ���7
�
���� group (Figure 9.47).

The latter constraint is important. Indeed, discarding it would allow an EX-
PENSE entity to have a value for Nature, and not for Year, a situation
which cannot be represented in the left-side schema.

�	���2#+.�$�An ��
��	����
�
�������	�	
 foreign key must be accompanied
by a coexistence constraint.

9�������
����4����

��D� ����	
�-����
�����������

As usual, this transformation can be interpreted the reverse way, as the trans-
formation of ���
	��3��9������
���	� ���&�. All the situations presented in this
addendum can be read from right to left. In other words, if a situation descri-
bed in the right-hand side of one of these figures is encountered, it can be re-
placed by the corresponding schema in the left-hand side. For instance, the
schema of Figure 9.48 can be interpreted as that of Figure 9.49.

�	���2#+1�$�An observed foreign key . . .

⇔

0-N0-1 from

EXPENSE
Date
Amount

BUDGET
Nature
Year
Amount
id: Nature

Year

EXPENSE
Date
Amount
Nature[0-1]
Year[0-1]
ref: Nature

Year
coex

BUDGET
Nature
Year
Amount
id: Nature

Year

EMPLOYEE
Emp-Num
Name
Dpt-Num
id: Emp-Num
ref: Dpt-Num

DEPARTMENT
Dpt-Num
Name
Address
id: Dpt-Num
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-37

�	���2#+2�$�. . . and its rel-type interpretation.

To carry out this transformation, we select the foreign key (through its group,
not its attribute), then we execute the command �����4��� / 0��	� / $@ 9��$

���.

Such transformations will be of prime importance in 	���	
����3����	��3 acti-
vities (see the book dedicated to this process).

;	�

���	���4���
�������

However, the DB-MAIN tool can address more complex foreign keys, such as
those which can be encountered in, say, COBOL file structures. We will pre-
sent an important extension, namely �	�

���	���4���
�������.

A multivalued foreign key can reference more than one target entity. It is
transformed into a ������
����� rel-type (Figure 9.50).

�	��� 2#,3� $�A 	�	� ���	
����	���
�
�#��
�� foreign key is interpreted as a
��	��
����	� rel-type.

⇔

0-N1-1 works in

EMPLOYEE
Emp-Num
Name
id: Emp-Num

DEPARTMENT
Dpt-Num
Name
Address
id: Dpt-Num

PRODUCT
P-Num
Description
Price
id: P-Num

ORDER
Ord-Num
Date
Item[0-10]
id: Ord-Num
ref: Item[*]

0-10 0-NItem

PRODUCT
P-Num
Description
Price
id: P-Num

ORDER
Ord-Num
Date
id: Ord-Num
����������������
	�� ��� !�"�#����������� ����������

9-38 "�

��H6�"
3�%� ���
�3��:4;
. . . or into a
����
����� rel-type if the foreign key is an idenfier as well (Fi-
gure 9.51). DB-MAIN can interpret multivalued foreign keys, but it can also
generate them, though this function generally is of little interest for building
relational databases.

�	���2#,"�$�An����	
����	���
�
�#��
�� foreign key is interpreted as a �	��
��
��	� rel-type.

-��� 6�������
��
����	��������������
��

We have been faced with a situation in which transforming a
����
����� rel-
type was impossible due to the absence of identifier. We then used a specific
transformation which, when applied to an entity type,

1. adds a technical attribute, and

2. makes it the primary identifier.

As it is now usual with transformations, this technique can have other useful
applications. Let us examine its two main variants.

The first one introduces a primary identifier into an entity type which has none
so far (Figure 9.52).

The second variant introduces a technical identifier into an entity type which
already has one. In the example below, we suppose that {Nature,Year} is
too complex, or too long, an identifier to be used as an identifier for BUDGET.
For instance, this entity type should be referenced by a large number of foreign
keys, leading to an important waste of space and poor performance. Introdu-
cing a short, meaningless, identifier will certainly help. This new attribute be-
comes the primary identifier, while the former one is given the secondary
status (Figure 9.53).

⇔
CLIENT

C-Num
Name
Account[0-5]
id: C-Num
id’: Account[*]

ref

ACCOUNT
Acc-Num
Type
Amount
id: Acc-Num

0-5 0-1Account

CLIENT
C-Num
Name
id: C-Num

ACCOUNT
Acc-Num
Type
Amount
id: Acc-Num
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-39

�	���2#,(�$�Adding a technical identifier to an
	���	
����� entity type.

�	���2#,)�$�Substiting a short technical identifier for a complex identifier.

The property of semantics preservation or reversibility is worth a comment.
Indeed, as opposed to the other transformations encountered so far, this one
does not replace one structure with another structure: it just adds some new
structure.

Is it reversible? Yes indeed. The new structure bears absolutely no semantics
(hence the term ��%���%� ���). Therefore, introducing or removing it does not
change the semantic content of the schema in any way. The transformation is
trivially reversible.

⇔

⇔

 JOURNEY
Date
Departure
Arrival
Weather

JOURNEY
ID_Journey
Date
Departure
Arrival
Weather
id: ID_Journey

 BUDGET
Nature
Year
Amount
id: Nature

Year

BUDGET
ID_Budget
Nature
Year
Amount
id: ID_Budget
id’: Nature

Year
����������������
	�� ��� !�"�#����������� ����������

9-40 "�

��H6�"
3�%� ���
�3��:4;
4�����&����$������-

• In this lesson, we have studied new notions:

- logical design;

- SQL-compliant schema;

- schema equivalence;

• We have also learnt how

- an Entity-relationship schema, called SQL-compliant, can represent rela-
tional database structures

- to transform a rel-type into an entity type:

�����4��� / 9��$
��� / $@ 6�

��
���

- to transform an entity type into a rel-type:

�����4��� / 6�

�$
��� / $@ 9��$
���

- to transform a rel-type into reference attributes (foreign key):

�����4��� / 9��$
��� / $@�8

�
�	
��

- to transform reference attributes (foreign key) into a rel-type:

�����4��� / 0��	� / $@�9��$
���

- to add a technical identifier to an entity type:

�����4��� / 6�

��
��� / 8����������
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-41
90��	
��������$������-

9.1 To represent the concepts underlying the sentence "��%��
	��	�	���	���
%�
�
���
	�
���	� �&	
��%�
=���%�������3������������� ...", a designer has
chosen to propose the following schema:

Later on, he has to augment this schema by including the fact that "
���
&����
��	�������
���
���
	�
���	� �	���	��%���&	
��%�
 ... ".

First, he proposes the solution below, obtained by adding a third role to
the rel-type:

But finally, he does not feel quite satisfied and rejects it. He is right.
Why? What correct solution could you propose?

9.2 Propose an SQL-compliant schema for the following conceptual sche-
ma according to three procedures:

1. Enter this logical schema manually (a bit tedious but very instructi-
ve!)

2. Build it by applying selected transformations to the conceptual sche-
ma.

3. Ask the tool to do this job for you by �����4��� / 9���

���� �����.

Compare the three solutions. Can you explain the differences?

0-N1-N
reference
Qty

PRODUCTORDER

0-N

1-N 0-N
reference
Qty

SHIPMENT

PRODUCTORDER
����������������
	�� ��� !�"�#����������� ����������

9-42 "�

��H6�"
3�%� ���
�3��:4;
9.3 Propose an SQL logical database structure for the following conceptual
schema.

0-N
substitute

0-1
replaced

replaces

1-1

0-N

belongs
0-N

0-N 0-N

manufactures

Ratio

id: PRODUCT
BRANCH

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country

COMPANY

Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Local

id: Com-ID
id’: Com-Name

Com-Address
���������� ����������������
	�� ��� !�"�#�����������

"�

��H6�"
3�%� ���
�3��:4; 9-43
9.4 Retrieve in a systematic way the conceptual schema of this SQL logical
schema (this problem is related to ,���	
����3����	��3).

9.5 Retrieve in a systematic way the most concise conceptual schema of this
SQL logical schema.

1-1

0-N

signed

1-1

0-N

owned

0-N0-N involved

1-1 0-1covered

VEHICLE
Reg-Num
Model
Year
id: Reg-Num

CUSTOMER
C-Num
Name
Address
id: C-Num

CONTRACT
Ctr-Num
Type
Date
id: signed.CUSTOMER

Ctr-Num

ACCIDENT
Acc-Num
Date
Amount[0-1]
id: Acc-Num

:25.6�,1

P-Code
Emp-Num
id: P-Code

Emp-Num
ref: Emp-Num
ref: P-Code

6(59,&(

S-Name
Function
Dep-Name
id: S-Name
equ: Dep-Name

352-(&7

P-Code
P-Name
S-Name
id: P-Code
ref: S-Name

(03/2<((

Emp-Num
Name
S-Name
id: Emp-Num
ref: S-Name

'(3$570(17

Dep-Name
Manager[0-1]
id: Dep-Name
id’: Manager

ref
����������������
	�� ��� !�"�#����������� ����������

9-44 "�

��H6�"
3�%� ���
�3��:4;
9.6 In the Addendum of Lesson 8, we met the schema below (left). A desi-
gner proposes the schema on the right, claiming that it is equivalent to
the former. What do you think of this.

⇔

5()(5(1&(

Det-ID
P-Num
id: Det-ID

equ
ref: P-Num

352'8&7

P-Num
Description
id: P-Num

3/$&(

O-Num
C-Num
id: O-Num

equ
ref: C-Num

25'(5

O-Num
Date
id: O-Num

+$6�'(7

Det-ID
O-Num
id: Det-ID

equ
equ: O-Num

'(7$,/

Det-ID
Qty
id: Det-ID

&86720(5

C-Num
Name
id: C-Num

1-N

1-N

manufacture
Company
Ratio

MARKET
Market-Name
id: Market-Name

PRODUCT
Product-ID
id: Product-ID

0$18)$&785(

Product-ID
Market-Name
Company
Ratio
id: Product-ID

Market-Name
���������� ����������������
	�� ��� !�"�#�����������

�

$�������.

$��
	������
���*�+

�����

��

We will complete the logical design of the LIBRARY database
by processing compound and multivalued attributes. Then, we
will discuss these transformations in greater detail.
����������������
	�� ��� !�"�#����������� ����������

10-2 "�

��4�6�"
3�%� ��
�� ��3�:�;
�.�� 4����
���$�������.

We start DB-MAIN and we open the project logical-9.lun which now
includes the conceptual schema of the database in project, as well as a first ver-
sion of the logical schema, called LIBRARY/Logical. We save it as lo-
gical-10, the version on which we will work in this lesson.

�.�� =������������0�>

We open the schema LIBRARY/Logical, and we examine it very carefully.
Does it look like an SQL-compliant logical schema? Let us recall the main ru-
les defining such schemas:

Thanks to the processing of Lesson 9, it has no relationship types any longer.
All of them have been replaced by new entity types and by reference attributes
(foreign keys). However, it still includes invalid attributes:

- Keyword (from BOOK) is multivalued,

- Location (from COPY) is compound,

- Address (from BORROWER) is compound,

- Phone (from BORROWER) is multivalued.

We will first tackle the compound attributes, then process the multivalued at-
tributes.

�.�� ���������
�������������
������

����

In lesson 6, when discussing the coexistence constraint, we examined a trans-
formation (0��	� / 8������

��) which makes a compound attribute from a

An �5�$�����
��
 schema comprises only:

- entity types

- single-valued and atomic attributes

- identifiers

- reference attributes
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-3
group of individual attributes. We also mentioned another transformation, cal-
led ��
�33	�3���
�, whose aim was precisely to undo the effect of the former,
i.e., to replace a compound attribute with its components. We got it by the
command �����4��� / 8

�
�	
� / �
��������

��. That is just what we
need here.

We select the attribute Location of COPY, and we execute this command.
We then are asked what prefix we want to give to the names of the compo-
nents. The tool proposes the prefix Loc_, which is the short name of the com-
pound attribute, if any, or the first three characters of the name of this attribute.
We can change it, or even delete it. We choose to accept the proposed prefix,
and we click on button OK. The entity type COPY is transformed as in Figure
10.1.

�	���"3#"�$�Disaggregating the compound attribute Location.

Carefully choosing the prefix allows reminding the origin of these attributes.
It is not a formal way to do so, but can be useful in many situations1.

Processing the attribute Address of BORROWER follows the same procedure
(Figure 10.2).

⇔

1. We will study in another volume how DB-MAIN can remember all the operations it has
been asked to execute. The journaling functions, available through the Log menu, allows
the recording and the replaying of selected operations.

COPY
Book-id
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

&23<

Book-id
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id
����������������
	�� ��� !�"�#����������� ����������

10-4 "�

��4�6�"
3�%� ��
�� ��3�:�;

�	���"3#(�$�Disaggregating the compound attribute Address.

�.�! ���������
����������������
������

����

We have already processed multivalued attributes by replacing them with
equivalent entity types. Remember: when we analyzed the concept of %
&��
�
$

9 in lesson 7, we first represented it by the multivalued attribute Serial-
Number of BOOK. Then, when we learned more about copies, we decided to
represent them by a specific entity type. This entity type was derived from the
attribute Serial-Number by transforming it into the entity type COPY. For
this purpose, we used the transformation �����4��� / 8

�
�	
� / $@ 6�

�

���.

This transformation produces a new entity type, which is quite SQL-com-
pliant, but also a rel-type, which is not at all SQL-compliant! However, rel-
types are no longer a problem for us, since we can get rid of any kind of rel-
type, as we exercised it in lesson 9.

So, let us proceed as suggested: we select Keyword in BOOK, and we execute
�����4��� / 8

�
�	
� / $@ 6�

�
���. Now we are facing a puzzling ques-
tion: do we prefer the ��
���%��	�&	�
������
� or the 5� ���	�&	�
������
� ver-
sions? We have discussed the differences between them, but you sure have
forgotten it. Don’t worry, this a good opportunity to have a deeper look at this
important question.

⇔

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
Responsible[0-1]
id: Pid
ref: Responsible

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Phone[1-5]
Responsible[0-1]
id: Pid
ref: Responsible
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-5
First we choose the ��
���%��	�&	�
������
� procedure. The result is shown in
Figure 10.3.

�	���"3#)�$�Extracting the attribute Keyword as a new entity type through
the)	�
�	����������	
�
��	 technique.

We then transform the rel-type BOO_Key into a foreign key as in Figure 10.4.

�	���"3#+�$�Reducing the rel-type BOO_Key into a foreign key.

We must however be aware of a semantic loss which is induced by this trans-
formation. Indeed, as discussed in the addenda of Lesson 9, this transforma-
tion does not translate completely non standard cardinalities. As a
consequence, the cardinality [0-10] of BOOK has been translated as if it were
[0-N]. If this limit is essential, then we can use the advanced SQL generator

⇔

⇔

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

1-1

0-10 BOO_Key

Keyword
Keyword
id: BOO_Key.BOOK

Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

1-1

0-10 BOO_Key

Keyword
Keyword
id: BOO_Key.BOOK

Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

.H\ZRUG

Book-id
Keyword
id: Book-id

Keyword
ref: Book-id

%22.

Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id
����������������
	�� ��� !�"�#����������� ����������

10-6 "�

��4�6�"
3�%� ��
�� ��3�:�;
of DB-MAIN that can generate �	�33�	
 or %��%9 predicates to validate this
kind of constraint in real time if needed. To keep the discussion as simple as
possible, we will ignore this processor in this volume.

It is interesting to observe what would happen should we have chosen the other
variant of the transformation, i.e., �� ���	�&	�
������
�. Let us try it in Figure
10.5.

�	���"3#,�$�Extracting the attribute Keyword as a new entity type through
the 9��
���������	
�
��	 technique.

Now, the rel-type BOO_Key is ����$
�$����. As in Lesson 9, we transform
it into an entity type (Figure 10.6).

�	���"3#-�$�Transforming the rel-type BOO_Key into an entity type.

⇔

⇔

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

1-N0-10 BOO_Key

Keyword
Keyword
id: Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

1-N0-10 BOO_Key

Keyword
Keyword
id: Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

1-1

1-N

k

1-1

0-10

b

Keyword
Keyword
id: Keyword

BOO_Key
id: b.BOOK

k.Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-7
Then we reduce each resulting
����
����� rel-type into a foreign key (Figure
10.7).

