The LIBD Tutorial Series

Introduction to

Database Design

Fifth Edition - March 2002

LIBD - Laboratory of Database Application Engineering
The University of Namur - Institut d’Informatique

0-2

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Credits

This series of tutorialsis aresult of the Knowledge & Technology transfer action of
the LIBD (Laboratory of Database Application Engineering). The LIBD is (and has

been) supported by:
I’Université de Namur (FUNDP)
la Communauté Francaise de Belgique
la Région Wallonne
I”Union Européen
and
by a consortium of companies and public administrations comprising:

ACEC-0SI, AGD, ARIANE-II, ASCII, Banque UCL (Fortis), BBL,
Carrieres du Hainaut, Centre de Recherche Public H. Tudor, Clinique
Universitaires St-Luc, Cockerill-Sambre, CONCIS, Daimler-Chrydler,
DIGITAL, D'leteren, EDF, EPFL, Euro View Services, Fortis-CGER,
Groupe S, IBM, Ingtitut National de Criminalistique.MinistéredelaRé-
gion Bruxelles-Capitale, OBLOG Software, ORIGIN, Régie des béti-
ments, TEC Charleroi, Ville de Namur, Winterthur, 3 Suisses.

Contacts

Professor Jean-Luc Hainaut
University of Namur - Institut d’ Informatique
rue Grandgagnage, 21 ¢ B-5000 Namur (Belgium)

jIhai naut@info.fundp.ac.be - http://www.info.fundp.ac.be/libd

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002 20/03/2002

0-4

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Table of contents

Table of contents
Introduction

1. Building our first database

1.1 Introduction

1.2 Creating a new project

1.3 Defining a new schema

1.4 Defining entity types COMPANY and PRODUCT
1.5 Entering entity type attributes

1.6 Entering relationship type MANUFACTURES
1.7 Defining entity type identifiers

1.8 Documenting the schema

1.9 Producing a SQL database

1.10 Saving the project

1.11 Quitting DB-MAIN

Summary of Lesson 1

Exercises for Lesson 1

2. A closer look at schemas

2.1 Starting Lesson 2

2.2 On including database schemas into a document
2.3 Graphical views of a schema

2.4 Textual views of a schema

2.5 Manipulating the graphical components of a schema

2.6 Navigation through textual views
2.7 Reordering attributes and roles
2.8 Generating reports

2.9 Copying objects

2.10 Pasting notes

2.11 Quitting the lesson

Summary of Lesson 2

Exercises for Lesson 2

3. Multi-product projects
3.1 Starting Lesson 3

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

toc-1

1-2

1-5
1-7

1-10
1-12
1-12
1-14
1-16
1-17
1-18
1-19

2-2
2-2
2-3
2-6
2-10
2-15
2-16
2-18
2-20
2-21
2-21
2-22
2-24

20/03/2002

toc-2

3.2 Conceptual and logical schemas 3-1
3.3 SQL code generation 3-5
3.4 Generating reports 3-8
3.5 Multi-product project 3-8
3.6 Deleting objects 3-10
3.7 Quitting the lesson 3-11
Summary of Lesson 3 3-12
Exercises for Lesson 3 3-12

4. Conceptual Modeling

4.1 Starting Lesson 4 4-2
4.2 Updating an object 4-2
4.3 What is a conceptual schema? 4-2
4.4 Cardinality of an attribute 4-4
4.5 Mandatory and optional attributes 4-5
4.6 Single- and multivalued attributes 4-5
4.7 Atomic and compound attributes 4-5
4.8 Multiple identifiers 4-6
4.9 Hybrid identifiers 4-7
4.10 N-ary relationship types 4-9
4.11 Relationship types with attributes 4-9
4.12 Relationship types with identifier(s) 4-11
4.13 Cyclic relationship types 4-13
4.14 The complete schema 4-16
4.15 Quitting the lesson 4-16
Summary of Lesson 4 4-17
Exercises for Lesson 4 4-18

5. Logical and Physical Modeling

5.1 Starting Lesson 5 5-2
5.2 What is a logical schema? 5-2
5.3 Transformation into a logical schema 5-3
5.4 Reference attributes (foreign keys) 5-6
5.5 Equality reference 5-8
5.6 Defining a foreign key 5-9
5.7 Access keys 5-10
5.8 Defining entity collections 5-13
5.9 Name processing 5-15
5.10 SQL code generation 5-18
5.11 Quitting the lesson 5-21
Summary of Lesson 5 5-22

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Exercises for Lesson 5

6. Advanced Conceptual Modeling

6.1 Starting Lesson 6
6.2 Subtypes and supertypes (is-a relations)

6.3 Properties of the subtypes of an entity type

6.4 Supertype / subtype inheritance

6.5 Coexistent components of an entity type
6.6 Schema transformations : a first glance
6.7 Exclusive components of an entity type

6.8 Groups with at least one, or exactly one, existing component

6.9 Quitting the lesson
Summary of Lesson 6
Exercises for Lesson 6

7. Conceptual Analysis (1)

7.1 Objective of these lessons

7.2 Conceptual analysis and design
7.3 The case study

7.4 The analysis

7.5 Starting Lesson 7

7.6 Starting the analysis

7.7 The books

7.8 The copies

7.9 The authors

7.10 The current schema

7.11 Quitting the lesson

Technical addendum

7.12 The attribute/entity type transformation
Summary of Lesson 7

Exercises for Lesson 7

8. Conceptual Analysis (2)

8.1 Starting Lesson 8

8.2 The analysis

8.3 The borrowers

8.4 Borrowings and projects
8.5 Borrowing history

8.6 The final schema

8.7 Quitting the lesson

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

toc-3

5-23

6-2
6-2

6-8
6-11
6-14
6-17
6-19
6-21
6-22
6-23

7-2
7-2
7-3

7-5
7-5

7-9
7-14
7-17
7-17
7-19
7-19
7-27
7-27

8-2
8-2
8-2
8-7

8-12
8-15

20/03/2002

toc-4

Technical addendum 8-16
8.8 Discussion on the attribute/entity type transformation (continued) 8-16
Summary of Lesson 8 8-19
Exercises for Lesson 8 8-20

9. Logical Design

9.1 Starting Lesson 9 9-2
9.2 Logical design 9-2
9.3 The concept of Relational Logical Schema 9-3
9.4 Transformational approach to Logical design 9-6
9.5 Dealing with one-to-many relationship types 9-8
9.6 Processing many-to-many relationship types 9-11
9.7 Transforming complex relationship types 9-13
9.8 Logical design, at last! 9-15
9.9 Quitting the lesson 9-25
Technical addenda 9-27
9.10 On the rel-type/entity type transformation 9-27
9.11 On the rel-type/reference attribute transformation 9-31
9.12 On the technical ID transformation 9-38
Summary of Lesson 9 9-40
Exercises for Lesson 9 9-41

10. Logical Design (2)

10.1 Starting Lesson 10 10-2
10.2 What to do next? 10-2
10.3 Transforming the compound attributes 10-2
10.4 Transforming the multivalued attributes 10-4
10.5 An (almost) SQL-compliant schema 10-9
10.6 The names 10-12
10.7 Quitting the lesson 10-12
Technical addenda 10-13
10.8 On the equivalence of Instance and Value representations 10-13
10.9 On transforming compound attributes 10-14
Summary of Lesson 10 10-18
Exercises for Lesson 10 10-18

11. Logical Design (3)

11.1 Starting Lesson 11 11-2
11.2 Working more systematically 11-2
11.3 Transforming the IS-A relations 11-4

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

toc-5

11.4 A transformation plan 11-6
11.5 The Global transformation Assistant 11-14
11.6 Quitting the lesson 11-21
Technical addenda 11-22
11.7 I1S-A transformation revisited 11-22
11.8 Elementary schema analysis 11-28
11.9 Advanced schema analysis 11-29
11.10 Advanced schema transformation 11-37
Summary of Lesson 11 11-43
Exercises for Lesson 11 11-44

12. Physical design

12.1 Starting Lesson 12 12-2
12.2 What is a physical schema? 12-2
12.3 And what about physical design? 12-3
12.4 Building the physical schema of a database 12-4
12.5 Redundant access keys 12-6
12.6 The TECH descriptions 12-11
12.7 Generating the DDL schema 12-11
12.8 Getting help from DB-MAIN 12-15
12.9 Quitting the lesson 12-17
Summary of Lesson 12 12-18
Exercises for Lesson 12 12-19

References

Index

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002 20/03/2002

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Introduction

Database Design

Database design is a part of the Software Engineering domain, through which
application devel opers specify, build and maintain large programs. More par-
ticular, database design isthe art of drawing, validating and implementing cor-
rect and efficient permanent data structures, i.e., files and databases.