�	���"3#.�$�Net result of extracting the attribute Keyword through the 9��
�
�������	
�
��	 technique.

Now, how can we compare these solutions? Let us call them respectively the
��
���%��

 ���
� (Figure 10.4) and 5� ���

 ���
� (Figure 10.7).

A first observation is that the 5� ���

 ���
� proposes two additional entity ty-
pes while the ��
���%��

 ���
� proposes one only. Therefore the latter will ge-
nerate fewer SQL tables.

A second observation is that they are equivalent, i.e., they convey exactly the
same semantics. Any situation in the application domain (the library) which
can be represented by one of them can be represented by the other as well. In-
deed, both solution derives from the same source schema, through semantics-
preserving transformations2. In the Addendum, we will prove this equivalen-
ce in another way. To allow an easier comparison, we will present both solu-
tion side by side and change the names in such a way that a name has the same
meaning in both schemas:

⇔

2. It is not quite true of course, because we have lost cardinality 10. However, since this pro-
perty has been lost in both solutions, they still are equivalent.

1-1

1-N

k

1-1

0-10

b

Keyword
Keyword
id: Keyword

BOO_Key
id: b.BOOK

k.Keyword

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

.H\ZRUG

Keyword
id: Keyword

%22B.H\

Book-id
Keyword
id: Book-id

Keyword
equ: Keyword
ref: Book-id

%22.

Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id
����������������
	�� ��� !�"�#����������� ����������

10-8 "�

��4�6�"
3�%� ��
�� ��3�:�;

�	���"3#1�$�Comparing both)	�
�	�� (left) and 9��
� (right) solutions.

Now, it is clear that the entity type KEYWORD represents the dictionary of all
the �
�

��
����	�� of keywords in the library. This explicit representation was
not required in the conceptual schema, and we will not give it a particular in-
terest. Therefore, since we have no other criteria, we will choose the most eco-
nomical proposal, i.e., the ��
���%� solution.

The procedure to use to express the second multivalued attribute, Phone of
BORROWER, will be exactly the same. To avoid confusing the new entity type
with the representation of distinct phone numbers, we rename it Phone-of-
Bor (Figure 10.9).

Here too, we lost the exact cardinality of Phone[1-5], replaced by [1-N].

⇔
.:�RI�%22.

Book-id
Keyword
id: Book-id

Keyword
ref: Book-id

%22.

Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

.(<:25'

Keyword
id: Keyword

.:�RI�%22.

Book-id
Keyword
id: Book-id

Keyword
equ: Keyword
ref: Book-id

%22.

Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-9

�	���"3#2�$�Extracting the multivalued attribute Phone as a new entity type.

�.�# ���*������+�4;$�	����
�����	����

Now we have completed the transformation of the conceptual schema into an
SQL-compliant schema. The latter comprises only entity types, single-valued
and atomic attributes, identifiers and foreign keys, and therefore can be ex-
pressed into SQL statements very easily, as will be shown in lesson 12. It is
shown in Figure 10.10.

There is just a little point which deserves a comment. We have retained a
constraint which does not seem to be SQL-compliant, namely the equ cons-
traint, which is a special form of referential constraint that can be found in
AUTHOR and in BORROWER. SQL can take care of the referential constraint,
but will ignore the inverse inclusion constraint. So, it is able to implement the
ref part of this constraint.

As a note for database programmers, we can suggest to express the full cons-
traint as follows:

- the ref constraint will be expressed by a foreign key,

- the inverse ��% �
�
� constraint will be expressed as a check or trig-
ger clause.

- the whole package will be encapsulated into �	��
�%��
�
 with deferred
constraint checking.

⇔

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Phone[1-5]
Responsible[0-1]
id: Pid
ref: Responsible

3+21(�RI�%255�

Pid
Phone
id: Pid

Phone
equ: Pid

%2552:(5

Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Responsible[0-1]
id: Pid
ref: Responsible
����������������
	�� ��� !�"�#����������� ����������

10-10 "�

��4�6�"
3�%� ��
�� ��3�:�;

�	���"3#"3�$�This schema does not include non-relational constructs any-
more.

written
ID_Aut
Book-id
id: ID_Aut

Book-id
ref: Book-id
equ: ID_Aut

reference
reference
origin
id: origin

reference
ref: origin
ref: reference

PROJECT
Pcode
Title
id: Pcode
id’: Title

PHONE-of-BORR
Pid
Phone
id: Pid

Phone
equ: Pid

KW-of-BOOK
Book-id
Keyword
id: Book-id

Keyword
ref: Book-id

COPY
Book-id
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

closed-borrowing
Book-id
Serial-Number
Borrow-Date
End-Date
Pid
Pcode
id: Book-id

Serial-Number
Borrow-Date

ref: Book-id
Serial-Number

ref: Pid
ref: Pcode

borrowing
Book-id
Serial-Number
Borrow-Date
Pid
Pcode
id: Book-id

Serial-Number
ref

ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Responsible[0-1]
id: Pid
ref: Responsible

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-11

�	���"3#""�$�The final relational logical schema, now fully SQL-compliant.

:5,77(1

ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
ref: BOOK_ID
equ: ID_AUT

5()(5(1&(

REFERENCE
ORIGIN
id: ORIGIN

REFERENCE
ref: ORIGIN
ref: REFERENCE

352-(&7

PCODE
TITLE
id: PCODE
id’: TITLE

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
equ: PID

.:B2)B%22.

BOOK_ID
KEYWORD
id: BOOK_ID

KEYWORD
ref: BOOK_ID

&23<

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF_VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER
ref: BOOK_ID

&/26('B%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
END_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
BORROW_DATE

ref: BOOK_ID
SERIAL_NUMBER

ref: PID
ref: PCODE

%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
ref

ref: PID
ref: PCODE

%2552:(5

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]
id: PID
ref: RESPONSIBLE

%22.

BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
id: BOOK_ID

$87+25

ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: ID_AUT

LIBRARY/Logical
����������������
	�� ��� !�"�#����������� ����������

10-12 "�

��4�6�"
3�%� ��
�� ��3�:�;
�.�' ���������

The names of the entity types and of the columns directly derive from concep-
tual names. They do not necessarily satisfy the naming conventions of the
DBMS. For instance, some characters may be invalid, or reserved words must
be avoided.

The current logical schema includes an invalid symbol, namely "-" (dash),
which is prohibited in most SQL DBMS. The most elegant solution is to re-
place all its occurrences by the symbol "_" (underscore). Though it is not the
case in our schema, such names as TABLE, INDEX, DATE should be replaced
with any other words which do not appear in the reserved word list of the
DBMS.

To complete the process, we must change the names as required by the SQL
syntax. We proceed as suggested in Section 5.9 (Figure 10.11).

�.�) ;�
��
�������������

We save the current project under the name logical-10.lun and we quit
DB-MAIN.
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-13
��	��
	����������

�.�, 6�������B�
(����	������
���
�
����� ���
������������
�
���

We have considered two distinct techniques for transforming a multivalued at-
tribute. Though other techniques exist, these ones are the most important.
Therefore, it is essential that we analyze them in order to get a better unders-
tanding of their properties. The array of Figure 10.12 summarizes all the va-
riants of multivalued attribute transformation into entity type, so that the
equivalence of ��
���%� and 5� �� representations can be perceived more
clearly.

�	���"3#"(�$�The equivalence array of four versions of a multivalued attribu-
te. It has been obtained by applying the two version of �

���

�=�	
�
��
���
transformation and the ����
���=�	
�
��
��� transformation.

BOOK
ISBN
Title
AuthorName[0-5]

1-N0-5 written by

BOOK
ISBN
Title

AUTHOR
AuthorName
id: AuthorName

1-1

0-5

what

BOOK
ISBN
Title

WRITTEN BY
AuthorName
id: what.BOOK

AuthorName

1-1

0-5

what

1-1

1-N

who

WRITTEN BY

id: what.BOOK
who.AUTHOR

BOOK
ISBN
Title

AUTHOR
AuthorName
id: AuthorName
����������������
	�� ��� !�"�#����������� ����������

10-14 "�

��4�6�"
3�%� ��
�� ��3�:�;
�.�- 6�����������
���������
������

����

The processing of compound attributes Location and Address was based
on the ��
�33	�3���
� transformation. This is a simple and intuitive technique.
However, it has a major drawback, it hides the initial grouping of the compo-
nents, despite the pathetic use of prefix which suggests the lost aggregate.

In fact, other techniques exist. Two of them consists in transforming the com-
pound attribute into an entity type, either by ��
���%� representation, or by 5��
 �� representation. Let us try both techniques on Location of COPY, in the
abbreged version of Figure 10.13 (left).

First, Location is extracted by representation of its instances: each instance
of Location (i.e., one for each COPY instance) is represented by a LOCA-
TION entity. The rel-type is
����
�
��, and makes COPY the implicit identi-
fier of LOCATION (Figure 10.13).

�	���"3#")�$�Extracting a compound attribute as an entity type ()	�
�	�� re-
presentation).

Then, this rel-type is reduced to a foreign key, which in addition becomes the
explicit identifier of LOCATION (Figure 10.14).

⇔

COPY
Serial-Number
Book-ID
Location

Store
Shelf

id: Serial-Number
Book-ID

1-1

1-1

where
LOCATION
Store
Shelf

COPY
Serial-Number
Book-ID
id: Serial-Number

Book-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-15

�	���"3#"+�$�Another relational expression of a compound attribute.

Let us try the 5� ���	�&	�
������
� technique on Location (Figure 10.15).
Now, there is one LOCATION entity for each �
�

��
 value of Location,
wherever it appears in COPY entities. There can be several COPY entities for
one LOCATION entity. In other words, the entity type LOCATION is a dictio-
nary of book locations, hence its identifier: (Store, Shelf).

�	���"3#",�$�Extracting a compound attribute as an entity type (9��
� repre-
sentation).

However, transforming the rel-type where into a foreign key is not so ob-
vious. Do try to transform it: DB-MAIN includes into COPY a foreign key
made of the identifier of LOCATION, i.e., all its attributes (Figure 10.16). Not
a particularly elegant and concise result, when compared with the source sche-
ma!

⇔

/2&$7,21

Serial-Number
Book-ID
Store
Shelf
id: Serial-Number

Book-ID
equ

&23<

Serial-Number
Book-ID
id: Serial-Number

Book-ID

COPY
Serial-Number
Book-ID
Location

Store
Shelf

id: Serial-Number
Book-ID

1-N

1-1

where

LOCATION
Store
Shelf
id: Store

Shelf

COPY
Serial-Number
Book-ID
id: Serial-Number

Book-ID
����������������
	�� ��� !�"�#����������� ����������

10-16 "�

��4�6�"
3�%� ��
�� ��3�:�;

�	���"3#"-�$�This relational schema appears useless.

We must proceed differently. The identifier of LOCATION is long and com-
plex. The situation would be better if this entity type had a short and simple
identifier. Let us give it such an identifier through the command �����4���
/ 6�

��
��� / 8�� ���� �� (Figure 10.17).

�	���"3#".�$�Adding a technical ID to LOCATION.

Now, transforming the rel-type into a foreign key is straighforward and gives
a more elegant result (Figure 10.18). One problem is that the new technical
attribute must be correctly managed through a value constructor which deli-
vers a new value for ID_Loc each time it is called. Most relational DBMS
offers data types with that property3.

/2&$7,21

Store
Shelf
id: Store

Shelf

&23<

Serial-Number
Book-ID
Store
Shelf
id: Serial-Number

Book-ID
equ: Store

Shelf

1-1

1-Nwhere

LOCATION
ID_Loc
Store
Shelf
id: ID_Loc
id’: Store

ShelfCOPY
Serial-Number
Book-ID
id: Serial-Number

Book-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-17

�	���"3#"1�$�A third relational expression of a compound attribute.

3. Such as the SEQUENCE feature of Oracle.

/2&$7,21

ID_Loc
Store
Shelf
id: ID_Loc
id’: Store

Shelf

&23<

Serial-Number
Book-ID
ID_Loc
id: Serial-Number

Book-ID
equ: ID_Loc
����������������
	�� ��� !�"�#����������� ����������

10-18 "�

��4�6�"
3�%� ��
�� ��3�:�;
4�����&����$�������.

• In this lesson, we have discussed

- the various ways to process a �� ���� ��� attribute, and we have proved
the equivalence of these techniques

- the various ways to process a %
�&
��� attribute, and we have proved
the equivalence of these techniques.

90��	
��������$�������.

10.1 Propose a relational logical version for the following entity type.

10.2 Modify the result of question 10.1 in such a way that the schema does
not include any optional columns. #���: use the ���	�$����������� ��&�
transformation to get rid of optional attributes.

COMPANY
Com-ID
Com-Name
Com-Address

Number[0-1]
Street
City

Postal-Code[0-1]
City-Name

Com-Revenue[0-1]
Phone[1-4]

Country[0-1]
Area
Local
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-19
10.3 Find a conceptual expression for the following schema (this is a reverse
engineering exercise).

10.4 Transform the following schema into relational structures.

10.5 Transform the following schema into relational structures.

PRODUCT
PNUM
DESCRIPTION
COMPOSITION[1-100]
SUBSTITUTE[0-1]
id: PNUM
ref: COMPOSITION[*]
ref: SUBSTITUTE

ACCIDENT
A-Code
Driver[0-1]

Name
Address

Date
Location
id: A-Code

CLIENT
CNum
Name
Address[0-5]

Number
Street
City

Postal-Code
City-Name

Account
id: CNum
����������������
	�� ��� !�"�#����������� ����������

10-20 "�

��4�6�"
3�%� ��
�� ��3�:�;
10.6 Consider the following schema.

Which of the SQL-compliant schemas proposed below can be conside-
red strictly equivalent to the former?

10.7 Propose a SQL-compliant schema in which the following coexistence
constraint has been transformed

A
A1
A2[0-1]
A3
id: A1

($�

A1
A2[0-1]
id: A1

equ

$

A1
A3
id: A1

���($����

A1
A2
id: A1

ref

$

A1
A3
id: A1

���($����

A2
A1
id: A2
ref: A1

$

A1
A3
id: A1

$

A1
A3
id: A1

���($����

A1
A2
id: A1

A2
ref: A1

DELIVERY
DelNum
Date
Customer[0-1]
Address[0-1]
id: DelNum
coex: Customer

Address
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�"
3�%� ��
�� ��3�:�; 10-21
10.8 Prove that the following entity types are (
	 are not) equivalent.

10.9 Consider the following conceptual schema.

A database designer thinks he has found twelve equivalent schemas.
Can you help him in choosing those which are really equivalent to the
former? Prove your choice.

WRITES
Author-ID
Book-ID
id: Author-ID

Book-ID

BOOK
Book-ID
Author-ID[1-N]
id: Book-ID

0-N0-N produces

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num

0-1

1-N

m

0-1

1-N

c

PRODUCES

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num 1-1

0-N

m

1-1

0-N

c

PRODUCES
id: c.COMPANY

m.MACHINE

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num

COMPANY
C-Num
C-Name
Machine[0-N]

N-Num
Description

id: C-Num

0-10-N produces

0-N0-1 produced by

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num
����������������
	�� ��� !�"�#����������� ����������

10-22 "�

��4�6�"
3�%� ��
�� ��3�:�;
PRODUCTION
M-Num
C-Num
C-Name
Description
id: C-Num

M-Num

PRODUCTION
Company

C-Num
C-Name

Machine
N-Num
Description

id: Company.C-Num
Machine.N-Num

0-N

1-1

of

PRODUCTION
C-Num
id: C-Num

of.MACHINE
ref: C-Num

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num

PRODUCTION
M-Num
C-Num
id: C-Num

M-Num
ref: C-Num
ref: M-Num

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num

0-N

1-N

m

0-1

1-1

c

PRODUCES

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
id: C-Num

0-N

0-N

plays

KID
Name
Skill
id: Name

GAME
Name
Model
id: Name

PRODUCTION
Company[0-N]

C-Num
C-Name

Machine[0-N]
N-Num
Description

MACHINE
M-Num
Description
id: M-Num

COMPANY
C-Num
C-Name
M-Num[0-N]
id: C-Num
ref: M-Num[*]
���������� ����������������
	�� ��� !�"�#�����������

�

$��������

$��
	������
���*�+

�����

��

This lesson describes a systematic transformation plan which ga-
rantees the production of fully SQL-compliant schemas from
most conceptual schemas. It completes and organizes the opera-
tions described in Lessons 9 and 10. The LIBRARY conceptual
schema is processed according to this plan.
This lesson also describes three assistants that can help analyze
and transform schemas. In particular, they provide developers
with an easy way to write reusable scripts that automate the anal-
ysis and the production of schemas.
����������������
	�� ��� !�"�#����������� ����������

11-2 "�

��446�"
3�%� ���
�3��:�;
���� 4����
���$��������

We start DB-MAIN and we open the project logical-10 which now inclu-
des the conceptual schema and the logical schema of the database in project.
We save it as logical-11.lun, the version on which we will work in this
lesson, then we delete the schema LIBRARY/Logical, so that only the con-
ceptual schema remains

We build a new schema, called LIBRARY/Logical (once again), by co-
pying the conceptual schema. We open this (future) logical schema.