Transforming an art into a science, or at least into a discipline, is not an easy
task, especially in software engineering. On the one hand, engineering requi-
res a coordinated set of models, techniques, methods and tools, the develop-
ment of which isfar from obvious. On the other hand, practitioners have to be
convinced that a disciplined approach to application design brings major bene-
fitsin the long term. Which is no easy task either!

Database models, techniques, methods and tools

Thedatabase models will be used to specify information/data structures at dif-
ferent levels of abstraction. They must offer an easy and intuitive way to state
that customers place orders, products are identified by their Product Number
or that an order is placed by one customer only. They must aso make it pos-
sible to describe more technical aspects such as CUSTOMER records are sto-
red in the file CUST.DAT, or the index IDX CITY is associated with the table
PERSONNEL.

Database engineering techniques encompass schema manipulation operators
that are intended to improve the quality and the efficiency of the data structu-
res. Normalization, validation, optimization, schema transformations and co-
ding patterns are some of the most important techniques.

Database methods organize the whole work of building an actual database
from the users requirements. They specify which tasks must be performed, in
which order, and with which criteriain mind. They heavily rely on sophisti-
cated rechniques and produce documents expressed in database models.

Building large databases (say, from 200 to 20,000 tables) cannot be carried out
without the support of powerful CASE tools (for Computer-Aided Software
Engineering) that help the developer in applying the database design method
and techniques. For instance, the mere SQL-DDL code that builds the databa-
se structures can span severa thousands pages.

Intro-2

Database engineering education

A databaseis apiece of art, and, according to many designers, carving adata-
base isamatter of experience, of feeling and of the personal temperament and
taste of the artist. On the other hand, the requirements of this discipline often
are overlooked by unexperienced developers. Indeed, building a 3-table data-
base is not that difficult. Adding, from time to time, atable or two according
tothe needs of the program being developed isquite easy too. Thisincremen-
tal approach, as can be guessed, most often results into an awkward database
structure that will prove unable to adapt to the evolving requirements of today
information systems, and that will lead to poor performance.

Hence the importance of database engineering education, not only in the scho-
ols and universities, but also among active practitioners.

Database Engineering

Designing adatabaseisjust the beginning of the story: maintaining a database,
transforming it according to new organization requirements (evolution), redo-
cumenting a legacy database (reverse engineering), porting it to a new plat-
form according a new architecture (reenginering), integrating independent
databases, federating existing databases, migrating datafrom aformat to ano-
ther, coping with spatial and temporal aspects of data, are other major proces-
ses that deserve being addressed in a disciplined way. Database engineering
isalarge domain that must rely of powerful models, techniques, methods and
tools, that go beyond mere database design.

The DB-MAIN project

DB-MAIN isamajor research programme of the LIBD since 1993. The very
objective of this long term project is the development of models, methods,
CASE tools and educational materials that should help building, maintaining
and reengineering complex, evolving, data-intensive applications.

One of the main result of the programme isthe DB-MAIN CASE tool.

The technology transfer aspects of LIBD

As an academic institution, the University of Namur, and particularly the Ins-
titute of Informatics and the LIBD, are strongly committed to making
knowledge available to as large as possible an audience. Accordingly, most
results of the research projects are translated into educational materials such
as case studies, | ectures and training seminars, mainly intended to the students

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Intro-3

of the university and to theindustry. Thisdocument is one of the products that
find their place in the technol ogy transfer results of the LIBD.

About this document

This tutorial aims to introduce the reader to database engineering problems
and processes by developing a small database step-by-step. Though the first
lessons may appear primarily as a user’s guide for the DB-MAIN tool, this
book basically is a learning-by-doing attempt to tackle some of the most im-
portant problems and reasoning encountered when designing and implemen-
ting a database through a disciplined approach. Coping with these problems
through the use of a CASE tool mainly is away to familiarize the reader with
these problemsin a(hopefully) more attractiveway. However, asasideeffect,
it will also introduce to the use of a powerful and origina development envi-
ronment that can solve complex problems that generally are out of the scope
of most current CASE tools.

This tutorial is sliced into graduated lessons that go from the basics to more
advanced topics. Each lesson is accompanied by suggested exercices. A rea
der in good physical and mental condition should not spend more than 60 mi-
nutes on each lesson.

Warning

These lessons are no substitute for the more technical documents of the pro-
gramme. In particular, mastering topics such as normalization, transforma
tions, optimization, methodology modeling, reverse engineering, maintenance
or CASE programming will require a more in-depth treatment that will be ad-
dressed in specific documents and materials. When needed, the lessons will
refer to these documents.

How to start?

The best way to start this tutorial is to spend some time (no more than one
hour) walking through avery small document called /s¢-Step. This micro-tu-
torial isintended to introduce the reader to the very basics of database analysis
and development, and to the main operations of the DB-MAIN CASE tool.
This document is available as a Microsoft help file (/st-step.hip). 1t can be
used as an independent document, but it can be opened from the welcome pa-
nel of the DB-MAIN tool (large button "First Steps'). A PDF version also is
available (1st-Step.pdyf).

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002 20/03/2002

Intro-4

What to do next?

A moretechnical tutorial isbeing written with the title Computer-Aided Data-
base Engineering - Volume 1: Database Models. 1ts goal isto help the reader
to master the basic and advanced concepts of the data model that has been de-
veloped in the LIBD, and to learn how to use it through the DB-MAIN tool.

Where to find the educational materials?

The documents and software mentioned in this introduction as well as other,
generally more advanced, documents, can be obtained from the site of the la-
boratory:

htp://lwww.info.fundp.ac.bellibd

Most of them can be freely downloaded and used for education purpose.

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Lesson 1

Building our first database

Objective

In this first lesson, the reader will learn how to start and quit the
DB-MAIN CASE tool, how to introduce a simple Entity-Rela-
tionship conceptual schema, and how to trandlate it into table and
column structures expressed into the SQL language. S/he will
also save her/hiswork for further use.

Above al, the reader will get an insight into what Database De-

sign isall about.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-2

1.1

1.2

Lesson 1: Building our first database

Preliminary checking

For this lesson, be sure that the DB_MAIN directory includes the
DB_MAIN.EXE program (the CASE tool) aswell asal therun-timelibraries
(*.d11). SeetheREADME . TXT file for further detail.

This lesson assumes that you use DB-MAIN Version 5, but is valid for other
versions as well.

Introduction

We will develop a very simple database intended to describe companies that
manufacture products. Through this process we will familiarize ourselves
with some important concepts in database engineering.

For instance, we will learn that besides the data structures that are built in the
computer, and in which we will store the data about these companies which
manufacture these products, there exists another, more abstract and more in-
tuitive way to describe these concepts, namely the conceptual schema. While
dataare stored into tables or into files, a conceptual schema describes the con-
ceptsin terms of entity types (classes of similar objects), attributes (entity pro-
perties) and relationship types (associations holding among entities).
Themost straightforward conceptual schema comprises the entity type COM-
PANY, which describes the class of companies, and the entity type PRODUCT,
representing the class of products. The fact that companies manufacture pro-
ductsis represented by a many-to-one relationship type called manufactu-
res connecting their entity types. We will give these entity types some
attributes that describe the properties of the companies (such astheir company
identifier, their name and their revenue) and of the products.

Starting DB-MAIN

Through the Explorer (or File Manager), we go into the DB_MAIN directory,
and we start the DB_MAIN program by double-clicking on the
DB _MAIN.EXE nameor ontheDB-MAIN icon. Weacknowledge the presen-
tation box by clicking on the OK button, or by pressing the Enter key. The
main DB-MAIN window appears, showing, among others, the Menu bar (with
two itemsonly: File and Help), the Too! bar (with afew buttons, among which

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1. Building our first database 1-3

are build a new project and open an existing project), the Workspace, inwhich
the project window will be displayed (currently empty), and the Status bar.

DB-MAIN 6.5 (O] =]
Fie Help - Menu bar
4 5 o o e Tool bar

- Workspace

| I | Statusbar

Figure 1.1 - The main window of DB-MAIN.

1.3 Creating a new project

We are ready to open a new project through the command File / New project.
This command opens a Project Property box (Or Project box for short), which
asks us some information about the new project. Our project will be called
MANU- 1 and will be given the short name M1. We validate the operation by
clicking on button OK.

Project Properties

Marme |MANL-1
Shott name M|
M ethodology I
Creation Date Browse |
File name I
Sem. | Tech. | Frop. |
Ok I Cancel |

Figure 1.2 - The properties of the new project.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-4 Lesson 1: Building our first database

Note 1. There is asimpler way to open a new project, namely by pressing the New
project button in the Tool bar.m

Now, a new window, namely the Project window, appears in the DB-MAIN
workspace. Currently, it includes asmall rectangle, which istheiconic repre-
sentation of the project itself (any DB-MAIN object has a graphical represen-
tation). To examine its properties, try File / Project Propertiesl. Later on,
thiswindow will also show al the products of the project, such as the various
schemas and texts, together with their relationships?.

MANU-1,16/272000,7:02:39

< | 2

Figure 1.3 - The project window in which all the documents of the project will
appear.