���� =���
���������&������
	���&

In the previous two lessons, we have produced a SQL-compliant schema by
applying a series of transformations. In this lesson, we will revisit in deeper
detail the way in which we obtained this schema, we will improve this proce-
dure, and finally automate it.

We can ask two questions about this procedure:

- was it the best way to proceed?

- does this procedure work with any conceptual schema?

Unfortunately, the answer to both questions is NO. Let us examine some pro-
blems which escaped our attention:

- reducing
����
����� rel-types into foreign keys occurs in several pla-
ces; wasn’t it possible to do it only once?

- processing a multivalued attribute may push a compound attribute at le-
vel 11;

- conversely, processing a compound attribute may push a multivalued at-
tribute at level 1; the schema of Figure 11.1 illustrates the last two points:
transforming Address makes City and Phone level 1 attributes.

1. We call ��� �4 the level of the attributes directly attached to the entity type (or the rel-
type). In a SQL-compliant schema, all attributes are at the level 1. The direct components
of a level 1 attribute are at level 2, and so on.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-3

�	���""#"�$�Multi-level attributes.

- transforming a
����
����� rel-type may be impossible due to a still un-
resolved identifier, i.e., an identifier that includes a role of a rel-type
which has not been transformed yet. In the example of Figure 11.2,
works-in cannot be processed until the rel-type from has been trans-
formed into a foreign key, making the identifier of BRANCH all-attribute.

�	���""#(�$�Rel-type works-in cannot be transformed before from.

- what about IS-A relations? Since they are not SQL-compliant, they must
be transformed into equivalent relational structures.

PERSON
PID
Name
Address[0-5]

Street
City

Postal-Code
City-Name

Phone[0-3]
Area
Local

Birth-Date

1-10-N works-in

1-1

0-N

from

EMPLOYEE
Emp-ID
Name
id: works-in.BRANCH

Emp-ID

BRANCH
Country
Address
id: from.COMPANY

Country

COMPANY
Name
id: Name
����������������
	�� ��� !�"�#����������� ����������

11-4 "�

��446�"
3�%� ���
�3��:�;
Obviously, we need to complete our initial intuitive procedure, and to organize
its steps in a more systematic way. Since processing IS-A relations is a quite
new problem, we will tackle it first.

���� ���������
��������4��������
���

Supertype/subtype hierarchies (through IS-A relations) are very powerful se-
mantic constructs, but they have no direct representation in standard DMS,
such as SQL2. In addition, mastering them poses some interesting, but rather
complex problems that would lead us far beyond the objectives of this intro-
ductory volume.

There are several ways to replace IS-A relations into equivalent plain data
structures. Each of them comes with its drawbacks and its advantages, and
none can be claimed to be superior to the others on all the possible criteria. We
will present a limited, but intuitive technique which can be easily carried out.
It applies to IS-A structures on which no constraints D (disjoint) and T (total)
are defined, or, more precisely, whose constraints D and T will not be transla-
ted. In other words, the subtypes may overlap, and the supertype is partially
covered by its subtypes. More complex situations require advanced techni-
ques which will be ignored in this lesson (though a short discussion will be
proposed in the Addenda.

The proposed technique consists in representing each concerned entity type,
be it supertype or subtype, by an ����&����������������&�, and in connecting
each former subtype to its supertype by a
����
�
�� rel-type as illustrated in
Figure 11.3.

2. At least in SQL2. The next standard (SQL3 or SQL-1999) includes the concept of type
hierarchy, inducing a sort of IS-A relation on the tables of a database. We will ignore this
feature in this volume.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-5

�	���""#)�$�Representation of IS-A hierarchy through �	��
���	� rel-types.

Translating this schema into pure SQL-compliant structures is now easy (Fi-
gure 11.4). It is important to note that each foreign key is an identifier as well.
From the user point of view, the supertype entities are stored in the table EM-
PLOYEE, while the subtype entities must be rebuilt by joining the subtype ta-
ble with the supertype table: data about % �	9
 are obtained by the natural join
between CLERK and EMPLOYEE.

�	���""#+�$�SQL-compliant structure translation an IS-A hierarchy.

This implementation does not enforce any ��
7��%��
� constraint between the
contents of CLERK and ENGINEER, nor any �
�� ��� constraint on EM-
PLOYEE. Indeed, a given employee entity can also appear in the table CLERK,
in the table ENGINEER, in both or even in none.

⇔

ENGINEER
Qualification

CLERK
Function

EMPLOYEE
Emp-ID
Name
id: Emp-ID

1-1

0-1

eng-isa

1-1

0-1

cl-isa

ENGINEER
Qualification

EMPLOYEE
Emp-ID
Name
id: Emp-ID

CLERK
Function

(1*,1((5

Emp-ID
Qualification
id: Emp-ID

ref

(03/2<((

Emp-ID
Name
id: Emp-ID

&/(5.

Emp-ID
Function
id: Emp-ID

ref
����������������
	�� ��� !�"�#����������� ����������

11-6 "�

��446�"
3�%� ���
�3��:�;
���! �������������
�������

With these considerations in mind, we can propose a general procedure to
translate conceptual schemas in SQL-compliant structures.

�	���""#,�$�A detailed procedure to translate conceptual schemas into SQL-
compliant schemas.

In this plan, the transformation of
����
����� (and
����
�
��) rel-types into
reference attributes is delayed until all the transformations that may produced
such rel-types (Steps 1, 2 and 4) have been carried out.

In addition, processing the compound and multivalued attributes is repeated to
cope with nested attributes.

Finally, the blocking structures preventing the transformation of
����
�����
(and
����
�
��) rel-types are processed in two ways: by iterating on this
transformation (hybrid identifier problem), and by adding technical identifiers
when necessary (missing id problem).

�������4����

��������4�������

������������

������� �	
��
�	��������������	
��
������������������	��������

������� �	
��
�	����������
����	
��
���	
������
������������������
���
��	�������������	��������

������� �	
��
�	������������������
�����������
��	

����
���������
��	��
�
����

������� �	
��
�	�������������
��	�����	

����
��������������������������
����
	��	�����
�����

����� � !���
����������
��������������	��
	�������	������������	�������
�����

��	������

�����"� �	
��
�	���
��
���	
���
�������������������
����������	�
�	�����

��	������

�����#� !���
�������"������������	��	����������
������	
��
�	���

�����$� %�	����	��	��������&�������������������	
��
�	������������#��������
����
��������
�������������������
��	'�	���	�
���
��	�����

���������
���������	���������������

�����(� !���
��������"�
���#����������	���������	��
���

������)� �	
���
��������
����
���	�������������*+�����
,�
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-7
Now let us apply this transformation plan to the conceptual schema we deve-
loped in Lesson 8.

�
����-�����.��/�	��
�����
The schema has no IS-A structures.

�	���""#-�$�Complex rel-types transformed.

1-1

0-N wri_BOO

1-1

1-Nwri_AUT

0-N
responsible

0-1

responsible-for

1-1

0-N

reference

1-1

0-N

origin

1-1

0-N

of

1-1

0-Nclo_PRO

1-1

0-N

clo_COP

1-1

0-N

clo_BOR

1-1
0-N

bor_PRO

1-1

0-1 bor_COP

1-1

0-N

bor_BOR

written
id: wri_BOO.BOOK

wri_AUT.AUTHOR

reference

id: reference.BOOK
origin.BOOK

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY

Borrow-Date

borrowing
Borrow-Date

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

11-8 "�

��446�"
3�%� ���
�3��:�;
�
����-�������,�
����
�������
���	��������
All the rel-types with a degree (number of roles) greater than 2, or with attri-
butes, are called complex. The complex rel-types borrowing and
closed-borrowing are transformed into entity types.

We process the ������
����� rel-types in the same way. Now, reference
and written are replaced with equivalent entity types. The result is shown
in Figure 11.6.

�
����-����������
��	������
The compound attributes Location and Address are disaggregated, i.e.,
replaced by their respective components. Hence the schema of Figure 11.7.

�
����-�������
�����
��	������
The multivalued attributes Keyword and Phone are transformed into entity
types (Figure 11.8).

�
����-�	���
�������������
����
There are no more compound or multivalued attributes. Therefore, this step
does not apply.

�
����-���������
���	��������
Let us suppose that we process the rel-types in the alphabetical order of their
names: bh, BOO_key, bor_BOR, bor_COP, bor_PRO, clo_BOR,
clo_COP, clo_PRO, of, origin, reference, responsible-for,
wri_AUT, wri_BOO.

We observe that some rel-types have not been reduced. For instance, the trans-
formation of BOR_COP and CLO_COP failed because the referenced entity
type, COPY, still had a hybrid identifier comprising the role of.BOOK. Hence
the following step.

�
��� -�	���
�������"
In fact, the rel-type of have been reduced at the end of Step 6, but too late to
allow BOR_COP and CLO_COP to be transformed. Now it does not block
the transformation of these rel-types any longer. So we apply once again the
transformation of step 6, which correctly transforms the rel-types BOR_COP
and CLO_COP (Figure 11.10).
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-9

�	���""#.�$�Compound attributes disaggregated.

1-1

0-N wri_BOO

1-1

1-Nwri_AUT

0-N
responsible

0-1

responsible-for

1-1

0-N

reference

1-1

0-N

origin

1-1

0-N

of

1-1

0-Nclo_PRO

1-1

0-N

clo_COP

1-1

0-N

clo_BOR

1-1
0-N

bor_PRO

1-1

0-1 bor_COP

1-1

0-N

bor_BOR

written
id: wri_BOO.BOOK

wri_AUT.AUTHOR

reference

id: reference.BOOK
origin.BOOK

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY

Borrow-Date

borrowing
Borrow-Date

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Phone[1-5]
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

11-10 "�

��446�"
3�%� ���
�3��:�;

�	���""#1�$�Multivalued attributes extracted as entity types.

1-1

1-5 ph

1-1

0-10

BOO_Key

1-1

0-N wri_BOO

1-1

1-Nwri_AUT

0-N
responsible

0-1

responsible-for

1-1

0-N

reference

1-1

0-N

origin

1-1

0-N

of

1-1
0-N

clo_PRO

1-1

0-N

clo_COP

1-1

0-N

clo_BOR

1-1

0-N

bor_PRO

1-1

0-1 bor_COP

1-1

0-N

bor_BOR

PHONE-of-BORR
Phone
id: ph.BORROWER

Phone

KW-of-BOOK
Keyword
id: BOO_Key.BOOK

Keyword

written
id: wri_BOO.BOOK

wri_AUT.AUTHOR

reference

id: reference.BOOK
origin.BOOK

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY

Borrow-Date

borrowing
Borrow-Date

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-11

�	���""#2�$�Simple rel-types transformed into foreign keys. Three rel-types
fail to be transformed.

1-1

1-Nwri_AUT

1-1

0-N clo_COP

1-1

0-1 bor_COP
PHONE-of-BORR
Pid
Phone
id: Pid

Phone
equ: Pid

KW-of-BOOK
Book-id
Keyword
id: Book-id

Keyword
ref: Book-id

written
Book-id
id: Book-id

wri_AUT.AUTHOR
ref: Book-id

reference
Reference
Origin
id: Reference

Origin
ref: Origin
ref: Reference

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-id
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

closed-borrowing
Borrow-Date
End-Date
Pcode
Pid
id: clo_COP.COPY

Borrow-Date
ref: Pid
ref: Pcode

borrowing
Borrow-Date
Pid
Pcode
ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Responsible[0-1]
id: Pid
ref: Responsible

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
����������������
	�� ��� !�"�#����������� ����������

11-12 "�

��446�"
3�%� ���
�3��:�;

�	���""#"3�$�Remaining simple rel-types transformed into foreign keys. One
rel-type remains however.

1-1

1-Nwri_AUT

PHONE-of-BORR
Pid
Phone
id: Pid

Phone
equ: Pid

KW-of-BOOK
Book-id
Keyword
id: Book-id

Keyword
ref: Book-id

written
Book-id
id: Book-id

wri_AUT.AUTHOR
ref: Book-id

reference
Reference
Origin
id: Reference

Origin
ref: Origin
ref: Reference

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Book-id
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State
State-Comment[0-1]
id: Book-id

Serial-Number
ref: Book-id

closed-borrowing
Book-id
Serial-Number
Borrow-Date
End-Date
Pcode
Pid
id: Book-id

Serial-Number
Borrow-Date

ref: Pid
ref: Pcode
ref: Book-id

Serial-Number

borrowing
Book-id
Serial-Number
Borrow-Date
Pid
Pcode
id: Book-id

Serial-Number
ref

ref: Pid
ref: Pcode

BORROWER
Pid
Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Responsible[0-1]
id: Pid
ref: Responsible

BOOK
Book-id
Title
Publisher
Date-Published
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-13

�	���""#""�$�The SQL-compliant logical schema.

WRI_AUT still remains, but for another reason. It is not blocked due to hybrid
identifiers, but because of the lack of identifier in AUTHOR.

�
���!-���������������
��	�
We add a technical identifier to AUTHOR (Figure 11.12).

:5,77(1

ID_AUT
BOOK_ID
id: BOOK_ID

ID_AUT
ref: BOOK_ID
equ: ID_AUT

5()(5(1&(

REFERENCE
ORIGIN
id: REFERENCE

ORIGIN
ref: ORIGIN
ref: REFERENCE

352-(&7

PCODE
TITLE
id: PCODE
id’: TITLE

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
equ: PID

.:B2)B%22.

BOOK_ID
KEYWORD
id: BOOK_ID

KEYWORD
ref: BOOK_ID

&23<

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF_VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER
ref: BOOK_ID

&/26('B%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
END_DATE
PCODE
PID
id: BOOK_ID

SERIAL_NUMBER
BORROW_DATE

ref: PID
ref: PCODE
ref: BOOK_ID

SERIAL_NUMBER

%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
ref

ref: PID
ref: PCODE

%2552:(5

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]
id: PID
ref: RESPONSIBLE

%22.

BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
id: BOOK_ID

$87+25

ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: ID_AUT
����������������
	�� ��� !�"�#����������� ����������

11-14 "�

��446�"
3�%� ���
�3��:�;

�	���""#"(�$�Adding a technical ID to AUTHOR.

�
���"-�	���
�������"
... and we try again to reduce WRI_AUT. The structures are now fully SQL-
compliant.

�
����#-��	
���
��������
���
We transform the names: uppercase, replace spaces and dashes, replace reser-
ved words, etc. (Figure 11.11).

���# ����<��
��������������
������
�����

This transformation plan seems to work correctly, but the way we applied it is
rather tedious when processing large and complex schemas. DB-MAIN offers
a very powerful processor to help us apply transformation plans, and even to
write, save and reuse such plans.

To practice this assistant, we can delete the current logical schema and ask for
another copy of the conceptual schema that we open. We call the assistant by
the command 8��
�
 / 0�����
����4����

��.

The assistant is made of three main parts, the left-side area is the problem sol-
ver, while the right-side area comprises script management functions and the
control panel (Figure 11.13). For the present time, we will use the problem
solver and the control panel.

The �������������� is structured in two columns.