The Menu bar and the Tool bar have changed too, offering more functions that
will be used later on. Make sure that the Standard tools bar isavailable. Othe-
rwise use Windows / Standard tools to makeit visible.

) DB-MAIN 6.5 - MANU-1 M=l B3
File Edit Product MNew Transform Assist Enginesring Log Yiew 'window Help

5] ee(ea)=pHid == | 0| £ (21 Sl =5 o] ol m| @]] = 2] 2 mara =]

Figure 1.4 - The complete Menu bar and the full Tool bar.

1. Double-clicking does not work here, for reasons that will be explained later.

2. Thiswindow can also show al the activities that have been carried out to build these pro-
ducts. In other words, the Project window can show, if requested to, the history of the pro-
ject. We will ignore this feature in the following lessons.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-5

1.4 Defining a new schema

We create a new schema in which we will draw the conceptual structures of
the database. Through the command Product / New product the Schema box
appears and asks us the name (Manufacturing), the short name (Manu)
and the version of the schema. This schema will include the conceptual des-
cription of our databasein project, so that Conceptual should beaclear ver-
sion name that suggests the objective of the schema.

Schema Properties

Create a zchema

MHame IManufacturing
Shart name IManu
Yersion ID:nnceptuaI
Schema type I j
Creation [ate
Lazt LpD ate
' Data " Processing
Sem. | Tech. | Frop. |

Ennnectinnl Cancel |

Figure 1.5 - Creating a new schema.

Weignorethe other properties and we validate the operation by clicking on the
OK button.

Two things happen. First, a new icon with the name Manufacturing/
Conceptual appearsinthe Project window, indicating that the project com-
prises a new document, or product, which isaschema. Later on, double-clic-
king on such an icon will open its Schema window.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-6 Lesson 1: Building our first database

MANU-1.16/2/2000,7:02:39 [_ (O] =]
MAND-1

atafacturing/Conceptua

1] | W

Figure 1.6 - The project window includes the new schema®.

Secondly, aSchema window is opened, showing the sameicon, but nothing el-
se.

A Manufacturing/Conceptual

Manufacturin g onceptua

< | i

Figure 1.7 - The schema window is empty, except for the icon of the schema
itself. This window is like a blank page on which we will draw the conceptual
schema of the future database.

Thisicon representsthe schema. Double-clicking onit opensits Schema (pro-
perty) box. S0 far, this schemais empty. We will work in this window, so
that it isagood ideato enlargeit.

3. Insomeraresituations (for instance, if you work on aDB-MAIN version aready used by a
professional who configured it differently) a small rectangle with the label New schema
also appears in the Project windows. To get rid of it, check that the Project window display
mode is Graphical Dependency (through View / Graph. Dependency). The other modes
are quite nice as well, but probably abit disturbing for an introductory lesson!

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-7

From now on, in order to simplify theillustrations used in this lesson, we will
hide the schema object, except when needed.

Note. To free the workspace, especially when it is crammed with many windows, it
is best to iconize (minimize) the Project window.®

1.5 Defining entity types COMPANY and PRODUCT

To enter the create entity type mode, we click onthe button. That changes
the cursor that now looks like a little rectangular box. We choose a point in
the schema window, we put the cursor on it and we double-click. Thislaysan
entity type at that point and opens the Entity type box that allows us to define
anew entity type (Figure 1.8).

armfacturing/C onceptua

Entity tpype Properties B

Examine/modify the properties of an entity type

Name [COMPANY |
Short name |l:l]M |

Length 0
Supertypes | ot | st

<< Add |
Remove >>|

1| | » 1| | »

Sem. | Tech. | Prop. |

MHew ent. | Hew att. | ‘ Ok I Cancel |

Figure 1.8 - The first entity type is defined.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-8

1.6

Lesson 1: Building our first database

We enter the name COMPANY and short name COM. We validate the operation
by clicking on the oK button.

In the same way, we double-click at another point to define entity type PRO-
DUCT with short name PRO. To quit the entry mode, we click on the New En-
tity type button again, or we pressthe Escape key.

Now, the schemawindow shows the newly defined entity types as two boxes.
We move the boxes (by dragging them with the mouse) in the window in order
to give the schema anice layout (Figure 1.9)

M anufacturing/Conceptual M=l E3
Al
COMPANTY FRODUCT _I

*

A [2y

Figure 1.9 - So far, the current schema is made up of two entity types.

Entering entity type attributes

To specify that some specific information items are associ ated with the entities
of each type, we will define the attributes of these entity types. We open the
property box of entity type COMPANY by double-clicking on its name in the
schema window, then we click on the New att . button. The Artribute box
invites usto definethefirst attribute (Figure 1.10). Wegiveit the name Com-
ID, thetype char(acter) and thelength 15. Thisattribute representsthe com-
pany identifier, and is considered asa string of 15 characters. For now, we can
ignore the other properties.

There are other attributes that we want to associate with COMPANY. Therefore,
we click on button Next att(ribute), which validates the current definition,
and which callsthe Attribute box again (since this button is the active one, just
pressing the Enter key will doit). We define successively attributes Com-
Name (char 25), Com-Address (char 50) and Com-Revenue (numeric 12).
Thelast attribute will be validated by clicking on the Ok button instead to stop
the entry process.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-9

Attnbute Properties

Create attribute of
COMPANY

M arne IEDm-ID

Shart namel
Cardinality I'I -1 - I

— Tppe

IEhar "l [Stable [~ Mon Recyclable
Lengh [15 =]

Sem. | Tech. | Frap. |

Firstatt.l ‘ (]3 | Eancell

Figure 1.10 - The first attribute of COMPANY is defined. The next attributes
will be defined by pressing the Next att. button, or more simply by pres-
sing the Enter key.

In the same way, we define attributes Pro- ID (char 8) and Pro-Name (char
25) of entity type PRODUCT.

The schema window now looks like Figure 1.11.

Al
COMPANY
Com-ID FRCDUCT
Com-Natme Fro-ID —I
Com-Address Pro-Name
Com-Fevenue

4] = A

Figure 1.11 - The entity types have been given specific attributes.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-10 Lesson 1: Building our first database

1.7 Entering relationship type MANUFACTURES

Now we want to represent the fact that companies manufacture products. This
can be done by drawing arelationship type (or rel-type for short) between the-
Se entity types.

We enter the New rel-type mode by clicking on the button in the Tool
bar®. The cursor takes a cross-hair shape, so that we can draw a line from
COMPANY to PRODUCT in the schemawindow (Figure 1.12).

Al
COMPANY
Com-ID FRCDUCT
Com-Hame § to-I1D —I
Com-Address {;rm{‘!\?
Com-Fevenue

4] = A

Figure 1.12 - A line is drawn between the boxes of the entity type we want to
connect.

A link appears between both rectangles with a hexagon on it. Normally, the
default name R is selected (white on black). If itisnot, weclick onit. We press
the Enter key to open the Rel-type box (or we double-click on name R) We
enter the correct namemanufactures, then wevalidate through the Ok but-
ton (Figure 1.13).

We quit the entry mode just like we did for the entity types by pressing the
Escape key or by clicking on the button again (or on any another entry
button).

Each end of the rel-type is called arole. Each roleis taken by an entity type
and isgiven acardinality constraint, that appears asapair of symbols, such as
0-N and 1-1.

The O-N cardinality specifies that any COMPANY entity will appear in at least
0 and a most N (standing for infinity) manufactures relationships.

4. or button [in Version 3,

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-11

Manuf acturing/Conceptual =] Eq
COMPANTY
Com-ID FRODUCT
Come-Hame _U-Nl'l_ Pro-ID |
Com-Address Pro-Matme
Com-Revermie

R el-type Properties [<] I

Examine/modify the properties of a rel-type

-« -

Mame |manul‘actures |

Short name | |

Length 0+

Sem. | Tech. | Prop. |

Ok I Cancel |

Hew IE|.| Hew mlel Hew att.l

Figure 1.13 - A relationship type links the entity types. It will be given the
name manufactures.

Manufacturing/Conceptual _ (O]
COMPANY
Com-ID PRODUCT
Com-Hame _D-Nl-l_ Fro-ID _I
Com-&ddress Fro-Mame
Com-Revenue
Kl [1

Figure 1.14 - Now the schema explicitly tells that companies manufacture pro-
ducts.

We will study later the concept of cardinality in greater detail. For now, we
understand the 0-N cardinality as "a company manufactures an arbitrary
number (i.e,. from 0 to N) of products". Similarly, the schema shows that a
PRODUCT entity will appear in exactly one (i.e., from 1 to 1) manufactu-
res relationship.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-12

1.8

1.9

Lesson 1: Building our first database

The cardinality can be changed by double-clicking on therole, i.e., on its car-
dinality symbol. Thiswill be examined in detail in another lesson.

Defining entity type identifiers

Normally, the entities of the same class, for instance all the companies, have a
special property that allows usto designate each of them. This property iscal-
led an identifier of the entity type. Usually, it isaname, acode, areference or
anything else that makes the entities unique in their class.

For instance, we want to tell that Com-ID is the unique code of companies.
We select thisattribute by clicking on its name (which appears white on black)
than weclick onthe Identifier button on the Tool bar.

In the sameway, we define PRO- ID astheidentifier of entity type PRODUCT.
The schema can now be considered as complete (Figure 1.15).

M anufacturing/Conceptual =]
COMPANTY ;I
ComID FRODUCT
Com-Hame - _ |Pro-ID
Cotn-Address _D_NMLI Pro-Hame [
Com-Revenue id: Pro-ID
id: Com-ID
A [| 1

Figure 1.15 - An identifier has been associated with each entity type.

Note that the identifier is graphically mentioned twice (assuming the novice
analyst has not noticed thefact!): first through the 1d clause that appears at the
bottom of the entity type box, and secondly by the underlining of the compo-
nent attribute. This latter way will be used when the identifier comprises at-
tributes only.

Documenting the schema

Y ou have probably observed that most boxes that define the properties of an
object have a special button named sem. Clicking on the Sem button opens a

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-13

small text window in which we are allowed to enter a free text that describes
the meaning of the current object, i.e., its semantics.

L et usdouble-click onthe COMPANY entity type (another way: select COMPA -
NY, then pressthe Enter key). We get the Entity type property box of coM-

PANY. We click on the Sem button, and we enter a text that defines what a
company is (Figure 1.16).

Semantic Description Hi=]

A registered business organization with which we have had commercial [~
contacts for less than 5 years |

Ok Cancel |

Figure 1.16 - The Semantic description text window of an object.

The text can be aslong as needed (with a 32 Kb limit however). It can be cut,
copied and pasted from/to any other program in the usual way (ctrl-X, ctrl-C,
ctrl-V).

In the same way, we can enter adescription for PRODUCT and manufactu-

res, for each of the attributes, for each role, for each identifier and even for
the schema and the project themselves.

Note. Thereisasimilar button [ei] on the Standard tools bar which has the same ef-
fect: select any object in the current schema, then click on this button to open the Se-
mantic description window of the object.l

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-14 Lesson 1: Building our first database

1.10 Producing a SQL® database

There are several waysin which this conceptual schema can be trandated into
table and column structures. For now, we have no specia requirements as far
as performance, or any other consideration, are concerned. We will be happy
with an unsophisticated trandation of this schemainto SQL commands.

This trandation can be done in a straightforward way through the command
Transform / Quick SQL. DB-MAIN simply asks you, with the standard file
dialog box, in which file you want the SQL program to be stored. By default,
the file will be named manu-1.dd1, following the name of the project (Fi-
gure 1.17).

Save S0L Generation As... EHE3

e [MiniTut =l gl |_

MHom : Imanu-1 .ddl

Type: [DDL Files (=) =] Annuler |

Figure 1.17 - The SQL program that is being generated from the conceptual
schema will be saved as manu-1 .DDL file.

Now, we go back to the Project window. We observe that a new product has
been made available. The dightly different icon shape indicates that this new
document isatext file called manu-1.dd1. Obviously, thisisthe SQL pro-
gram we just generated in the last step.

We can examine the contents of this text file by double-clicking onitsicon. A
new text window opens, showing the SQL code implementing the conceptual
schema. It should read like in Figure 1.19.

5. SQL must be read SEQUEL.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-15

MANU-1,1642/2000,7:02:39

MANU-1
atfacturing/Conceptus

1] | a2

Figure 1.18 - Now, the project window includes two products, namely the con-
ceptual schema and the SQL program that derives from it.

create database Manufacturing;

create table COMPANY (
Com-ID char(15) not null,
Com-Name char (25) not null,
Com-Address char (50) not null,
Com-Revenue numeric(12) not null,
primary key (Com-ID)) ;

create table PRODUCT (
Pro-ID char(8) not null,
Pro-Name char (25) not null,
Com-ID char(15) not null,
primary key (Pro-ID)) ;

alter table PRODUCT add constraint FKmanufactures
foreign key (Com-ID) references COMPANY;

create unique index IDCOMPANY on COMPANY (Com-ID) ;
create unique index IDPRODUCT on PRODUCT (Pro-ID) ;
create index FKmanufactures on PRODUCT (Com-ID) ;

Figure 1.19 - The contents of the manu-1.dd1 text file can be examined by
double-clicking on its icon in the project window.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-16 Lesson 1: Building our first database

To be quite precise, this SQL program will not necessarily be executable on
al machines, and would probably need some syntactic adjustements. For ins-
tance, dashes ("-") are not alowed by most SQL DBMS, and should be repla-
ced by, say, underscores ("_"). Wewill seelater how thiskind of problem can
be addressed in a systematic way.

In addition, the set of indexes may not be the most efficient one, and would
need some refinement. Such decisions relate to physical design, an activity
that obviously isfar beyond the scope of thisfirst lesson!

1.11 Saving the project

Asisnatural after working such along time, we carefully save our work throu-
gh command File / Save project (or button) or command File / Save pro-
ject as (or button) in order to make it available for further use.

Save Project As. .. 2 | x|

Dans: |3 MiniTut = B o =

Mo - IMANU-'I.Iun Enregiztrer I
Type: ILUN Files [~ lun) j Annuler |

Figure 1.20 - The whole project is saved on disk.

By default, the project is saved asfilemanu-1 . 1un. We validate the opera-
tion through the button OK.

The * . 1un extensionistypical to the saved DB-MAIN projects, so do not use
them for other files.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-17

1.12 Quitting DB-MAIN

It is now time to exit from the DB-MAIN tool by command File / Exit.

We have built our first SQL database, and we are now able to build other ssm-
ple SQL databases just by applying the basics that have been presented in this
lesson.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-18 Lesson 1: Building our first database

Summary of Lesson 1

¢ Inthisfirst lesson, we have studied some important concepts:
- the concept of CASE tools
- projects and schemas
- entity types, relationship types, attributes and identifiers
- conceptua schemas
- SQL expression of aconceptual schema

e Wehaveadsolearnt to:
- runthe DB-MAIN CASE tool

- create anew project: File / New project
- create anew schema Product / New schema
- define an entity type: New / Entity type
- define an attribute: New / Attribute
- define arelationship type: New / Rel-type
- define an identifier: New / Group
- add a semantic description:
- savethe current project: File / Save as
- savethe current project: File / Save ETY
- produce SQL code: Quick DB/ SQL

or Transform / Quick SQL
- exit from DB-MAIN: File / Exit

e We have produced two types of files:
- saved projects (*.1un)
- executable code such as SQL (*.dd1).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 1: Building our first database 1-19

Exercises for Lesson 1

Define a project, a conceptual schema and generate an SQL database creation
program for each of the situations described below.

11

12

13

14

The small database we devel oped in this lesson was based on the hypo-
thesis that a product is manufactured by one company only (cardinality
1-1). Now, consider that a product can be produced by any number of
companies (i.e., by 0, 1, 2, or more companies). Change the schemaac-
cordingly. Don’t save this project.

Customers buy products in such away that each customer can buy any
number of products and each product can be bought by an arbitrary
number of customers. Imagine some natura attributes for the entity ty-
pes. Call thisproject SALES1 and saveit.

Students belong to classes: each student belongs to exactly one class (no
less, no more), while a class comprises any number of students. Each
student can be registered in any number of courses while any number of
students can be registered for agiven course. Imagine some natural at-
tributes for the entity types. Call this project STUDENT1 and save it.

Complete the MANU- 1 project by considering countries to which pro-
ducts are exported.

Don't save the modified project (we will make use of the origina ver-
sion in further lessons), unless you give it another name.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

1-20 Lesson 1: Building our first database

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2

A closer look at schemas

Objective

This is an easy and relaxing lesson (just playing with existing
schemas!). It presents some useful schema display formats and
the way to use them. In this lesson, we a so study how to manip-
ulate graphical and textual objects, how to change their apparent
size, how to navigate through a schema and to generate reports.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-2

2.1

2.2

Lesson 2: A closer look at schemas

Preliminary checking

In this lesson, we will use the project MANU-1 (file manu-1. 1un) that has
been created in Lesson 1, and the LIBRARY project (or its French equivaent
BIBLIO) that comes with the DB-MAIN software.

Starting Lesson 2

Let us start DB-MAIN and open the project MANU-1 through the command
File / Open project or by clicking on the button [28]. When the project is ope-
ned, we double-click on the icon of the Manufacturing/Conceptual
schemato display its contents.

For thislesson, we will need some new functionsthat are offered by the menu,
but that are available on anew tool palette aswell. Wedisplay this new palette
through Windows / Graphical tools (Figure 2.1). These tools can be placed
anywhere on the screen, for instance under the Standard tool bar.