The first column proposes a collection of potential ��������, classified by ob-
ject type (Entity type, Rel-types, Is-a, Attributes, Groups, Miscellaneous, etc.).
When we select an object type, a list of typical situations is proposed (the &	
�
$ ��
), from which we can select one.

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-15

�	���""#")�$�The structure of the �������
��	������
��	������
�	
.

The second column, the
�
� list, proposes a list of possible actions (mainly
transformations) to solve the selected problem (the

 ���
�
), from which we
select one.

By clicking on button OK in the control panel, we �.�%��������
� �%�����%��
�

��� �����
$7�%�
�
������
%����������%
		�
&
����
�����
� �%����&	
$ ��. The
confirm button allows us to control the process object by object.

However, the best way to learn how all this works is to use it for solving real
problems. This is the objective of the next section.

������������������
We will use this assistant to produce a SQL-compliant schema from the cur-
rent conceptual schema. We will still proceed step by step, as suggested in the
transformation plan of Figure 11.5.

.������� /������
�

.����������(��
/��������
�	��

0�
�������
��
����������������
	�� ��� !�"�#����������� ����������

11-16 "�

��446�"
3�%� ���
�3��:�;
�
����-�����.��/�	��
�����
Should the schema comprised such structures, we could have used the assis-
tant to help us (through the ��$��object type).

- We select the item 8�� in the ��$� object type list (this is our %�		����&	
�
$ ��).

- We select the item 9��$
��� in the ��
� list (this is the &	
&

���

 ��
��
�).

- We unchecked the Confirm button (automatic mode).

- We click on OK.

�
����-�������,�
����
�������
���	��������
We proceed as follows (this operation is illustrated in Figure 11.13):

- We select the item ������7 in the 9��$
��� object type list (our %�		���
&	
$ ��).

- We select the item 6�

��
��� in the ��
� list (the &	
&

���

 ���
�).

- We click on OK.

That’s all: the complex rel-types borrowing and closed-borrowing
have been transformed.

We now process the ������
����� rel-types in the same way:

- We select the item �
�����&$& in the 9��$
��� object type list.

- We select the item 6�

��
��� in the ��
� list.

- We click on OK.

Now, reference and written are replaced with equivalent entity types.
The resulting schema inludes
����
����� and
����
�
�� rel-types only.

�
����-����������
��	������
There is an operation for them:

- We select the item �����	�� in the 8

�
�	
� object type list.

- We select the item �
��������

�� (or 6�

��
���) in the ��
� list.

- We click on OK.

Location and Address are replaced with their components.

�
����-�������
�����
��	������
The multivalued attributes Keyword and Phone are transformed into entity
types:
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-17
- We select the item ;	�

���	�� in the 8

�
�	
� object type list.

- We select the item 6�

��
��� in the ��
� list.

- We click on OK.

�
����-�	���
�������������
����
This step does not apply here.

�
����-���������
���	��������
The
����
����� and
����
�
�� rel-types are transformed into entity types:

- We select the item �
�����"$& in the 9��$
��� object type list (it includes

����
�
�� rel-types as well).

- We select the item 9�4����

����

�
�	
�� in the ��
� list.

- We click on OK.

Wherever possible, the
����
����� and
����
�
�� rel-types are transformed
into reference attributes. This operator automatically repeats this transforma-
tion until no rel-types can be transformed in this way anymore.

�
��� -�	���
�������"
This has been done by the problem solver.

�
���!-���������������
��	�
We add a ��%���%� ����������	 to all the entity types which need one in order to
make the transformation of rel-types into reference attributes possible (here
AUTHOR).

- We select the item *������������3 in the 6�

��
��� object type list.

- We select the item 8���
����
����
� in the ��
� list.

- We click on OK.

�
���"-�	���
�������"
That is:

- We select the item �
�����"$& in the 9��$
��� object type list.

- We select the item 9�4����

����

�
�	
�� in the ��
� list.

- We click on OK.

3. This label tells that technical ids will be associated only with entity types that will become
referenced tables.
����������������
	�� ��� !�"�#����������� ����������

11-18 "�

��446�"
3�%� ���
�3��:�;
This exercise is a good illustration of the concept of problem solving in DB-
MAIN.

A ������� is a family of structures which is perceived as a problem in the cur-
rent context. For instance, a compound attribute is not a problem in itself, but
it definitely is one when we try to build a SQL-compliant schema. In short, a
problem is a construct considered ���� ���in a given context.

A ���	

�� to a problem is an action (generally a transformation) which ope-
rates on the ���� �� construct, and which replaces it by another construct. In
general, there can be more than one solution. It is up to the analyst to choose
the action which best fits his/her objectives.

In the next lesson, we will use other functions of the Problem solver.

�������
�
��������

The best way to understand what a ���
�
 is, consists in writing one by ourself.
More precisely, we will automate the transformation plan used so far by wri-
ting the successive operations specified in the plan. Each operation can be spe-
cified in the '	
$ ���

 ��	 of the assistant by a problem/solution statement.
However, these statements are not executed (as when we clicked on button
OK), but they are stored in the
%	�&���	�� of the assistant.

Let us consider the first step: �	��
 ����3��/���	� ���
�
����
�
����
�
���	� �
��&�
. In the same way as we did in the previous section, we open the ��$� list
in the Problem solver, and we select the 8�� item (not really difficult since this
is a single-item list!). Then we open the ��
� list, and we select the 9��$
����
item. We add this statement to the (currently empty) script area by clicking on
the Add button. The script area now looks like the screen below.

To specify the second step, we select ������7 in the 9��$
��� list, and the
6�

��
��� in the ��
� list, and we add this statement in the script area. We
address the ������
������	� ���&�
 in the same way. The script now includes
three statements:
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-19
The steps related to attributes require a more subtile approach. Indeed, the
scripting language does not offer loop structures, nor any standard control
structures that are common in most programming languages4. So, to process
complex attribute structures, we have to add as many statements as there can
exist attribute levels. We suppose that three levels of nesting is realistic, the-
refore, we add three blocks of attribute processing statements as follows:

The other transformation are introduced easily (Figure 11.14).

All that remains to be done is to transform the names. For that, we click on the
button Name processing in the '	
$ ��
 part, and we click on Add. Then, the
�����&	
%�

��3�panel opens (Figure 5.17 and Figure 5.18), so that we can set
the parameters. Later on, we can change these parameters by selecting the last
statement in the script area and by clicking on Edit.

This completes the script (Figure 11.15) which can be saved (button Save) for
further reuse (button Load).

4. As we will see in the Technical addenda, the �����%���3
$� � �	��
�
	����
� Assistant
will give us an elegant way to write more sophisticated scripts.
����������������
	�� ��� !�"�#����������� ����������

11-20 "�

��446�"
3�%� ���
�3��:�;

�	���""#"+�$�Completing the transformations.

�	���""#",�$�The !�	���

��=����
��	�� transformation script.

To execute this script, we click on the button OK. Note that the effect of clic-
king on this button depends on the contents of the script area:

- if the
%	�&���	����
���&��, the assistant executes the current problem/so-
lution statement of the Problem solver,

- if the
%	�&���	���%
�����
���
%	�&�, the assistant executes this script ins-
tead.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-21
The script manager offers the following script manipulations:
• button Add adds the current problem/solution statement to the end

of the current script
• button Insert inserts the current problem/solution statement before

the selected statement of the script (click on the state-
ment to select it)

• button Remove removes the current problem/solution statement
• button Edit allows the modification of the parameters of the selec-

ted statement (e.g., Name processing)
• button Clear empties the script area
• button Predefined the assistant proposes predefined scripts to produce

schemas for some standard models; clicking on this
button includes the selected script in the script area; a
good way to examine other examples of scripts;

• button Load loads in the script area a script that has been saved on
disk;

• button Save saves on disk the contents of the script area.
• button Copy saves the text of the script on the clipboard.

���' ;�
��
�������������

We save the current project under the name logical-11. We can now quit
DB-MAIN.
����������������
	�� ��� !�"�#����������� ����������

11-22 "�

��446�"
3�%� ���
�3��:�;
��	��
	����������

���) �4��������������
�����(
�
���

8��	
�
����	�
��������
��
�
�

In this lesson, we have proposed a general technique to get rid of IS-A rela-
tions without loss of information. As we carefully mentioned it, we ignored
the subtype constraints D and T. What would have happened if we had pro-
cessed IS-A complemented with such constraints?

Lesson 6 identified four patterns, illustrated in Figure 6.9, among which we
can implement the last one only (¬� and ¬�). Let us experiment the transla-
tion of the � constraint (Figure 11.16). We observe that this constraint has
been expressed as an exclusive constraint holding between the
����
�
��
rel-types. Indeed, it states that any CUSTOMER entity can be linked with one
PERSON entity or with one COMPANY entity, but not both.

�	���""#"-�$�Expression of an IS-A hierarchy with a D constraint.

Similarly, a � constraint would have been translated into an at-least-one
constraint and a � constraint into an exactly-one constraint.

⇔
D

COMPANY
VAT

PERSON
Name

CUSTOMER
Cust-ID
id: Cust-ID

1-1

0-1

p_isa

1-1

0-1

c_isa

PERSON
Name

CUSTOMER
Cust-ID
id: Cust-ID
excl: c_isa.COMPANY

p_isa.PERSON

COMPANY
VAT
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-23
These translation rules preserve the subtype constraints. In particular, you can
try the inverse transformation by yourself: select CUSTOMER, then execute
�����4��� / 6�

�
��� / 9��$
���� $@
�$�.

However, things get disappointing when we try to translate these rel-types into
foreign keys. Indeed, the new constraints disappear, since the standard SQL-
DDL does not offer any declarative clause to enforce them.

The DB-MAIN transformation tries to compensate this loss by introducing a
new optional attribute in the supertype for each subtype, and applying the ex-
clusive constraint to these attributes (Figure 11.17). The idea is that when a
customer is a person, the PERSON attribute of its entity is set to a non-null va-
lue, while this attribute is void if the customer is not a person. This technique
is better than nothing, but the correct management of these type attributes re-
lies entirely on the user/programmer5.

Other subtype constraints are translated similarly.

�	���""#".�$�An awkward artifact to simulate the � ��
��#� constraint.

������$��
��
������
���
����
A	�
Several other techniques exist to translate IS-A hierarchies in standard struc-
tures. One of them can be derived from the basic technique we developed abo-
ve, provided each subtype has a rather simple structure.

5. They can be managed by procedural fragments in �	�33�	
 for instance. However, writing
correct triggers for such patterns requires special care.

⇔

1-1

0-1

p_isa

1-1

0-1

c_isa

PERSON
Name

CUSTOMER
Cust-ID
id: Cust-ID
excl: c_isa.COMPANY

p_isa.PERSON

COMPANY
VAT

PERSON
Cust-ID
Name
id: Cust-ID

ref

CUSTOMER
Cust-ID
PERSON[0-1]
COMPANY[0-1]
id: Cust-ID
excl: COMPANY

PERSON COMPANY
Cust-ID
VAT
id: Cust-ID

ref
����������������
	�� ��� !�"�#����������� ����������

11-24 "�

��446�"
3�%� ���
�3��:�;
According to this second technique, called �&2�	������	����%�, each subtype
is integrated into its supertype, generally by transformation into an attribute.
Considering the schema of Figure 11.16 (right), we apply the transformation
�����4��� / 6�

�
��� / $@ 8

�
�	
� to each subtype. The result is presen-
ted in Figure 11.18 as the transformation of an IS-A hierarchy. It enjoys two
qualities that the first technique lacks:
• the relational structure includes a correct translation of the � constraint,
• this constraint is easily encoded into a row-level check predicate.

�	���""#"1�$�Integrating the subtypes into the supertype. The subtype cons-
traints are correctly translated.

Though further comparing these techniques would prove too technical for the
scope of this tutorial, we will draw attention on the complexity of the transla-
tion of richer subtypes.

Let us consider that each subtype includes several attributes. The transforma-
tion of the subtypes into supertype attributes leads to
&��
�� �%
�&
��� attri-
butes (Figure 11.19). Disaggregating these attributes to make them SQL-
compliant yields complex integrity constraints (Figure 11.20).

Of course, it is possible to simplify the schema by observing that the excl
constraint need not hold among the two group of attributes, because expres-
sing this constraint among one attribute per group is quite equivalent6 (Figure
11.21).

Nevertheless, the final schema, though correct and not too complicated to code
in SQL, remains fairly complex, even for simple conceptual schemas.

⇔

6. Can you prove that this simplification is valid?

D

COMPANY
VAT

PERSON
Name

CUSTOMER
Cust-ID
id: Cust-ID

CUSTOMER
Cust-ID
Name[0-1]
VAT[0-1]
id: Cust-ID
excl: VAT

Name
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-25

�	���""#"2�$�Transforming an IS-A hierarchy with more complex subtypes.

�	���""#(3�$�Disaggregating the compound attributes leads to a complex IS-
A hierarchy translation.

⇔

⇔

D

PERSON
Name
Address

CUSTOMER
Cust-ID
id: Cust-ID

COMPANY
VAT
Account

CUSTOMER
Cust-ID
PERSON[0-1]

Name
Address

COMPANY[0-1]
VAT
Account

id: Cust-ID
excl: COMPANY

PERSON

CUSTOMER
Cust-ID
PERSON[0-1]

Name
Address

COMPANY[0-1]
VAT
Account

id: Cust-ID
excl: COMPANY

PERSON

CUSTOMER
Cust-ID
PER_Name[0-1]
PER_Address[0-1]
COM_VAT[0-1]
COM_Account[0-1]
id: Cust-ID
coex: PER_Name

PER_Address
coex: COM_VAT

COM_Account
excl: {COM_VAT

COM_Account}
{PER_Name
PER_Address}
����������������
	�� ��� !�"�#����������� ����������

11-26 "�

��446�"
3�%� ���
�3��:�;

�	���""#("�$�Simplifying the excl constraint.

����
�$
$��
��
������
���
����
A	�
This third technique consists in copying the attributes (as well as roles and
constraints) of the supertype into each of its subtype, then in discarding this
supertype. In Figure 11.22 we process a slightly different source schema to
better illustrate the technique.

�	���""#((�$�Representing the subtypes only + the customers that fall in no
subtypes (Other CUSTOMER).

In the right-side schema, we keep the subtypes PERSON and COMPANY, enri-
ched with the attributes, the roles and the constraints of the supertype. Howe-

⇔

CUSTOMER
Cust-ID
PER_Name[0-1]
PER_Address[0-1]
COM_VAT[0-1]
COM_Account[0-1]
id: Cust-ID
coex: PER_Name

PER_Address
coex: COM_VAT

COM_Account
excl: PER_Name

COM_VAT

D

PERSON
Address

CUSTOMER
Cust-ID
Name
id: Cust-ID

COMPANY
VAT

PERSON
Cust-ID
Name
Address
id: Cust-ID

Other CUSTOMER
Cust-ID
Name
id: Cust-ID

COMPANY
Cust-ID
Name
VAT
id: Cust-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-27
ver, since the hierarchy is not �otal, some entities may be of type CUSTOMER
without being of any subtype. Hence the complementary entity type Other
CUSTOMER which collects these entities. Quite naturally, Cust-ID is the
primary identifier of each resulting entity type.

This technique is nice when the users are mainly interested in querying subty-
pe entities rather than the supertype entities.

Unfortunately, the problem is a bit more complex. Indeed, the constraints that
hold in the population of the supertype may not be preserved when distributed
among the subtypes. This is the case for the primary id Cust-ID. Indeed,
merely stating that this attribute is the primary id of each subtype is not suffi-
cient. It must be an identifier of �������
��
������	�&
&� ���
� as well. For ins-
tance, we cannot create a PERSON entity with a value of Cust-ID that
already exists in COMPANY or in Other CUSTOMER. This constraint is not
easy to define. In Figure 11.23, we express it as a kind of �
����% �
�
��cons-
traint, which states that each value of Cust-ID of PERSON is ���
� the set
of values of Cust-ID of Other CUSTOMER, nor in that of COMPANY7. In
this way, we can guarantee that the sets of Cust-ID from all the entity types
are disjoint.

This constraint can be implemented as �	�33�	
8 associated with each table re-
sulting from these subtypes.