Y - |
o] G @100 -] B3] B STl Re[7Y
fic! B8 e V8|

Figure 2.1 - The graphical tool bar. It can be resized according to your taste.

On including database schemas into a document

Inthefirst lesson, several figuresinclude a schema, showing the step-by-step
construction of the conceptual description of our database. As everybody
should have observed, these schemas have been obtained from screen copies.
This technique provides nice looking results, but is rather painful (the screen
shots have to be processed with an image processing software) and yields huge
documents.

The DB-MAIN tool includes a function that copies selected schema objects
onto the clipboard in a more concise format (as vector-based objects). So, se-
lect all the objects of the schema, then call the Edit / Copy graphic menu item
or click on the button in the Graphical tools bar. Then, open a Word or

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-3

2.3

Powerpoint document, and paste the clipboard contents (use Paste or Paste
Special according to the software).

The schema objects appear in the text document asin Figure 2.2 (bottom). The
result can be modified as any vector-based graphical obj ect!. From now on,
we will use this technique to include schema fragments in this lesson and in
the next ones.

M anufacturing/Conceptual M=l 3
COMPANTY d
ComID PRODUCT
Com-Name __|PtoID
Com-Address - manufactures 11 Pro-WHame —I
Com-Eevenue id: Pro-ID
id: Com-ID
Kl || 1Y
COMPANY
Com-1D PRODUCT
Com-Name Pro-1D
Com-Address _O_Nl_l_ Pro-Name
Com-Revenue id: Pro-1D
id: Com-ID

Figure 2.2 - Bitmap (top) and vector-based (bottom) schemas as they appear
in a text document.

Graphical views of a schema

In Lesson 1, the schemawas represented in a Schemawindow through graphi-
cal objects. There are several other waysto display this schema. They can be
classified into graphical views and textual views. This section is devoted to
graphical views.

In some products, such as MS-Word or FrameM aker, the labels may appear to be too long
or too short for the rectangles in which they are enclosed after the schema has been redi-
mensioned. Thisis due to the way Windows redimensions a graphical object: continuously
for geometrical components and point by point for texts. In this case, just expand or stretch
the schema frame horizontally until the texts correctly fit in their boxes.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-4 Lesson 2: A closer look at schemas

Let usfirst examine anew way of presenting large schemas, namely the com-
pact view. It can be obtained through the View / Graph. compact command.
The attributes and identifiers are hidden in such a way that only the schema
skeleton appears (Figure 2.3).

O—N—<manufactura>—1—1—| PRODUCT

Figure 2.3 - The compact graphical view of the MANU-1/Conceptual schema.

Now, we go back to the standard graphical view through View / Graph. stan-
dard, to get the view we have used so far (Figure 2.4). Sincethisview isthe
most useful, it has been given a specia button on the Standard tools bar: .

COMPANY

Com-ID PRODUCT
Com-Name Pro-1D
Com-Address _O_Nl_l_ Pro-Name
Com-Revenue id: Pro-ID
id: Com-1D

Figure 2.4 - The standard graphical view of the MANU-1/Conceptual schema.

Starting from this standard view, we can derive some simplified forms by
using the graphical settings panel (View / Graphical settings) (Figure 2.5).
The buttons of the Show Objects block of this panel can be unchecked, which
hides the attributes, or the identifiers (called groups in the panel), or both (Fi-
gure 2.6). You can aso show the attribute types if needed.

Graphica variants exist to represent entity types and rel-types. For instance,
we can choose to draw entity type and/or rel-type boxes with round corners
instead of square ones by selected rounded shape in the Graphical settings pa-
nel (Figure 2.7). These settings arevalid for the current schema. They can be
useful to distinguish different levels of schemas.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas

Graphical 5ethings 3
||7 Independent |
—£oom factor Gnd farmat

|75 j INDHE j
— Reduce factar Width IEI.EIEI Cm
I-II:":I j Length IDDD I
— Shaow abjects

v ,-’-'« [Proc. units W Motes

[Attribute types v Stereotypes

Iv | Frim. id v Other groups

— Entity tppes

[154 square

Shape I Square

~| ¥ Shaded

— Reltypes
Shape ISquare j I~ Shaded
Ok Cancel | Help |

Figure 2.5 - The Graphical settings panel.

COMPANY PRODUCT

- on L1y

id: Com-1D id: Pro-1ID

COMPANY

Com-ID: char (15) PRODUCT
Com-Name: char (25) —O-Nl—l— Pro-ID: char (8)
Com-Address: char (50) Pro-Name: char (25)
Com-Revenue: num (12)

Figure 2.6 - The Standard view without Attributes (top) and without Groups
(i.e., without identifiers) but with attribute types (bottom).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

2-6 Lesson 2: A closer look at schemas

N\

COMPANY

.\

Com-ID PRODUCT
Com-Name Pro-ID
Com-Address _O_Nl-l_ Pro-Name
Com-Revenue id: Pro-1ID
id: Com-ID —

COMPANY

Com-ID PRODUCT
Com-Name Pro-ID
Com-Address [*N manufactur$>—1-1— Pro-Name
Com-Revenue id: Pro-1D
id: Com-ID

Figure 2.7 - Round-corner shape and shaded boxes as alternate graphical re-
presentations.

A last trick before leaving the graphical views of aschema: how to retrieve a
selected object in a schema. Let us suppose that the (small) schema window
shows a fragment of a (large) schema. Let us also suppose that an object is
selected, somewhere in the schema, but not shown in the window. How to
move the window in such away that the selected object is at the center of this
window? Nothing can be ssimpler: just pressthe tab key.

What if there is more than one selected object? The tab key brings the next
selected object in the window.

2.4 Textual views of a schema

The contents of a schema can be presented asa puretext aswell. Inthismode,
four formats are available.

The simplest oneisthe compact view. 1t showsamerelist of the names of the
entity types followed by that of the relationship types (Figure 2.8).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-7

Schema Manufacturing/Conceptual

COMPANY
PRODUCT

manufactures

Figure 2.8 - The Text compact view of a schema

Thislist isasort of dictionary. It can be obtained through the command View
/ Text Compact.

The compact view does not display the detail of a schema and can be used as
aquick index to locate an object in alarge schema.

For a more detailed textual view, try the Standard view. 1t can be obtained
through the command View / Text Standard, and presents the current schema
asin Figure2.9. Sinceit isfrequently used, it can also be obtained through a
specific button on the Standard tools bar: .

Schema Manufacturing/Conceptual

COMPANY
Com-ID
Com-Name
Com-Address
Com-Revenue
id: Com-ID

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

manufactures (
[1-1] : : PRODUCT
[0-N] : COMPANY)

Figure 2.9 - The Text standard view of a schema

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-8 Lesson 2: A closer look at schemas

The extended view is an even more complete presentation. In addition to the
information of the standard view, the extended view shows, among others, the
short names, the type and length of the attributes and the roles in which each
entity type appears. Thesymbol [S] indicatesthat a semantic description has
been associated to the object.

This view is obtained through the command View / Text extended, and ap-
pears asin Figure 2.10.

Schema Manufacturing/Connceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) I[S]
Com-Name char (25) [S]
Com-Address char (50) [S]
Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]

Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

Figure 2.10 - The Text extended view of a schema. The directed arcs show
the possible jumps through the hyperlinks activated by a right-button click.

Note that the role lines that appear both in the entity type and rel-type paragra-

phs makes it possible to navigate through the whole schema by jumping from

an entity typeto the relationship typesin which it appears, and conversely:

- to jump from an entity type to one of itsrelationship types: click on theline
of the role in the entity type paragraph with the right button of the mouse.

- to jump from arelationship type to one of its entity types: click on the line
of therole in the rel-type paragraph with the right button of the mouse.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-9

These hyperlink functions are very handy for large schemas. More on schema
navigation later in this lesson.

Thelast format isthe sorted view, which presents an unstructured sorted list of
all the names that appear in the schema, together with their type and origin.
This view is particularly important for large and complex schemas, specially
inreverse engineering activiti es?. It can be used too when checki ng namesin
conceptual analysis. Inaddition, it isthe easiest way to retrieve an object when
only its nameis known.

The sorted view can be obtained through the command View / Text sorted,
and appearsasin Figure 2.11.

Schema Manufacturing/Conceptual

Com-Address Att. of COMPANY

Com-ID Att. of COMPANY

Com-Name Att. of COMPANY

Com-Revenue Att. of COMPANY

COMPANY Entity type

manufactures Rel-type

Pro-ID Att. of PRODUCT

Pro-Name Att. of PRODUCT

PRODUCT Entity type

Figure 2.11 - The Text sorted view of a schema

Two important properties

- Objects that are selected (highlighted) in a view still are selected in any
other view in which they appear. For instance, an attribute with a particular
name can be retrieved in a schema by using the fext sorted view. Now,
choosing the standard graphical view allows usto examine this attribute in
its context.