�	���""#()�$�The correct translation of Cust-ID being a primary identifier
of the supertype CUSTOMER.

7. The constraint ��
$
� is not built-in in the DB-MAIN tool. Instead, it has been defined as a
generic constraint. More of this in the Tutorial (
�&���	��

�
��������$�
��+�3����	��3��
5
 ����46�����$�
���
��
.

8. Note that each trigger must check the �
���� constraint with the N-1 other tables, where N
is the number of subtypes.

PERSON
Cust-ID
Name
Address
id: Cust-ID
QRW�LQ�� &XVW�,'

QRW�LQ�� &XVW�,'

Other CUSTOMER
Cust-ID
Name
id: Cust-ID

COMPANY
Cust-ID
Name
VAT
id: Cust-ID
QRW�LQ�� &XVW�,'
����������������
	�� ��� !�"�#����������� ����������

11-28 "�

��446�"
3�%� ���
�3��:�;
If the
�$��&�
��	���
����
7
���, the situation is even more complex, since the
same value of Cust-ID may appear in more than one subtype. In such a case,
the associated values of Name (and of all the other supertype attributes and ro-
les) �	�
����
�������. This pattern is illustrated in Figure 11.24. The subty-
pes have been declared �otal (to get rid of the Other CUSTOMER entity type)
and not �isjoint. The additional constraint states that, when considering the
	�
�� of the population of PERSON and COMPANY, any value of Cust-ID
determines a unique value of Name9.

�	���""#(+�$�Expressing the fact that if a PERSON entity and a COMPANY
entity share the same value of Cust-ID, they also have the same value of
Name.

Obviously, this technique should be avoided in ¬� IS-A hierarchies.

���, 9��������&��	���������&�
�

Identifying specific kinds constructs in a schema is a common task in many
steps of database engineering, from conceptual analysis to logical and physical
design and to reverse engineering. For instance, we can be interested in fin-
ding all the ���������&�
�2���
������������	
 in a large schema. This tedious job
can be automated with the help of the Global transformation assistant. To ex-
preriment this, we open the schema LIBRARY/Conceptual, then we call

9. This property can be considered a special kind of �
�%��
�� ���&�����%�. Further detail on
functional dependencies can be found in any textbook on databases, such as [Date 1999] or
[Elmasri 2000] for instance.

⇔

PERSON ∪ COMPANY: Cust-ID → Name
T

PERSON
Address

CUSTOMER
Cust-ID
Name
id: Cust-ID

COMPANY
VAT

PERSON
Cust-ID
Name
Address
id: Cust-ID

COMPANY
Cust-ID
Name
VAT
id: Cust-ID
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-29
the assistant. We select the problem Entity type - Missing id, then we choose
the action Mark and we click on OK. We observe that the entity type AUTHOR,
and only it, is marked10.

To proceed to a deeper analysis of a schema we can build scripts. For instance,
the script of Figure 11.25 mark the constructs of the current schema that are
not SQL-compliant, i.e., the IS-A relations, the relationship types, the com-
pound attributes and the multivalued attributes.

�	���""#(,�$�A simple script that detects the most important non-relational
constructs in an arbitrary schema.

Executing this script on the Conceptual schema results in the marked objects
of Figure 11.22.

���- ��(��	����	���������&�
�

If we need to search a schema for more complex patterns, or if we want to
check that a large schema is compliant with a definite model, the <
$� ��	��
�
�
	����
���

�
���� will quickly prove insufficient. In such situations, we will
use the more powerful)%�������� �
�
��

�
����.

We make the conceptual schema current, and we call the assistant by 8��
�
 /
������ ������
�.

10. Marking objects consists in highlighting them as follows: we select the objects then we
click on the button Mark in the Standard tool bar. ��	9��3 is a kind of permanent selec-
tion. To unmark objects, just click on the button Mark again.
����������������
	�� ��� !�"�#����������� ����������

11-30 "�

��446�"
3�%� ���
�3��:�;

�	���""#(-�$�Applying the validation script of the �������
��	������
��	����
���
�	
 to highlight the non-relational constructs of the example schema.

The control panel of this assistant comprises five main sections (Figure 11.27):

6��
�� ����: defines the way rules are evaluated; in the Search mode, the
engine searches the schema for structures that ���� the constraints; in the Va-
lidate mode, the engine searches the schema for structures that �����
����� the
constraints.

�����
: select the object type which the current constraint applies on.

����
��
�
: defines the constraint and its parameters.

�
�����: to build and use user-defined constraints.

1-N0-N ZULWWHQ

0-1 0-N
responsible

UHVSRQVLEOH�IRU

0-N
origin

0-N
reference

UHIHUHQFH

0-N

1-1

RI

0-N

0-N

0-N

FORVHG�ERUURZLQJ

Borrow-Date
End-Date
id: COPY

Borrow-Date

0-1

0-N

0-N

ERUURZLQJ

Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id’: Title

COPY
Serial-Number
Date-Acquired
/RFDWLRQ

Store
Shelf
Row

Nbr-of-Volumes
State
State-Comment[0-1]
id: of.BOOK

Serial-Number

BORROWER
Pid
Name
First-Name
$GGUHVV

Company
Street
Zip-code
City

3KRQH>���@

id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
.H\ZRUG>����@

Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-31
���
�
 �������: to build, update, save and load sets of constraints of arbitrary
complexity.

�	���""#(.�$�The control panel of the Schema analysis assistant.

����/����������
Now, let us define a first rule, describing the ���������&�
�2���
������������	
, as
in the previous section. In the �����
 list, we select the item Entity type (Fi-
gure 11.27), and in the ����
��
�
 list we select the rule ID_per_ET, i.e., a
constraint about the ���$�	�
�����������	
�&�	����������&�. We add this rule to
the script area by clicking on the button Add. A new box opens, asking us the
parameters of the rule. The latter defines the range (min max) of the number
of identifiers. Since there must be none, we type the numbers "0 0" (Figure
11.28). Any consistent range can be typed, such as,
• 0 1 at most 1,
• 1 3 from 1 to 3,
• 1 N at least 1,

�
	�
����
�

/�
��
��

��
�

�	
��

1
��

��
�

0
�

��
��

�

�

!
��

��
��
����������������
	�� ��� !�"�#����������� ����������

11-32 "�

��446�"
3�%� ���
�3��:�;
• 0 N any number, i.e.,��
�%
�
�	����.

The definition of the rule can be obtained by clicking on the Help button.

�	���""#(1�$�Parameters of the rule ID_per_ET: describing entity types who-
se number of identifiers is between 0 and 0, i.e., with no identifiers.

Clicking on OK closes the definition of the constraint, which appears in the
���
�
����� (Figure 11.29).

�	���""#(2�$�The rule defining the �	
�
��
�������
��	�����	
������ appears in
the script area.

Now, clicking on the button OK in the control panel starts the search engine,
which identifies all the instances of the pattern defined by the rule. The dia-
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-33
gnostic appears in a special box (Figure 11.30), which gives the rule and the
constructs that satisfy this rule, here AUTHOR.

�	���""#)3�$�The rule ID-per-ET(0 0) is satisfied by entity type AUTHOR.

Several rules can be inserted in the Script area, as in Figure 11.31, which or-
ders the engine to search the schema for �
��)B"�%
�& ���� constructs: IS-A
relations (ALL_ISA), rel-types (ALL_RT), multivalued attributes (with max
cardinality from 2 to N) and compound attributes (with at least 1 sub-attribu-
te). This list form a script which can be saved for further reuse.

�	���""#)"�$�Script defining four patterns that are 	�
��>?��������	
 (same
effect as that of Figure 11.25).
����������������
	�� ��� !�"�#����������� ����������

11-34 "�

��446�"
3�%� ���
�3��:�;
Starting the search engine yields all the constructs that satisfy one of the rule
of the script. The diagnostic box of Figure 11.32 shows the compound attri-
butes of the schema. Through its control buttons we decide what to do with
these constructs:
• button Previous display the diagnostic for the previous rule,
• button Next display the diagnostic for the next rule,
• button Go to when an itemis selected in the list, display the corres-

ponding object in the schema,
• button Select all select all the objects mentioned in the list,
• button Mark all mark all the objects mentioned in the list,
• button Report print a report describing the objects mentioned in the

list (Figure 11.33).

�	���""#)(�$�The diagnostic box resulting from the analysis of the concep-
tual schema. It reports on the constructs that satisfy the rule
SUB_ATT_per_ATT(1 N), that describes compound attributes.

����2���
��������

In the Validate mode, the engine searches the schema for constructs that vio-
late at least one rule. The rules now are interpreted as the properties that must
hold in the current schema. in other words, the script defines a model.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-35

�	���""#))�$�Diagnostic report of the script of Figure 11.31 applied on the
conceptual schema.

To illustrate the concept of model defined as a list of rules, we will examine
the script defining the 	� ���
�� ��
�� . Before going into further detail, let us
observe that, when defining the parameters of a rule, we can modify its value
by using logical connectors, therefore writing complex rules from simpler
ones:
• not ��3���
 the rule,
• and forms a logical ��
7��%��
� with the previous rule,
• or forms a logical %
�7��%��
� with the previous rule.

For example, the rule

 ID_per_ET(1 N)
 and PID_per_ET(1 1)
 or ID_per_ET(0 0)

can be paraphrazed as

 any entity type:
 (has at least 1 id ��3 has 1 primary id)
 �� (has no id)

In other words, �������������&�=������	���
����������	
=�����������
�%�
�=�
���
�
�������
��$��&	���	�=�
	������
��
����������	
����� , or, in better English, �����
���������&����
�

������������	
=�
���
���������
��$��&	���	�.

The rule:
 ALL_RT
is verified by:
 borrowing
 closed-borrowing
 of
 reference
 responsible-for
 written

The rule:
 MAX_CARD_of_ATT(2 N)
is verified by:
 BOOK.Keyword
 BORROWER.Phone

The rule:
 SUB_ATT_per_ATT(1 N)
is verified by:
 BORROWER.Address
 COPY.Location
����������������
	�� ��� !�"�#����������� ����������

11-36 "�

��446�"
3�%� ���
�3��:�;

�	���""#)+�$�A script that defines what rules all SQL-compliant schemas
must satisfy. Note that the engine is in the 9�����
� mode.

The script of Figure 11.34 defines what we could consider a good relational
schema. Its interpretation is as follows:

• ET_per_SCHEMA(1 N)

����
%�������
����% ������� ��
��
������������&�E
• RT_per_SCHEMA(0 0)

����
%�������
���
����% ��������	� ���&�
E
• SUB_TYPES_per_ISA(0 0)

�
�
�$��&�
E
• ATT_per_ET(1 N)

��%�����������&����
����% ������� ��
��
������	�$���E
• ID_per_ET(1 N)

��%�����������&����
���������� ��
��
������������	
• PID_per_ET(0 1)

�
��
	�������
���&	���	�����&�	����������&�E
• OPT_ATT_per_EPID(0 0)

�
�
&��
�� ����	�$���
�
��&	���	�����
�����������&�
E
• DEPTH_of_ATT(1 1)
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-37
� ��������	�$���
��	����� ��� �4E
• and MAX_CARD_of_ATT(1 1)

---���������	���.�����%�	���� �����
�4�:
��3 ���� ���;E
• ALL_CHARS_in_LIST_NAMES(ABCDEF...xyz012...89$_)

��������
��	��������&�
��%��	�%��	
�:�&&�	�
	�
2�	%�
�;=���3��
=����
��������:�
���������---��
����
��
	������%��� �%��	�%��	
;E

• and NONE_in_LIST_NAMES(_$,$$)

---�$�������	� �
��%��	�%��	�%���
��$�������
	����E
• and LENGTH_of_NAMES(1 31)

---������������
��$��4��
��4�%��	�%��	�
�3E
• and NONE_in_FILE_CI_NAMES(SQL2.NAM)

---����������%���
���&&��	�������� �
��
�
	������������ ���������
-

����.��(��	����	����������������
��

The <
$� ��	��
�
	����
��assistant described in this lesson is quite intuitive
and more than adequate for developing simple scripts. However, it cannot
cope with complex problems, which require more sophisticated tools. The ���
���%���3
$� ��	��
�
	����
��assistant is aimed at addressing this kind of pro-
blems. Compared with its little brother, this assistant does not provide a list of
problems, but rather offers a &	
$ �����
%	�&��
����%� ��� which is nothing else
than the)%�������� �
�
 assistant! The action part is the list of schema trans-
formation of DB-MAIN, plus some additional operations. In addition, it pro-
vides several control structures such as two kinds of loops and a library
manager through which macro-rules and macro-actions can be developed.

Before discussing the scripting facility, we will experiment the building of a
single action. Let us assume that we want to �	��
�
	������%
�& �.�	� ���&�

���
����������&�
.

First, we call the assistant by 8��
�
 / 8������� ������
����4����

�� (Fi-
gure 11.35). Then, we proceed as follows.

1. in the '	���������	��
�
	����
� list, we select RT_to_ET;

2. we click on Add (or Insert) as in the first transformation assistant; a new
box opens, asking us the definition the set of objects the transformation
must apply on (Figure 11.36);
����������������
	�� ��� !�"�#����������� ����������

11-38 "�

��446�"
3�%� ���
�3��:�;

�	���""#),�$�The transformation ����
���=�	
�
��
��� is selected.

�	���""#)-�$�The set of rel-type on which we want the transformation being
applied is defined as a rule. We will build a rule by combining the elementary
rule Att_per_RT and ROLE_per_RT.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-39
3. we define the term %
�& �. as: �������
����	�$���
�
	���� ��
����	
 �
; the-
refore, we build the rule "ATT_per_RT(1 N) or ROLE_per_RT(3 N)" by
selecting the corresponding constraints as in the)%�������� �
�
 assistant
(Figure 11.36 and Figure 11.37);

4. we close the rule box (OK); the expression of the transformation is now
complete (Figure 11.38);

5. we execute the transformation by clicking on the button OK.

�	���""#).�$�The rule that defines complex rel-types.

�	���""#)1�$�The expression of the transformation is completed. It can be
executed by clicking on OK.

Writing a script consists in building a series of such operations, as we did in
the <
$� � �	��
�
	����
� assistant. The main addition is the loop control
structure, the body of which comprises an arbitrary sequence of operations. At
run time, the body is executed until the last execution did not change anything
in the schema.

For instance, the fragment,
����������������
	�� ��� !�"�#����������� ����������

11-40 "�

��446�"
3�%� ���
�3��:�;
 LOOP
 DISAGGREGATE
 ENDLOOP

processes the current schema iteratively until no compound single-valued at-
tributes can be disaggregated anymore, as in the example of Figure 11.39.

�	���""#)2�$�Iterative decomposition of compound attributes.

To understand how all this works, we will develop a small script that trans-
forms conceptual schemas into SQL-compliant schemas.

�	��� ""#+3� $�A transformation script that can produce a SQL-compliant
schema from (almost) any entity relationship schema.

⇔

PERSON
PersNum
Name
Address

Street
City

PostalCode
CityName

Phone
Country
Area
Local

PERSON
PersNum
Name
Add_Street
Add_Cit_PostalCode
Add_Cit_CityName
Add_Pho_Country
Add_Pho_Area
Add_Pho_Local
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-41
We follow the transformation plan of Figure 11.5 and Figure 11.15, which
translates into the script of Figure 11.40.

Here follows a short description of the statements the script is made up of.