2.

Reverse engineering can briefly be described asthe converse of what we did inthefirst les-
son, that isrecovering the conceptual schema of an existing database. 1t involves complex
techniques and tools that are described in other documents but that will be ignored in this
tutorial.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-10

2.5

Lesson 2: A closer look at schemas

- Building a schema, or examining, deleting and modifying its components,
can be performed whatever the view in which this schemais displayed. For
instance, double-clicking on the line of an object in a text view opens the
same property box asin agraphical view.

Manipulating the graphical components of a schema

Now, let us go to agraphical view of the schema. The position of the objects
of this schema can be changed by selecting and dragging them in the usua
way. Several objects can be selected (or deselected) by pressing the shift
key when selecting, or by drawing a selection rectangle with the mouse, and
moved simultaneously.

Moving objects

Moving objects in their window obeys the general Windows rules:

- selected objects are moved by dragging them in the window space;

- selected objects are moved by pressing the cursor keys (« T — 1);

- small-step moves are obtained by pressing the cursor keys while pressing
the Ctrl key;

- using the scroll bars moves the window in the four directions.

The Move mode designates the way DB-MAIN reacts when an object is mo-
ved on the screen: does it move the object only (independent mode), or does it
reposition the connected objects aswell (dependent mode)? This mode can be
set either in the Graphical settings panel (Independent button) or through
the INDEP . button on the Graphical tools bar: [ae .

In the Dependent mode, the graph is adjusted as follows (Figure 2.12 left):

- when an entity type is moved, its relationships types and their roles are
moved proportionally and redrawn;

- when arelationship type is moved, its roles are moved too,

- when aroleis moved, nothing else is redrawn.

In the Independent mode, the graph is adjusted as follows (Figure 2.12 ri-

ght):

- when an object (entity type, relationship type, role) is moved, nothing
elseisredrawn, except the arcs that link it to the other objects.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas

2-11

COMPANY COMPANY
Com-1D Com-1D
Com-Name Com-Name
Com-Address Com-Address
Com-Revenue Com-Revenue
id: Com-ID id: Com-ID

\
O-N O-N
e -
1-1 1-1
\
PRODUCT PRODUCT
Pro-1D Pro-1D
Pro-Name Pro-Name
id: Pro-ID id: Pro-ID

Figure 2.12 - Moving rel-type manufactures in the dependent mode (left)
and in the independent mode (right).

Aligning objects

After awhile, a schema may look like spaghetti, and we might want to put
some order among its components. A first nice feature is the rel-type Align
action which allows us to align arole or a relationship type according to its
connected objects. We can get this effect by clicking on the object (role or rel-
type) with the right button of the mouse (Figure 2.13).

To aign alarger set of objects, we will make use of the View / Alignment
command, that providesuswith eight operators, four for vertically aligning the
objects and four for horizontal alignment. They are also available on the Gra-
phical tools bar (Figure 2.14).

In the horizontal dimension, we can align objects on their left side, on their
right side, we can center them and we can distribute them horizontally at equal
distance.

In the vertical dimension, we can align objects on their top side, on their bot-
tom side, we can center them and we can distribute them verticaly at equal
distances.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-12 Lesson 2: A closer look at schemas

COMPANY COMPANY COMPANY
Com-1D Com-1D Com-1D
Com-Name Com-Name Com-Name
Com-Address Com-Address Com-Address
Com-Revenue Com-Revenue Com-Revenue
id: Com-ID id: Com-ID id: Com-ID

O0-N

~ TN
anufactur

~L—
ot

manufactures

0-N

1-1
PRODUCT PRODUCT PRODUCT
Pro-ID Pro-ID Pro-1D
Pro-Name Pro-Name Pro-Name
id: Pro-ID id: Pro-ID id: Pro-1ID

Figure 2.13 - Aligning roles (center) and relationship types (right) by clicking
with the right button of the mouse.

Horizontal object moves

. dignto left

. digntoright

. center horizontally between left and right

. distribute evenly between left and right

167 i?) o]]

Vertical object moves

. adigntotop

. align to bottom

. center between top and bottom

o 2 2

. distribute evenly between top and bottom

Figure 2.14 - The eight object alignment operators.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas

2-13

Arc alignment

. horizontal staircase

. vertical staircase

. top corner

52 Lo 62 o2

: bottom corner

Figure 2.15 - The four arc alignment operators.

o]

e

i

Figure 2.16 - How to draw a source rel-type (top) with staircase style with just
a mouse click.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

2-14

Lesson 2: A closer look at schemas

Two comments:.

1. Horizontal means that the objects are moved horizontally to reach their fi-
nal position (the same for the vertical direction).

2. When the objects are distributed evenly, the distance is eval uated between
the edges of the objects, not between their centers. This provides a natural
positionning of roles and rel-types between their entity types.

Thelast four alignment operators (Figure 2.15) are dedicated to users who are
found of staircase rel-types. Since an image isworth one thousand words, we
suggest you had alook at Figure 2.16.

The best way to get acquainted with these operations is to play with a disali-
gned schema such asthat of Figure 2.17, which isavailable in project Manu-
3.1un, schemaAlignment.

)
S M

_(eac)—on
/1-1 _

1-1
\

C

Figure 2.17 - This schema obviously suffers from a severe disalignment di-
sease. Cure it.

Zooming in and out

For large schemas, a zooming function is available to help fit a larger or a
smaller portion of the schemain the Schemawindow (zoom out), or to exami-
netiny details (zoom in). Thisfunction is available in the Graphical settings
panel (Figure 2.5) and in the Graphical tools bar (Figure 2.1) through the fol-
lowing buttons:;

expands the schema representation by 10%:

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-15

2.6

shrinks the schema representation by 10%;

sets the zoom factor by specifying its exact value; the £it value
adjuststhe zoom factor so that the schemafitsin the schemawin-
dow.

Using a larger schema

To get abetter feeling of the useful ness of the various views, we switch to ano-
ther project. We close the current one (command File / Close project), and
we open the LIBRARY project (command File / Open project) and its sche-
ma. Now we experiment with each view, and try to figure out the meaning of
the components of this schema, which obviously describes the management of
ascientific library. Its contents include many more modeling characteristics
that will be discussed later.

Last observations

We observe that:

- switching from aview to another one isimmediate, and can be asked for at
any time;

- the operations of the tool are independent of the view through which they
are executed,

- an object that is selected (highlighted) in a view still is selected when we
switch to another view;

- if several schemas of a project are opened (more on this later on), they can
be displayed in different views.

Navigation through textual views

When aschemaissmall, it spansone or two screensonly. Retrieving an object
in such a schema needs no special skill nor any specia tool. The problem is
less trivial when the schema is larger, and is several dozens of screens large
(large schemas can include thousands of entity types and rel-types): browsing
through such a schema can be time consuming and does not garantee that the
objects we are looking for will be found quickly, if ever.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-16 Lesson 2: A closer look at schemas

Retrieving a specific object can often be made easier by working first on the
Text compact and Text sorted views, using them as some kind of dictiona-
ries, then switching to the standard graphical or text views when the object of
interest has been found.

Another useful tool for object retrieval in context is the navigation feature of
DB-MAIN. Toillustrate them, we need alarger schema, such as LIBRARY.
Wedisplay it in the Text extended view, and we reduce the Schema window
alittle bit to simulate a large schema in a too small window.

L et us experiment the navigation capabilities of DB-MAIN. Unlesstold othe-
rwise, the following manipulations are valid for the Text standard and Text
extended views.

- We select the COPY entity type by clicking on its name; we observe that
each linein which the name COPY appears (i.e., each instance of COPY) is
tagged with symbols ">>"; such is the case for each role in which COPY
appears;

- If we press the TAB key; the next tagged instance of COPY appearsin the
center line of the Schemawindow; this allows the cursor to jump to each of
the relationship types in which COPY takes part;

- We click with the right button on aline describing a role in which COPY
appears, in arel-type paragraph; the COPY entity type isthen selected; the
right button acts as a go home button;

In the Text extended view, we click with the right button of the mouse on a

rolein which COPY appears, in its entity type paragraph, then click; therela-

tionship type of therole is then selected.

In Figure 2.18, the navigation rules are shown on the small project Manu- 1.

2.7 Reordering attributes and roles

Though the order in which attributes (and roles) appear in the textual and gra-
phical views does not matter in most situations, you may want to change this
order.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-17

Schema Manufacturing/Conceptual / Manu [S]

COMPANY / COM [S]
Com-ID char (15) [S]
Com-Name char (25) [S]
Com-Address char (50) [S]

Com-Revenue numeric (12) [S]
id: Com-ID
role: [0-N] in manufactures

PRODUCT / PRO [S]
Pro-ID char (8) [S]
Pro-Name char (25) [S]
id: Pro-ID
role: [1-1] in manufactures

namufactures [S] (
[1-1] : PRODUCT
[0-N] : COMPANY)

Figure 2.18 - Navigating in the Text extended view of a schema of project
Manu- 1 with the right button of the mouse.

To change the position of an attribute (graphical and text views), select it,
then

- pressthe Alt + T keys® to move it one position up,

- pressthe Alt + | keysto moveit one position down (Figure 2.19).
To change the position of a role (text views), select it, then

- pressthe Alt + T keysto move it one position up,

- pressthe Alt + | keysto move it one position down.

The keys must be pressed simultaneously, not sequentialy.

There are other ways to reorganize the attributes of an entity type, but they re-
quire more sophisticated functions (namely schema transformations) that will
be studied later.

3. The keys must be pressed simultaneously, not sequentially.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-18

Lesson 2: A closer look at schemas

COMPANY COMPANY
Com-1D Com-Name
Com-Name Com-1D
Com-Address | — 9 |Com-Revenue
Com-Revenue Com-Address
id: Com-1D id: Com-ID

Figure 2.19 - Changing the order of the attributes with Alt + IT.

2.8 Generating reports

A decent CASE tool must produce external documents that can be printed on
paper. Thisonedoesit too. Several kind of reports can be of interest, ranging
from simple object lists to sophisticated documents including a table of con-
tents, an index and footnotes. Though DB-MAIN can produce such docu-
ments, we will show how to generate simple outputs.

1. First, wevisualize our schemain any textual view (for instance with button
ED.

2. Then we execute the command File / Report / Textual view. We get the
panel of Figure 2.20.

Print dictionary EHE |

™ Include semantic desciptions | | [Include technical description

Separator Separator

| Prefis Marked lines by I_ [Include dynamic properties walues ‘

— Write ko file
[MANU-1.dic Browse |
| [Show report generation ‘

Cancel |

Figure 2.20 - Generating a simple text report.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-19

3. We accept (or change) the default name (MANU-1 . dic) of the output file
in which the text will be stored. We ask for the semantic description to be
included (check button Include semantic description). We define the cha-
racter string that will be included just before each semantic description (a
tab control can be used to clearly separate it from the object description®).

4, Weclick on OK.

Dictionary report

Project MANU-1

Schema Manufacturing/Conceptual

A simple example of conceptual database
schema used in the first lessons of the
DB-MAIN tutorial. This schema has been
created on December 15, 1998.

* COMPANY A registered business organization with
which we have had commercial contacts for
less than 5 years.

Com-1ID Internally assigned company Id.

Com-Name Official name of the company.
Com-Address Main address of the company.

Com-Revenue The total net income of company for the

last fiscal year.
id: Com-ID

* PRODUCT A product of interest for our company.
Pro-ID Internally assigned product Id.
Pro-Name The conventional name of the product.

id: Pro-ID

* manufactures (Specifies which products are manufactu-
red by each company.
[0-N] : COMPANY
[1-1] : PRODUCT)

Figure 2.21 - A simple text report.

4. According to the Windows conventions, a tab control is entered as Ctrl + Tub.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-20

Lesson 2: A closer look at schemas

Theresultisaplain ASCII file which can be, if needed, further formatted with
any word processor, to produce something like the text of Figure 2.21.

For immediate needs, we can directly send the current schemato the printer,
beit in graphical or textual view, through command File / Print. The printer
can be chosen and configured through File / Printer setup as usual.

There are other ways to produce reports. Let us remember one of them: the

Copy graphic function, that allows us to include fragments of schemas into
standard texts (Section 2.2).

2.9 Copying objects

When building a schema, it can happen that several entity types have to be gi-

ven similar attributes, or that the schemaincludes parts that are almost the sa-

me. Instead of entering the similar objects manualy, it could be more
convenient to copy the original fragment, then to modify the copy.

The procedure is as expected:

1. select the components to copy and put them on the clipboard (ctrl+C or
Edit / Copy);

2. paste them in the schema (ctrl+V or Edit / Paste);

3. if the the pasted objects are attributes, first select an entity type, a rel-type
or an attribute; the pasted objects will be inserted after this insertion point
(Figure 2.22).

CUSTOMER SALESMAN CUSTOMER SALESMAN
CustiD EmplD CustID EmplD
Name id: EmpID Name Name
Address Address Address
Number Number Number
Street Street Street
City City City
id: CustiD id: CustID id: EmpID

Figure 2.22 - It appears that SALESMAN must be given attributes similar to

Name and Address of CUSTOMER (left). Select the latter, type ctrl+C, select

EmpID of SALESMAN then type ctrl+V (right).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-21

If needed, DB-MAIN makes the names of the pasted objects unique through
the addition of a small suffix.

2.10 Pasting notes

To improve the understandability of the schema by adding free text informa-
tion, notes can be asociated with an object or simply pasted on the schema, in
the same way you paste a post-it on an object onin adocument. To do so, we
select the target object, we click on the note button ([y) then weclick inthe
schemawhere you want the note to be pasted. The note can be opened by dou-
ble-clicking on it and atext can be added (Figure 2.23, bottom). If no object is
selected, the note is associated with the schema as awhole (Figure 2.23, top).

Nice schema,
isn'tit?
COMPANY

Com-ID PRODUCT!
Com-Name Pro-1D
Com-Address O_Nl_l Pro-Name
Com-Revenue | id: Pro-ID
id: Com-ID | °

~| Gross annual revenuej

Figure 2.23 - Associating a note with an object or with the whole schema

2.11 Quitting the lesson

We will still use this project later on. Therefore, we save it with the name
manu-2 . lun and we quit DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-22

Lesson 2: A closer look at schemas

Summary of Lesson 2

¢ Inthisfirst lesson, we have studied some important concepts:

graphical views of a schema: compact, standard

text views of a schema: compact, standard, extended, sorted
navigation through the objects of a schema

graphical aspects of a schema (zoom and reduce)

text navigation through role links

reordering attributes and roles

simple reports

e Wehaveadsolearnt:

to open an existing project:
Project / Open project =
to open an existing schema
to include fragments of a schemainto atext:
Edit / Copy graphic
to select a schema presentation format:
View / Text compact
View / Text standard
View / Text extended
View / Text sorted
View / Graph. compact
View / Graph. standard
to give graphical objects rounded corners and shades:
View / Graphical settings
in agraphical view, to add associate a note with an object

New / Note Ql
in atext view, to navigate from entity type to rel-type and from rel-type to
entity type: right button on the role line

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 2: A closer look at schemas 2-23

- inagraphical view, to get the next selected object in the center of the sche-
mawindow: tab key

- to move objects in the schema {«Toltandctrl+{« T >}
- to change the move mode of objects View / Graphic. settings

- toadlign rel-types and roles right button of the mouse

- toalign aset of objects View / Alignment

iy
e
i A g 2

- to zoom on aschemain and out View / Graphic. settings
&|&afF &
- toreduce or expand a schema View / Graphic. settings

- to retrieve instances of an entity type in atext schema
tagged lines and tab key
- to navigate between entity types and rel-typesin atext schema
right button of the mouse
- to change the order of attributes and rolesin an entity type

att+ T
- to copy selected objects elsewhere in the schema or in another schema of
the project:
Edit / Copy (ctrl+C)
Edit / Paste (ctrl+V)
- to generate simple text reports File / Report / Textual view
- to print a schemaon the printer File / Print

- to choose and configure the printer File / Printer setup

¢ We have produced a new type of file:
- dictionary reports (*.dic).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

2-24

Lesson 2: A closer look at schemas

Exercises for Lesson 2

Finding interesting exercises for such alesson is quite a challenge! If you in-
sigt, try these; otherwise start the next lesson.

Open the LIBRARY project (or its French equivalent BIBLIO) and its con-
ceptual schemaLibrary/Conceptual.

21

2.2

2.3
24

2.5

2.6

20/03/2002

Examine the semantic description of the objectsin the schema. Change
and complete some of them.

Changethe position of some attributesand rolesin text views. Examine
the graphical view and change the position of some objects.

Find the other side of a rel-type from an entity type.

Open project Library (or its French equivaent BIBLI0) and schema
Library/Conceptual. Generate and print a report based on each
of the text views. Try to find specific uses for each of them.

Open a Text standard report with a text processor. Include after each
entity type title the graphical representation of the entity type (through
the Copy graphic command).

Aligning objects. |’m not quite sure that you have completed the exer-
cise suggested in Figure 2.17! Now it’stimeto doit.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3

Multi-product projects

Objective

This lesson introduces the concept of multi-product projects by
considering the example of a design in which we distinguish the
conceptual schema and the logical schema of a database as well
astwo text files. Some characteristics of relational logical sche-
mas are examined. Additional functions related to schema and
object management are described as well.

3.1 Starting Lesson 3

We start DB-MAIN, we open the project MANU- 2, then the schema Manu-
facturing/Conceptual.