• ISA_into_RT

�	��
�
	��� ��)���	� ���
�
����
�
����
�
���	� ���&�
E
• RT_into_ET(ATT_per_RT(1 N) or ROLE_per_RT(3 N))

�	��
�
	��%
�& �.�	� ���&�
�:2�������	�$���
�
	���� ��
����	
 �
;����
����
�������&�
E

• RT_into_ET(N_ROLE_per_RT(2 2))

�	��
�
	��������
������	� ���&�
�:2������	
 �
�
����&������;����
�������
��&�
E

• LOOP

start a loop that processes complex attributes;
• ATT_into_ET_INST(MAX_CARD_of_ATT(2 N))

�	��
�
	�� ��� �4��� ���� �������	�$���
�:2������.�%�	����� ��
���;����

���������&�
���	
�3����
���%��	�&	�
������
�E

• DISAGGREGATE

��
�33	�3���� ��� �4�
��3 ���� �������	�$���
E
• ENDLOOP

%

������

&E�����

&�$
����
�	������� ��
����	�$���
�%���$���	��
�
	�
���E

• LOOP

��	������2�

&������&	
%�

�
��& ��	� ���&�
E
• RT_into_REF

�	��
�
	��� �	� ���&�
����
�	���	��%�����	�$���
�:�
	��3��9��
;E�����
&��
	���
���
�	�	������� ��
�	� ���&��%���$���	��
�
	���E

• SMART_ADD_TECH_ID

��������%���%� �����
�� ��������������&������������
������
	��	��
��
2
	� ���&�
��
�$���	��
�
	����:J�
��	�;

• ENDLOOP

%

������

&�����	�	�������$
������� ��
�
$7�%��%���$���	��
�
	���E
• NAME_PROCESSING(ALL_ET())

�	��
 ������������
�
���������������&�
E
����������������
	�� ��� !�"�#����������� ����������

11-42 "�

��446�"
3�%� ���
�3��:�;
• NAME_PROCESSING(ALL_ATT())

�	��
 ������������
�
���������	�$���
-

This script can be saved for further reuse. The Predefined button provides a
list of built-in scripts that can be used
�������
�� ��
, or as the basis for deve-
loping new scripts. Worth being examined carefully.
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-43
4�����&����$��������

• In this lesson, we have studied new notions:

- transformation plan;

- assistants, and particularly the <
$� ��	��
�
	����
��and�)%�������� ��

�
�assistants;

- problem/solution statements and scripts;

• We have also learnt how

- to transform an �)�� relation into
����
�
�� rel-types:

�����4��� / 6�

�
��� / ��$� $@ ���$
���

- to derive other equivalent structures for IS-A relations

- to use the '	
$ ���

 ��	 of the Global transformation assistant

- to use the)%�������� �
�
 assistant

- to use the �����%�� 3
$� ��	��
�
	����
� assistant

- to build and manage scripts
����������������
	�� ��� !�"�#����������� ����������

11-44 "�

��446�"
3�%� ���
�3��:�;
90��	
��������$��������

11.1 Transform the following conceptual schema into a SQL-compliant
schema. Try several translations of the IS-A relation.

1-N0-N

written by
Rank
id: DOCUMENT

Rank
id’: DOCUMENT

AUTHOR

0-1
part

0-N

part of
Seq Nbr
id: REPORT

Seq Nbr

0-N

0-N

reserved by
Date 0-1

0-N
responsible

responsible

0-1

0-N

work for

0-N

0-N

0-N

borrow
Date borrowed
Date returned[0-1]
id: COPY

Date borrowed

0-N

1-1

de

D

REPORT
Rep-Code
Project
id’: Rep-Code

PROJECT
ProjetCode
Name
ContratNumber[0-1]
Company
id: ProjetCode
id’: ContratNumber

BOOK
ISBN
Publisher
id’: ISBN

COPY
Serial-Number
Date
Localisation
id: de.BOOK

Serial-Number

BORROWER
Pers-ID
Name
Address

Street
City

Phone-Number
id: Pers-ID

DOCUMENT
Doc-ID
Title
Date
id: Doc-ID

AUTHOR
Name
1st-Name[0-1]

Another LIBRARY/Conceptual
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-45
11.2 Transform the following schema into SQL-compliant structures.

11.3 To help solve the difficulties of managing the IS-A representation
through the downward inheritance technique, we could propose an im-
plementation based on the following pattern. Try to justify to what ex-
tend this improve the management of the � constraint. Develop a set of
triggers to automatically manage this constraint.

⇔

D

D

TECHNICAL-BOOK
Domain
System

SCIENTIFIC-BOOK
Theme
Level

REPORT
ReportID
Department
id: ReportID

PROJECT-REPORT
ProjectID
ProjectStatus
DateWritten

INTERNAL-REPORT
SecurityLevel

DOCUMENT
DocID
Title
Author[0-5]
id: DocID

BOOK
ISBN
Publisher
DatePublished
id: ISBN

P

PERSON
Address

CUSTOMER
Cust-ID
Name
id: Cust-ID

COMPANY
VAT

PERSON
Cust-ID
Name
Address
id: Cust-ID

ref

CUSTOMER
Cust-ID
id: Cust-ID

COMPANY
Cust-ID
Name
VAT
id: Cust-ID

ref
����������������
	�� ��� !�"�#����������� ����������

11-46 "�

��446�"
3�%� ���
�3��:�;
11.4 Apply the transformation plan we have built in this lesson to the fol-
lowing conceptual schema. Analyze the result carefully.

11.5 Same exercise with this schema:

PERSON
PID
Name
Address[0-5]

Street
City

Postal-Code
City-Name

Phone[0-3]
Area
Local

Birth-Date

0-N
substitute

0-1
replaced

replaces

1-1

0-N

belongs
0-N

0-N 0-N

manufactures

Ratio

id: PRODUCT
BRANCH

MARKET

Name
Size

id: Name

PRODUCT

Pro-ID
Pro-Name

id: Pro-ID

BRANCH

Country
Name

id: belongs.COMPANY
Country

COMPANY

Com-ID
Com-Name
Com-Address

Number
Street
City

Zip-Code
City-Name

Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Local

id: Com-ID
id’: Com-Name

Com-Address
���������� ����������������
	�� ��� !�"�#�����������

"�

��446�"
3�%� ���
�3��:�; 11-47
11.6 ... and with this one:

11.7 Define a transformation plan to express ORM schemas into Entity-rela-
tionship schemas (see +.�	%�
�
 of Lesson 8). Write, check and save a
script that implements this transformation plan.

11.8 Choose a record structure you are acquainted with, such as Pascal, C or
COBOL. Design and implement in the)%�������� �
�
 assistant a set
of rules that can be used to validate any schema against this structure.

11.9 Design and implement a transformation plan that produces a record
structure (Pascal, C or COBOL) from any conceptual schema.

0-N

0-N

borrows
Seq-Nbr
id’: Seq-Nbr

READER
id’: Seq-Nbr

COPY

1-1

0-N

of

READER
R-Num
Name
Address
id: R-Num

COPY
Number
Date-Acq
id: of.BOOK

Number

BOOK
Book-ID
Title
Year
Author[0-N]
id: Book-ID
����������������
	�� ��� !�"�#����������� ����������

11-48 "�

��446�"
3�%� ���
�3��:�;
���������� ����������������
	�� ��� !�"�#�����������

�

$��������

%�&�
	������
��

�����

��

This is the last lesson dedicated to the LIBRARY case study. It
will introduce to the derivation of the ����
����������, i.e., the
schema which specifies not only the logical structures, but also
technical characteristics of the database such as the indexes and
the files in which table rows are stored. In addition, it examines
the translation rules into the DBMS data description language.
����������������
	�� ��� !�"�#����������� ����������

12-2 "�

��4�6�'��
�%� ���
�3�
���� 4����
���$��������

We start DB-MAIN and we open the project logical-10 (not logical-
11!) which includes the conceptual schema of the database in project, as well
as the final version of the logical schema. We save it as LIBRARY.

���� =����
������&�
	����	����>

There are several interpretations of the concept of ����
���������� of a data-
base. Historically speaking, the physical schema was first understood as the
collection of the technical characteristics of the implemented data structures:
index structures, buffer size, page size, free space at loading time, clustering,
pointers, and the like.

We will give this concept a more recent interpretation: the physical schema is
the whole collection of specifications one have to give the DBMS in order to
get an operational database. The physical schema is thus made up of the logi-
cal schema + the technical characteristics and parameters. From the practical
point of view, a physical schema must be expressed into the specific ��������
������
�� ��3��3� (or DDL) of the target DBMS.

The logical schema depends on the model of a family of DBMS: for instance,
a logical model is relational (what we called SQL-compliant), but a physical
schema is compliant with a specific DBMS of this family, such as ORACLE
V7 or V8, DB2, Informix, SQL Server or SYBASE. In the same way, from a
CODASYL logical schema one can derive an IDS-2 (Bull) physical schema,
or an UDS (Siemens) schema or an IDMS (CA) schema. This organization is
summarized in the following project structure, in which a conceptual schema
has been translated into an SQL logical model and into a CODASYL logical
schema, and each of them has in turn been translated in a series of physical
schemas. In addition, each physical schema has been expressed into the DDL
of its DBMS. This hypothetical project covers six physical versions of the
same conceptual schema.
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-3

�	���"(#"�$�A multi-target project: the same conceptual schema has been
transformed into a relational schema and into a CODASYL schema, then each
of them has been implemented into several DBMS and translated into DDL
programs.

���� ����3�����
������&�
	������
��>

Physical design is a complex and highly knowledge-based activity. Indeed,
developing a schema which satisfies such conflicting criteria as time perfor-
mance, space minimization (core memory and disk), smooth evolution, ease
of maintenance, portability, modularity, ease of exploitation, requires much
technical expertise, and obviously is not a job for the novice analyst.

Of course, in the limited scope of an introduction to database design, we can-
not go into too detailed a development. So, we will propose a very simplified
approach, quite sufficient to grasp the concept, but a bit too superficial to get
the real taste.

We will consider two phases in physical design. The first one consists in de-
veloping an abstract physical schema by augmenting the logical schema with
technical specifications. Through the second phase, this physical schema is
translated into the DDL of the DBMS.

LIBRARY/UDS-2LIBRARY/IDS-2LIBRARY/SYBASELIBRARY/DB2LIBRARY/ORACLE-7

LIBRARY/CODASYLLIBRARY/SQL

LIBRARY/conceptual

oracle7.sql/1 db2.sql/1 sybase.sql/1 ids-2.cod/1 uds-2.cod/1 idms.cod/1

LIBRARY/IDMS
����������������
	�� ��� !�"�#����������� ����������

12-4 "�

��4�6�'��
�%� ���
�3�
���! ��
��
���������&�
	����	��������������
���

We will proposed a simplified procedure which would provide acceptable per-
formances in �
���

���������3 applications. The specific features which
will transform a logical schema into a physical schema are: the �%%�

�9��
 (in-
dex) and the �������%
 �%��
�
 (files). A little touch of optimization will also
be discussed: discarding redundant access keys.

����������������>
���7��?
The concept of access key has been presented in Lesson 5 (Section 5.7). An
access key represents any technical data structure that provides quick and se-
lective access to data, therefore avoiding time-consuming sequential access.
In the relational database technology, access keys are implemented as ����.,
$�����& or ��
� organization.

Deciding which columns, or column combinations, should be access keys is a
complex task based on a careful analysis of the application programs require-
ments. Since we have no information on these requirements (not even on the
programs themselves), we can only make reasonable assumptions on them.

For instance, it is not completely unrealistic to suppose that each
���

4
��
should be an access key as well. Indeed, an identifier often is a preferred se-
lection criterion, for instance to designate a specific object, or to carry out
joins. In addition, inserting a new entity (i.e., a row in a table) requires chec-
king the non-existence of the identifier value in the entity set (i.e., the table).

Another reasonable hypothesis concerns the 4���
�������. Indeed, each of
them derives from a rel-type, which represent an outstanding semantic struc-
ture. Most probably, many application programs should use this structure to
retrieve data. We thus make each foreign key an access key.

Other access keys can be added if we think they will be strongly useful to get
better access time. However, such decision cannot be fully justified without
knowledge on the data applications.

An interesting feature of relational DBMS is that they allow dynamically crea-
ting and dropping an index during the life of the database, and not only at the
definition stage. Therefore, if, later on, we observe that the usage of an index
is lower than expected, we can discard it without restructuring the database.
Similarly, if we think than a formerly unplanned index would have been use-
ful, we can add it dynamically. So, an initial error in index definition is har-
mless.
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-5

�	���"(#(�$�Assigning �������"��� (indexes) to identifiers and foreign keys.

:5,77(1

ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
acc

ref: BOOK_ID
acc

equ: ID_AUT
acc

5()(5(1&(

REFERENCE
ORIGIN
id: ORIGIN

REFERENCE
acc

ref: ORIGIN
acc

ref: REFERENCE
acc

352-(&7

PCODE
TITLE
id: PCODE

acc
id’: TITLE

acc

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
acc

equ: PID
acc

.:B2)B%22.

BOOK_ID
KEYWORD
id: BOOK_ID

KEYWORD
acc

ref: BOOK_ID
acc

&23<

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF_VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER
acc

ref: BOOK_ID
acc

&/26('B%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
END_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
BORROW_DATE
acc

ref: BOOK_ID
SERIAL_NUMBER
acc

ref: PID
acc

ref: PCODE
acc

%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
ref acc

ref: PID
acc

ref: PCODE
acc

%2552:(5

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]
id: PID

acc
ref: RESPONSIBLE

acc

%22.

BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
id: BOOK_ID

acc

$87+25

ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: ID_AUT

acc

LIBRARY/Physical
����������������
	�� ��� !�"�#����������� ����������

12-6 "�

��4�6�'��
�%� ���
�3�
The schema of Figure 12.2 is the first version of the physical schema. It has
been obtained as follows:

- we select the LIBRARY/Logical schema,

- we copy it under the name/version: LIBRARY/Physical, and we open
it,

- we open all the identifiers and reference groups of this schema, and click
the access key button.

Each id, id’, ref and equ group has been complemented with the specification
acc (for access key).

���# /����������		������&�

Though optimizing schemas and physical tuning are not addressed in this vo-
lume, we can apply the popular rule about the indexes of a table or file shortly
mentioned in Section 5.7. The rule is well-known by COBOL programmers,
and comes as follows:

9	��: if X1 is a sorted index, if X2 is another index, and if the fields of
X2 form a ���4
7 of the fields of X1, then 56���������������.

67�����: the records of a file comprises fields A1, A2, A3, A4; the file has
three indexes, based on <A1,A2,A3>, <A1,A2> and <A1>; the
indexes are implemented by any sort of tree-based techniques
(ISAM, B-tree, etc); in such a situation, the indexes <A1,A2> and
<A1> can be discarded because the DBMS can use the full index
to simulate the other two.

������
�: an index based on <A2,A3>, <A3>, or even on <A2,A1> must be
kept; in addition, if the implementation of the index is based on
hashing techniques, then the rule does not applies.

We can adapt this rule to the logical model used in DB-MAIN:

9	��: if access key X2 is a prefix of access key X1, then X2 can be dis-
carded (Figure 12.3).

In this case study, we will suppose that the index implementation techniques
satisfy the

	��� hypothesis.

The current version of the physical schema includes several patterns of this
kind. Let us examine a single example (Figure 12.4).
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-7

�	���"(#)�$�Removing prefix access keys.

�	���"(#+�$�Minimizing the number of access keys of WRITTEN.

Some situations do not comply with this pattern, though shuffling the compo-
nent of the access keys can make prefix access key appear. Let us assume that
the table PHONE_OF_BORR has been given the identifier and the foreign key
of Figure 12.5/left. Obviously, no access key is a prefix of the other. Howe-
ver, swapping the components of the identifier makes such a pattern appear
(Figure 12.5/right). Now we can minimize the access keys:

⇒

⇒

8
A1
A2
A3
A4
acc: A1

A2
A3

acc: A1
A2

acc: A1
acc: A2

A1

8
A1
A2
A3
A4
acc: A1

A2
A3

acc: A2
A1

:5,77(1

ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
acc

ref: BOOK_ID
acc

equ: ID_AUT
acc

:5,77(1

ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
acc

ref: BOOK_ID
acc

equ: ID_AUT
����������������
	�� ��� !�"�#����������� ����������

12-8 "�

��4�6�'��
�%� ���
�3�

�	���"(#,�$�Shuffling the components of access keys can make prefix ac-
cess keys appear.

Other entity types can be restructured in this way, in order to drop unnecessary
access keys. Be careful however, when you swap the components of an access
key which is also a foreign key, or a referenced id, you must preserve the order
of the components at the other side.

The final physical schema is presented in Figure 12.6.

������

��������

����>4
���?
+������%
 �%��
� is a general name for such things as �� �
, ����
��
, �	��
,
	�� �
, ��$ ��
&�%�
, ��
&�%�
, and any other physical stores (see Lesson 5,
Section 5.8). In a relational DBMS, a file is often called
&�%�, ��
&�%� or
��$ ��
&�%�1.

The designer must specify which files (%
 �%��
�
) are available, and in which
file(s) the rows of each table will be stored. There are many reasons for which
this assignation can induce good or bad database behaviour, but reasoning on
this is beyond the scope of this volume. We will only define the files (i.e., the
collections), and specify which tables (i.e., the entity types) will be stored in
these files.

We decide to split the database into two logical subparts:

- the ���- part, including the tables BOOK, COPY, REFERENCE, WRIT-
TEN, AUTHOR and KW_OF_BOOK,

- the �����$�
	 part, which includes the other tables: BORROWER, PRO-
JECT, BORROWING, CLOSED_BORROWING and PHONE_OF_BORR.

⇒

1. In some systems, the organization can even be more complex: logical files are mapped to
physical files.

3+21(B2)B%255

PID
PHONE
id: PHONE

PID
acc

equ: PID
acc

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
acc

equ: PID
acc
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-9

�	���"(#-�$�Removing the prefix access keys.

:5,77(1

ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
acc

ref: BOOK_ID
acc

equ: ID_AUT

5()(5(1&(

REFERENCE
ORIGIN
id: ORIGIN

REFERENCE
acc

ref: ORIGIN
ref: REFERENCE

acc

352-(&7

PCODE
TITLE
id: PCODE

acc
id’: TITLE

acc

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
acc

equ: PID
acc

.:B2)B%22.

BOOK_ID
KEYWORD
id: BOOK_ID

KEYWORD
acc

ref: BOOK_ID

&23<

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF_VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER
acc

ref: BOOK_ID &/26('B%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
END_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
BORROW_DATE
acc

ref: BOOK_ID
SERIAL_NUMBER

ref: PID
acc

ref: PCODE
acc

%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
ref acc

ref: PID
acc

ref: PCODE
acc

%2552:(5

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]
id: PID

acc
ref: RESPONSIBLE

acc

%22.

BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
id: BOOK_ID

acc

$87+25

ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: ID_AUT

acc
����������������
	�� ��� !�"�#����������� ����������

12-10 "�

��4�6�'��
�%� ���
�3�

�	���"(#.�$�The final physical schema. The tables have been assigned to
������
��	� (storage spaces).

:5,77(1

ID_AUT
BOOK_ID

id: ID_AUT
BOOK_ID
acc

ref: BOOK_ID
acc

equ: ID_AUT

5()(5(1&(

REFERENCE
ORIGIN
id: ORIGIN

REFERENCE
acc

ref: ORIGIN
ref: REFERENCE

acc

352-(&7

PCODE
TITLE
id: PCODE

acc
id’: TITLE

acc

3+21(B2)B%255

PID
PHONE
id: PID

PHONE
acc

equ: PID
acc

.:B2)B%22.

BOOK_ID
KEYWORD
id: BOOK_ID

KEYWORD
acc

ref: BOOK_ID

&23<

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF_VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER
acc

ref: BOOK_ID &/26('B%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
END_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER
BORROW_DATE
acc

ref: BOOK_ID
SERIAL_NUMBER

ref: PID
acc

ref: PCODE
acc

%2552:,1*

BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE

id: BOOK_ID
SERIAL_NUMBER
ref acc

ref: PID
acc

ref: PCODE
acc

%2552:(5

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]

id: PID
acc

ref: RESPONSIBLE
acc

%22.

BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]

id: BOOK_ID
acc

$87+25

ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: ID_AUT

acc

BOOK.dat

AUTHOR
BOOK
KW_OF_BOOK
REFERENCE
WRITTEN
COPY

BORROW.dat

BORROWER
PHONE_OF_BORR
PROJECT
BORROWING
CLOSED_BORROWING

LIBRARY/Physical
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-11
We also decide to assign the data of each subpart to a specific entity collection,
namely BOOK.dat and BORROW.dat. So, we create two collections (com-
mand &�' / ������

��, or through the button), and we assign to each of
them the corresponding tables. The schema is shown in Figure 12.7.

���' �����9"?����	�
��
���

The technical description (the one which is available from the button TECH in
each object property box) is the perfect place to write the recommandations we
find useful to transmit to, say, the programmer, or the database manager. For
instance, we can specify DBMS-dependent physical parameters.

���) <������
���������$��	����

This coding activity consists in writing the DDL expression of each construct
of the physical schema. In general, a set of coding rules must be defined for
each DBMS. Moreover, each company, each methodology, and even each
analyst can have its own coding style. For instance, in relational databases, an
identifier can be coded as a &	���	��9��, as a �������%
�
�	����, as a ������
����., as a %��%9�&	���%��� or as a �	�33�	. Declaring constraints in the table
declaration or as an alter table, as well as naming, or not, constraints, also are
a matter of style.

Generating the DDL text of a database structure is thus highly context-depen-
dent. Therefore, we can only propose simple and intuitive coding rules that
should be adequate in most circumstances2.

Instead of giving a comprehensive, and therefore tedious, list of coding rules,
we propose the following translation of the physical schema.

2. Specific coding styles can be defined thanks to customized generators which can be deve-
loped by the analyst (or the methodologist) in the 5
��3�	�� language, the external develo-
pment language of DB-MAIN, or through the SQL generator of DB-MAIN, which allows
the analyst to select the coding style of each type of constaint, or even of each constraint.
����������������
	�� ��� !�"�#����������� ����������

12-12 "�

��4�6�'��
�%� ���
�3�
--------- DB and DBSPACES ---------
create database LIBRARY;

create dbspace BORROW_dat;
create dbspace BOOK_dat;

--------------- TABLES ---------------
create table AUTHOR (
 ID_AUT char(10) not null,
 NAME char(30) not null,
 FIRST_NAME char(30),
 ORIGIN char(30),
 primary key (ID_AUT))
 in BOOK_dat;

create table BOOK (
 BOOK_ID numeric(6) not null,
 TITLE char(30) not null,
 PUBLISHER char(40) not null,
 DATE_PUBLISHED date not null,
 ABSTRACT char(80),
 primary key (BOOK_ID))
 in BOOK_dat;
create table BORROWER (
 PID char(6) not null,
 NAME char(30) not null,
 FIRST_NAME char(30) not null,
 ADD_COMPANY char(40) not null,
 ADD_STREET char(40) not null,
 ADD_ZIP_CODE numeric(4) not null,
 ADD_CITY char(40) not null,
 RESPONSIBLE char(6),
 primary key (PID))
 in BORROW_dat;

create table BORROWING (
 BOOK_ID numeric(6) not null,
 SERIAL_NUMBER numeric(6) not null,
 BORROW_DATE date not null,
 PID char(6) not null,
 PCODE char(6) not null,
 primary key (BOOK_ID, SERIAL_NUMBER))
 in BORROW_dat;
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-13
create table CLOSED_BORROWING (
 BOOK_ID numeric(6) not null,
 SERIAL_NUMBER numeric(6) not null,
 BORROW_DATE date not null,
 END_DATE date not null,
 PID char(6) not null,
 PCODE char(6) not null,
 primary key (BOOK_ID, SERIAL_NUMBER, BORROW_DATE))
 in BORROW_dat;

create table COPY (
 BOOK_ID numeric(6) not null,
 SERIAL_NUMBER numeric(6) not null,
 DATE_ACQUIRED date not null,
 LOC_STORE numeric(2) not null,
 LOC_SHELF numeric(2) not null,
 LOC_ROW numeric(2) not null,
 NBR_OF_VOLUMES numeric(3) not null,
 STATE char(10) not null,
 STATE_COMMENT char(80),
 primary key (BOOK_ID, SERIAL_NUMBER))
 in BOOK_dat;

create table KW_OF_BOOK (
 BOOK_ID numeric(6) not null,
 KEYWORD char(30) not null,
 primary key (BOOK_ID, KEYWORD))
 in BOOK_dat;
create table PHONE_OF_BORR (
 PID char(6) not null,
 PHONE numeric(10) not null,
 primary key (PID, PHONE))
 in BORROW_dat;

create table PROJECT (
 PCODE char(6) not null,
 TITLE char(30) not null,
 primary key (PCODE),
 unique (TITLE))
 in BORROW_dat;

create table REFERENCE (
 REFERENCE numeric(6) not null,
 ORIGIN numeric(6) not null,
 primary key (ORIGIN, REFERENCE))
 in BOOK_dat;

create table WRITTEN (
 ID_AUT char(10) not null,
 BOOK_ID numeric(6) not null,
 primary key (ID_AUT, BOOK_ID))
 in BOOK_dat;
����������������
	�� ��� !�"�#����������� ����������

12-14 "�

��4�6�'��
�%� ���
�3�
------------- Checks for EQU reference attributes ----------
alter table AUTHOR add constraint
 check(exists(select * from WRITTEN
 where WRITTEN.ID_AUT = ID_AUT));
alter table BORROWER add constraint
 check(exists(select * from PHONE_OF_BORR
 where PHONE_OF_BOR.PID = PID));

---------------- foreign keys ----------------
alter table BORROWER add constraint FKRESPONSIBLE_FOR|
 foreign key (RESPONSIBLE) references BORROWER;
alter table BORROWING add constraint FKBOR_COP
 foreign key (BOOK_ID, SERIAL_NUMBER) references COPY;
alter table BORROWING add constraint FKBOR_BOR
 foreign key (PID) references BORROWER;
alter table BORROWING add constraint FKBOR_PRO
 foreign key (PCODE) references PROJECT;
alter table CLOSED_BORROWING add constraint FKCLO_COP
 foreign key (BOOK_ID, SERIAL_NUMBER) references COPY;
alter table CLOSED_BORROWING add constraint FKCLO_BOR
 foreign key (PID) references BORROWER;
alter table CLOSED_BORROWING add constraint FKCLO_PRO
 foreign key (PCODE) references PROJECT;
alter table COPY add constraint FKOF
 foreign key (BOOK_ID) references BOOK;
alter table KW_OF_BOOK add constraint FKBOO_KW_
 foreign key (BOOK_ID) references BOOK;
alter table PHONE_OF_BORR add constraint FKBOR_PHO
 foreign key (PID) references BORROWER;
alter table REFERENCE add constraint FKORIGIN
 foreign key (ORIGIN) references BOOK;
alter table REFERENCE add constraint FKREFERENCE
 foreign key (REFERENCE) references BOOK;
alter table WRITTEN add constraint FKWRI_BOO
 foreign key (BOOK_ID) references BOOK;
alter table WRITTEN add constraint FKWRI_AUT
 foreign key (ID_AUT) references AUTHOR;

------------- INDEXES -------------
create unique index ID on AUTHOR (ID_AUT);
create unique index ID_BOOK on BOOK (BOOK_ID);
create unique index ID_BORROWER on BORROWER (PID);
create index FKRESPONSIBLE_FOR on BORROWER (RESPONSIBLE);
create unique index FKBOR_COP on BORROWING (BOOK_ID, SERIAL_NUMBER);
create index FKBOR_BOR on BORROWING (PID);
create index FKBOR_PRO on BORROWING (PCODE);
create unique index ID_CLOSED_BORROWING
 on CLOSED_BORROWING (BOOK_ID, SERIAL_NUMBER, BORROW_DATE);
create index FKCLO_BOR on CLOSED_BORROWING (PID);
create index FKCLO_PRO on CLOSED_BORROWING (PCODE);
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-15
The complete project that we are developing since Lesson 6 includes four pro-
ducts, as illustrated in 12.8.

�	���"(#1�$�The product hierarchy of the project.

���, <���
�������������������5

DB-MAIN includes specific functions to help building physical schemas and
generating DDL texts. The first function is the relational model transforma-
tion, already used in Leson 3, while the others are available through the <
$�
�	��
�
	����
� assistants, and can be included into scripts.

create unique index ID_COPY on COPY (BOOK_ID, SERIAL_NUMBER);
create unique index IDKW_OF_BOOK on KW_OF_BOO (BOOK_ID, KEYWORD);
create unique index IDPHONE on PHONE_OF_BOR (PID, PHONE);
create index FKBOR_PHO on PHONE_OF_BOR (PID);
create unique index ID_PROJECT on PROJECT (PCODE);
create unique index ID_PROJECT_2 on PROJECT (TITLE);
create unique index IDREFERENCE on REFERENCE (ORIGIN, REFERENCE);
create index FKREFERENCE on REFERENCE (REFERENCE);
create unique index IDWRITTEN on WRITTEN (ID_AUT, BOOK_ID);
create index FKWRI_BOO on WRITTEN (BOOK_ID);

library.ddl/v1

LIBRARY/Physical

LIBRARY/Logical

LIBRARY/Conceptual

Logical-12
����������������
	�� ��� !�"�#����������� ����������

12-16 "�

��4�6�'��
�%� ���
�3�
����9���

�����������
����4����

��

This operator comprises a built-in transformation plan which translates the
current (conceptual or logical) schema into a physical schema. This tool fol-
lows a set of rules similar to those which has been described in lessons 11 and
12. It can be called by the command �����4��� / 9���

����������.

����0������
����4����

������
�
��

Besides the '	
$ ���

 ���
� statements presented in Lesson 11, this assistant
includes other functions to process a schema more quickly than through indi-
vidual transformations. In addition, these statements can be included into a
script, in order to automatically build physical schemas.

We mention the main statements useful in physical design. They are specified
by their expression in the script area:
E ;���������������4����
�#������4#

All the identifiers and foreign keys are made access keys.
E 8���
���#�
�#�'����
�#�@�"���������

E 8���
���#�
�#�'����
�#�@�(���������
�
E 8���
���#�
�#�'����
�#�@�)���������
�

If the primary identifier is made up of more than 1 (or 2 or 3) component(s),
replace it by a technical identifier. This optimization technique can simpli-
fy a schema by including simple and short primary identifiers and foreign
keys instead of complex ones.

E 9���������4
7������������

Remove any access key which is the prefix of another one.
E 9�������������	��

Replace the group names with systematic names. Group names will be as-
signed to indexes and constraints for instance.

E 0�����
��F

Generate the DDL text for the current schema according to style X (to be
selected).

The predefined script called '
���
�	� ���
�� is an example of such
3�%� �
&��
�%� script. Other scripts exist, such as '
���
�(*��)1" and '
���
�
(*�*", for instance, that can produce acceptable CODASYL and COBOL
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-17
file structures. These scripts are not quite comprehensive, and may fail for
some complex schemas, hence the qualifier &
���
.

���- ;�
��
�������������

We can now quit DB-MAIN. The modified project can be saved with the name
Library.lun.
����������������
	�� ��� !�"�#����������� ����������

12-18 "�

��4�6�'��
�%� ���
�3�
4�����&����$��������

• In this lesson, we have studied new notions:

- physical design

- prefix access key

• We have also have learnt to

- choose and define access keys

- to write scripts for physical design
���������� ����������������
	�� ��� !�"�#�����������

"�

��4�6�'��
�%� ���
�3� 12-19
90��	
��������$��������

12.1 Propose a relational physical version for this conceptual schema:

12.2 9�������6��
����
��. Design a transformation plan to recover the con-
ceptual schema from any relational physical schema. Write the corres-
ponding script in one of the Global transformation assistant. Test it on
the schema LIBRARY/Physical we developed in this lesson. Compare
your solution with the predefined scripts of the assistants (this operation
is called reverse engineering).

12.3 9�������6��
����
��. Open a new project and import the SQL text we
have generated in this lesson. To do so, just drag and drop the file li-
brary.ddl from the Explorer window to the Project window (another
way: ����	�
 / 8���
�7
).

replaced
0-1

replaces
0-N

REPLACES

0-N 0-N

0-N

RATIO

id: MARKET
PRODUCT

MANUFACTURES

0-N

1-1

BELONGS

PRO-ID
PRO-NAME

id: PRO-ID

PRODUCT

NAME
SIZE

id: NAME

MARKET

COM-ID
COM-NAME
COM-ADDRESS

NUMBER
STREET
CITY

ZIP-CODE
CITY-NAME

COM-REVENUE[0-1]
PHONE-NUMBER[1-4]

COUNTRY
AREA
LOCAL

id: COM-ID
id’: COM-NAME

COM-ADDRESS

COMPANY

COUNTRY
NAME

id: BELONGS.COMPANY
COUNTRY

BRANCH
����������������
	�� ��� !�"�#����������� ����������

12-20 "�

��4�6�'��
�%� ���
�3�
Select this product and execute the command
�� / 67
���
 / �5�. The
DB-MAIN extractor parses the SQL text and produces a physical sche-
ma. Apply the reverse engineering script you have developed in Exer-
cise 12.2.

Examine carefully the resulting conceptual schema. Compare it with
the original schema (LIBRARY/Conceptual). Can you explain the
differences?
���������� ����������������
	�� ��� !�"�#�����������

/������	��

[Batini 1992] Batini C., Ceri S. et Navathe S., B. - (
�%�&��� �����$�
����
�3���
���+������,� ���
�
��&��&&	
�%�, Benjamin/Cummings, 1992.

[Blaha 1998] Blaha M. et Permerlani W. - *$7�%��*	��������
�� ��3�������
�3�
�
	�����$�
���&& �%���
�
, Prentice Hall, 1998.

[Date 1999] Date C. J. - ������	
��%��
���
�����$�
��)�
���
, Addison-Wesley,
1999.

[DBM 1999] (
�&���	�����������$�
��+�3����	��3���5
 ����46�����$�
���
�
��
, DB-MAIN Tutorial Series, University of Namur, 1999

[DBM 2002] ��������,���	��%������� , University of Namur, 2002

[Elmasri 2000] Elmasri R. et Navathe S. - D���������
�
������$�
��)�
���
, 3rd
Edition, Addison-Wesley, 2000.

[Hainaut 1993] Hainaut, J-L., Chandelon M., Tonneau C., Joris M. 1993a. Contribu-
tion to a Theory of Database Reverse Engineering, in '	
%-�
�����
�+++�8
	9��3�(
��-�
��,���	
��+�3����	��3, Baltimore, May 1993,
IEEE Computer Society Press.

[Hainaut 1994] Hainaut, J-L, Englebert, V., Henrard, J., Hick J-M., Roland, D. 1994.
Evolution of database Applications: the DB-MAIN Approach, in
'	
%-�
������4�������-�(
��-�
��+,��&&	
�%�, Manchester, Springer-
Verlag

[Hainaut 1996] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J., Englebert, V. 1996.
Database Reverse Engineering: from Requirements to CARE tools,
!
�	�� �
�����
������)
��2�	��+�3����	��3, Vol. 3, No. 1 (1996).

[Halpin 1995] Halpin,T., (
�%�&��� �)%����� ���� ,� ���
�� � ����$�
�� ��
�3�,
Prentice-Hall, 1995, ISBN 0-13-355702-2 . Consult also http://
www.inconcept.com

[Teorey 1999] Teorey, T., ����$�
���
�� ��3�������
�3�, Morgan Kaufman, 1999

Other references from the LIBD on 222-���
-����&-�%-$�� �$�

0-2
���������� ����������������
	�� ��� !�"�#�����������

index�1
����0

�

access key 3-5, 5-3, 5-10, 12-4
advanced global transformation 11-37
aligning objects 2-11
analysis of

AUTHOR 7-14
BOOK 7-5
BORROWER 8-2
borrowing 8-7
closed-borrowing 8-9
COPY 7-9
PROJECT 8-7

analysis script 11-28, 11-32
8��
�

8���������������
����4����

�� 11-37
0������
����4����

�� 11-14, 12-16
�������������
� 11-29

at least one constraint 6-19
attribute 4-3

atomic 4-5
cardinality 4-4
compound 4-5
inherited 6-9
mandatory 4-5
multivalued 4-5
optional 4-5
proper 6-9
single-valued 4-5

attribute aggregation 6-15

"

cardinality
of attribute 4-4
of group 9-35
����������������
	�� ��� !�"�#����������� ����������

index-2
of role 1-10, 3-3, 4-3
coexistence constraint 6-11
column 5-3
conceptual analysis 7-2
conceptual schema 1-2, 3-2, 4-2, 8-13
copying objects 2-20

�

DBMS 9-2
defining

access key 5-10
attribute 1-8
constraint 4-11, 6-13
entity collection 5-13
entity type 1-7
entity type identifier 1-12
foreign key 5-9
group 4-11, 6-13
project 1-3
rel-type 1-10
rel-type identifier 4-11
schema 1-5
semantic description 1-13
technical description 12-11

disjoint subtypes 6-5
DMS 9-2
downward inheritance 11-26

9

6�

���� 2-20
����������
� 2-2
����
� 3-2, 3-10
;���������
�� 8-21, 11-29
���
� 2-20

entity collection 5-13, 12-8
entity type 4-3
���������� ����������������
	�� ��� !�"�#�����������

index�3
equ 5-8, 9-34, 10-9
equality constraint 5-8, 9-34, 10-9
exactly one constraint 6-19
exclusive constraint 6-17
existence constraint

at least one 6-19
coexistence 6-11
exactly one 6-19
exclusive 6-17

:

��
������������
 2-15
67

 1-17
0�����
��%��
��������5� 3-6, 5-18, 12-11
&�'�������
 1-3
�����������
 2-2
��
�
 2-20
��
�
�����
	� 2-20
������
�������

�� 1-4, 3-2, 4-2
9����
�%���7
	����
�' 2-18, 3-8
�����������
 1-16
�����������
 as 1-16

file 12-8
foreign key 5-3, 5-6, 9-8

multivalued 9-37

<

generating reports 2-18
global transformation assistant 11-14, 12-16
graphical tool bar 2-2
group

cardinality 9-35

�

identifier 1-12, 4-3
hybrid 4-7
����������������
	�� ��� !�"�#����������� ����������

index-4
multiple 4-6
of rel-type 4-11
primary 4-6
secondary 4-6

index 3-5, 5-3
inheritance 6-2
inverse transformation 6-16
IS-A relation 6-2
IS-A transformation 6-23

$

LIBRARY project
conceptual schema 8-13
logical schema 10-11
physical schema 12-10
SQL code 12-11

logical design 9-1
logical schema 1-14, 3-2, 5-2, 10-11

�

marking objects 8-21, 11-29
move mode 2-10
multiple inheritance 6-5

5

name processing 5-15, 10-12
&�'

8

�
�	
� 1-8
8

�
�	
��%�
��
��

7-15
������

�� 5-13, 12-11
6�

��
��� 1-7
0��	� 4-11, 5-12
9��$
��� 1-10

NIAM model 8-20
Note 2-21
���������� ����������������
	�� ��� !�"�#�����������

index�5
6

ORM model 8-20

%

partial subtypes 6-5
partitioned subtypes 6-5
physical design 9-3, 12-1
physical schema 5-17, 12-2, 12-16
predefined script 12-16
prefix access key 5-13, 12-6
primary key 3-5, 5-3
����	�

���������	�
 3-4
&�'�����	�
 1-5

property box
attribute 1-9
entity collection 5-14
entity type 1-7, 6-3
foreign key 5-11
group 4-11, 5-10
identifier 4-11
project 1-3
rel-type 1-11
schema 1-5

;

quitting DB-MAIN 1-17

/

reference attribute 5-6
reference group 5-6
relational schema 3-5, 5-2, 9-3
rel-type 4-3

complex 9-13, 9-21
cyclic 4-13, 8-6
identifier 4-11
����������������
	�� ��� !�"�#����������� ����������

index-6
N-ary 4-9, 9-21
with attributes 4-9

reordering attributes and roles 2-16
reverse engineering 5-24, 9-43, 10-19, 12-19
role 1-10, 4-3

inherited 6-9
name 4-13
proper 6-9

4

schema analysis 11-28, 11-29
schema analysis assistant 11-29
schema transformation 6-14, 9-7
script 11-18, 11-28, 11-32
secondary key 5-3
semantic description 1-13
semantics-preserving transformation 6-16, 7-19
shading objects 3-4
SQL code 1-14, 1-15, 3-6, 5-18, 12-11
SQL-compliant 9-3, 11-36
storage space 5-13, 12-8
subtype 6-2
subtype constraint 6-5, 11-4, 11-22
subtype inheritance 6-8
supertype 6-2

�

table 5-3
table identifier 3-5
technical description 12-11
total subtypes 6-5
�����4���

8

�
�	
��%�$@�6�

��
��� 7-10, 7-11, 7-15, 7-19, 8-2, 8-16, 10-4, 10-13, 10-14
8

�
�	
��%��
��������

�� 6-16, 10-3
6�

��
����%�$@�8

�
�	
� 7-11, 8-18, 11-24
6�

��
����%�$@�9��$
��� 9-31
6�

��
����%�8���������� 9-18, 9-38, 10-16
���������� ����������������
	�� ��� !�"�#�����������

index�7
6�

��
����%�9��$
�����$@�
�$� 11-23
0��	��%�$@�9��$
��� 9-11, 9-36
0��	��%�8������

�� 6-15
&�����������
�� 5-15, 10-12
5	
����5� 1-14
9���

���������� 3-4, 5-3, 12-16
9��$
����%�$@�8

�
�	
� 9-9, 9-31, 10-14
9��$
����%�$@�6�

��
��� 9-12, 9-27, 10-6

transformation plan 11-6
transformation script 11-18, 11-37
transforming

attributes 6-15, 7-10, 7-19, 8-2, 8-7, 8-16, 10-13
complex rel-types 9-13, 9-21
components of an identifier 7-25
compound attributes 7-23, 10-2, 10-14
cyclic many-to-many rel-types 9-17
cyclic one-to-many rel-types 9-17
entity types 7-11, 8-18, 9-30, 9-38
foreign keys 9-36
identifier attributes 7-23
IS-A relations 11-4, 11-22
many-to-many rel-types 9-11, 9-16, 10-21
multivalued attributes 7-22, 10-4
names 5-15, 10-12
one-to-many rel-types 9-8, 9-15
one-to-one rel-types 9-10
rel-types 9-27, 9-31
single-valued optional attributes 7-20
through scripts 11-18, 11-37

8

upward inheritance 11-23

C

/
�'
8�
�����
 2-11
0����#�������
 2-4
����������������
	�� ��� !�"�#����������� ����������

index-8
0����#��
������ 2-4
0����
������

��� 2-4, 2-5
��7
�������
 2-7
��7
��7
����� 2-8
��7
����
�� 2-9
��7
��
������ 2-7

=

*
���'�
0����
����
���� 2-2

D

Zoom 2-14
���������� ����������������
	�� ��� !�"�#�����������

	Table of contents
	Introduction
	Building our first database
	1.1 Introduction
	1.3 Creating a new project
	1.4 Defining a new schema
	1.5 Defining entity types COMPANY and PRODUCT
	1.6 Entering entity type attributes
	1.7 Entering relationship type MANUFACTURES
	1.8 Defining entity type identifiers
	1.9 Documenting the schema
	1.10 Producing a SQL database
	1.11 Saving the project
	1.12 Quitting DB-MAIN
	Summary of Lesson 1
	Exercises for Lesson 1

	A closer look at schemas
	2.1 Starting Lesson 2
	2.2 On including database schemas into a document
	2.3 Graphical views of a schema
	2.4 Textual views of a schema
	2.5 Manipulating the graphical components of a schema
	2.6 Navigation through textual views
	2.7 Reordering attributes and roles
	2.8 Generating reports
	2.9 Copying objects
	2.10 Pasting notes
	2.11 Quitting the lesson
	Summary of Lesson 2
	Exercises for Lesson 2

	Multi-product projects
	3.1 Starting Lesson 3
	3.2 Conceptual and logical schemas
	3.3 SQL code generation
	3.4 Generating reports
	3.5 Multi-product project
	3.6 Deleting objects
	3.7 Quitting the lesson
	Summary of Lesson 3
	Exercises for Lesson 3

	Conceptual Modeling
	4.1 Starting Lesson 4
	4.2 Updating an object
	4.3 What is a conceptual schema?
	4.4 Cardinality of an attribute
	4.5 Mandatory and optional attributes
	4.6 Single- and multivalued attributes
	4.7 Atomic and compound attributes
	4.8 Multiple identifiers
	4.9 Hybrid identifiers
	4.10 N-ary relationship types
	4.11 Relationship types with attributes
	4.12 Relationship types with identifier(s)
	4.13 Cyclic relationship types
	4.14 The complete schema
	4.15 Quitting the lesson
	Summary of Lesson 4
	Exercises for Lesson 4

	Logical and Physical Modeling
	5.1 Starting Lesson 5
	5.2 What is a logical schema?
	5.3 Transformation into a logical schema
	5.4 Reference attributes (foreign keys)
	5.5 Equality reference
	5.6 Defining a foreign key
	5.7 Access keys
	5.8 Defining entity collections
	5.9 Name processing
	5.10 SQL code generation
	5.11 Quitting the lesson
	Summary of Lesson 5
	Exercises for Lesson 5

	Advanced Conceptual Modeling
	6.1 Starting Lesson 6
	6.2 Subtypes and supertypes (is-a relations)
	6.3 Properties of the subtypes of an entity type
	6.4 Supertype / subtype inheritance
	6.5 Coexistent components of an entity type
	6.6 Schema transformations : a first glance
	6.7 Exclusive components of an entity type
	6.8 Groups with at least one, or exactly one, existing component
	6.9 Quitting the lesson
	Summary of Lesson 6
	Exercises for Lesson 6

	Conceptual Analysis (1)
	7.1 Objective of these lessons
	7.2 Conceptual analysis and design
	7.3 The case study
	7.4 The analysis
	7.5 Starting Lesson 7
	7.6 Starting the analysis
	7.7 The books
	7.8 The copies
	7.9 The authors
	7.10 The current schema
	7.11 Quitting the lesson
	Technical addendum
	7.12 The attribute/entity type transformation
	Summary of Lesson 7
	Exercises for Lesson 7

	Conceptual Analysis (2)
	8.1 Starting Lesson 8
	8.2 The analysis
	8.3 The borrowers
	8.4 Borrowings and projects
	8.5 Borrowing history
	8.6 The final schema
	8.7 Quitting the lesson
	Technical addendum
	8.8 Discussion on the attribute/entity type transformation (continued)
	Summary of Lesson 8
	Exercises for Lesson 8

	Logical Design
	9.1 Starting Lesson 9
	9.2 Logical design
	9.3 The concept of Relational Logical Schema
	9.4 Transformational approach to Logical design
	9.5 Dealing with one-to-many relationship types
	9.6 Processing many-to-many relationship types
	9.7 Transforming complex relationship types
	9.8 Logical design, at last!
	9.9 Quitting the lesson
	Technical addenda
	9.10 On the rel-type/entity type transformation
	9.11 On the rel-type/reference attribute transformation
	9.12 On the technical ID transformation
	Summary of Lesson 9
	Exercises for Lesson 9

	Logical Design (2)
	10.1 Starting Lesson 10
	10.2 What to do next?
	10.3 Transforming the compound attributes
	10.4 Transforming the multivalued attributes
	10.5 An (almost) SQL-compliant schema
	10.6 The names
	10.7 Quitting the lesson
	Technical addenda
	10.8 On the equivalence of Instance and Value representations
	10.9 On transforming compound attributes
	Summary of Lesson 10
	Exercises for Lesson 10

	Logical Design (3)
	11.1 Starting Lesson 11
	11.2 Working more systematically
	11.3 Transforming the IS-A relations
	11.4 A transformation plan
	11.5 The Global transformation Assistant
	11.6 Quitting the lesson
	Technical addenda
	11.7 IS-A transformation revisited
	11.8 Elementary schema analysis
	11.9 Advanced schema analysis
	11.10 Advanced schema transformation
	Summary of Lesson 11
	Exercises for Lesson 11

	Physical design
	12.1 Starting Lesson 12
	12.2 What is a physical schema?
	12.3 And what about physical design?
	12.4 Building the physical schema of a database
	12.5 Redundant access keys
	12.6 The TECH descriptions
	12.7 Generating the DDL schema
	12.8 Getting help from DB-MAIN
	12.9 Quitting the lesson
	Summary of Lesson 12
	Exercises for Lesson 12

	References
	Index