3.2 Conceptual and logical schemas

The way we worked in Lesson 1 to produce an SQL database structure was a
bit simplistic: we designed a conceptual schema, then we generated the equi-
valent SQL code to be executed by an RDBMS!. This procedure is fine for
small databases, but isnot realistic for large projects. Of course, it is much too
early to tackle the problems induced by managing complex projects, but we

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

3-2 Lesson 3: Multi-product projects

can aready introduce the concept of multi-schema projects, 1.€., projects that
include more than one schema, through a more sophisticated procedure than
that suggested in Lesson 1.

Let us suppose that we want to keep in the project not only the description of
the conceptual schema (i.e., the current schema Manufacturing/Con-
ceptual), but also the description of the logical schema. In traditional da
tabase design methododol ogies, the logical schemaisintended to describe the
same real-world situation as the conceptual schema does, but in technica
terms of tables, columns, primary keys, foreign keys and indexes instead?.
Thelogical schemais made up of the database structures that are encoded into
a SQL program.

To develop these concepts, we need to go back to the project Manu-2 thatis
currently opened.

To give us the opportunity to go through this lesson again later on, we work
on anew project called, say, Manu- 3, which hasthe same contents asManu -
2, a least initialy.

Todo so, we call the Project property box through the command File / Project
properties, we modify the nameinto Manu-3, and save the current project (Fi-
le / Save project as) asManu-3 . 1lun. From now on, we have two projects,
namely Manu-2, which is closed and Manu- 3, the current project on which
we will work. So far, these projects have the same contents.

Building a relational logical schema is fairly easy, though we may have no
idea on how to translate a conceptua schema into relational structures, i.e.,
into tables, columns, keys and the like. Indeed, DB-MAIN proposes a func-
tion which carries out this translation automatically by replacing a schema by
its SQL logical equivalent version. Since wewant to keep both schemasin the
project, we proceed as follows:

1. Cleaning and modifying the project Manu- 3.

We can get rid of the schema 21ignment, that is no longer useful. In the
same way, we delete the SQL program generated in Lesson 1.

Deleting objects is quite simple and intuitive: we select the objects, then we
press the Del key. Another way is through the command Edit / Delete.

1. Relational Database Management System. DB2, Sybase, Informix, Oracle, SQL Server,
InterBase and Access are some examples of RDBMS.

2. See the lessons of [DBM, 1999], or reference textbooks such as [Teorey,1999],
[Batini,1992] or [Blaha,1998], [EImasri, 2000].

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3: Multi-product projects 3-3

Now, the project looks like Figure 3.1.

MANU-4

M anufacturing/Conceptual

Figure 3.1 - The Manu-3 project in its starting state.

Our conceptua schemais a bit simplistic, and we could find it interesting to
enhance it alittle. We open the schema, and we state that a product can be
manufactured by an arbitrary number of companies. Accordingly, we change
the cardinality of therolemanufactures. PRODUCT® from [1-1] to [0-
N]. Todo so, wedouble-click on the role and we change the cardinality value,
either by typing it or by selecting it in the listbox. The new version should ap-
pear asin Figure 3.2.

Manufacturing/Conceptual

COMPANY
Com-ID PRODUCT
Com-Name | Pro-1D
Com-Address ON manuractures Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 3.2 - The new Manufacturing conceptual schema.

2. Making a copy of the first schema.
L et us make a copy of the conceptual schema:

- we select the source schema in the Project window, or we open it (it is the
current case);

3. A role can be designated by the name of the rel-type followed by the name of the entity
type. Another way to denote roles will be seen later.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

34 Lesson 3: Multi-product projects

- we execute the command Product / Copy product;

- the Schema property box opens and proposes default characteristics for the
new schema: the name is that of the source schema, "Manufacturing”,
while the version proposed is"Conceptual-1". We change the version
into "Relational" and we click on the button oK.

The project window shows the new schemaaswell asits relationship with the

source conceptual schema (Figure 3.3).

We open the so-called Relational schema. Not surprisingly, it includes the

same obj ects as the conceptual schema, which isfairly common with copies!

3. Translating this copy into relational structures.

Now wetransform this schemainto relational structures. We execute the com-
mand Transform / Relational model. The contents of the window are repla-
ced by SQL structures. To improve the readability, we shade the "entity types"
(through Views / Graphical settings), now to be interpreted as tables.

If things have gone right so far, the schemaManufacturing/Relatio-
nal should now read asin Figure 3.4.

MANU-3
Manufacturing/Conceptual

Manufacturing/Relational

Figure 3.3 - The new Relational schema deriving from the Conceptual sche-
ma.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3: Multi-product projects 35

Manufacturing/Rel ational

COMPANY manufactures PRODUCT]
Com-ID Com-ID Pro-ID
Com-Name Pro-1D Pro-Name
Com-Address id: Pro-1D id: Pro-1D
Com-Revenue Com-1D acc
id: Com-ID acc

acc ref: Pro-ID
acc
ref: Com-ID
acc

Figure 3.4 - The Relational schema.

This schemais no longer a conceptual schemasince it represents data structu-
res of a specific DBMS: instead of entity types, we will talk about tables,
while attributes will be caled columns and identifiers, primary keys.
Thiskind of schemais called arelational logical schema.

The main modification of the schema is the trandlation of relationship type
manufactures into entity typemanufactures.

We observe that the table manufactures is made up of the column Com-
ID which acts as areference, i.e., aforeign key (ref), to the table COMPANY,
and of the column Pro- 1D which references the table PRODUCT. Both refe-
rence columns form the identifier (i.e., the primary key) of thetable. In addi-
tion, an index (access key or acc) is defined on each identifier and on each
reference column to give these structures reasonable performance.

Later on, we will examine in greater detail the way identifiers, foreign keys
and indexes are built and represented.

3.3 SQL code generation

Currently, we have two schemas in our project, but still no SQL program that
could be used to build the corresponding database in the target computer. The-
refore we need afinal operation to generate this SQL code. We could use the

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

3-6 Lesson 3: Multi-product projects

command Transform / Quick SQL asin Lesson 1, but wewill exploreamore
professional way.

File Edit Product Mew Transform

Mew project... | i - 0

Dpen project...
Save project
Save project as...

BIET:, L=l =1

Uzer toolz »

E stract *
Standard SGL...

e it ot WaxFdb S 4.2

ItEest nie... Academic SOL...

Standard SOL [check)...
TreemAR MG A 2 [check)..
(. .
=hl..

Figure 3.5 - Generating a SQL program from the Relational schema.

We execute the command File / Generate, then we select the Standard SQL
(check) style (Figure 3.5). There are other more sophisticated ways to produ-
ce SQL code, but for the purpose of thislesson, this style is quite sufficient.

The project windows now shows a new product, namely the file manu-3.ddl
which contains the SQL script (Figure 3.6).

By double clicking on theicon of thisfile, we can examineits contents (Figure
3.7). Itisinteresting to compare this script with that of Figure 1.19, and to try
to understand how the cardinality of the roles of manufactures have sha-
ped the resulting logical schema.

This SQL code may not work as such on some DBMS. Indeed, some proces-
sing should have been done before generating this text. We will discuss these
problems in further lessons.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3: Multi-product projects 37

MANU-3
M anufacturing/Conceptual

Manufacturing/Relational

Figure 3.6 - Generation of the SQL script from the relational schema.

create database Manufacturing;

create table COMPANY (
Com-ID char(15) not null,
Com-Name char (25) not null,
Com-Address char (50) not null,
Com-Revenue numeric(12) not null,
primary key (Com-ID)) ;

create table manufactures (
Com-ID char(15) not null,
Pro-ID char(8) not null,
primary key (Pro-ID,Com-ID)) ;

create table PRODUCT (
Pro-ID char(8) not null,
Pro-Name char (25) not null,
primary key (Pro-ID)) ;

alter table manufactures add constraint FKman PRO
foreign key (Pro-ID)
references PRODUCT;

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

3-8 Lesson 3: Multi-product projects

alter table manufactures add constraint FKman COM
foreign key (Com-ID)
references COMPANY;

create unique index IDCOMPANY
on COMPANY (Com-1ID) ;

create unique index IDmanufactures
on manufactures (Pro-ID,Com-ID) ;

create index FKman_PRO
on manufactures (Pro-ID);

create index FKman COM
on manufactures (Com-ID) ;

create unique index IDPRODUCT
on PRODUCT (Pro-1ID) ;

Figure 3.7 - The SQL program. The comment lines and the line numbers
have been removed to shorten the listing.

3.4 Generating reports

To complete the project, we generate areport from the conceptual schemajust
like we done in Lesson 2 (Figure 2.20). Remember that the schema must be
shownintext view (button £ |.). When executing the command File / Report
/ Textual view, we check the button Show report generation to include the
icon of the report in the Project window. Since any derived product is placed
under its source, we could have to move it to a better position (Figure 3.8).

3.5 Multi-product project

So far, our project comprises four documents or products, namely two sche-
mas and two text files. A large project can include hundreds of products.

It is sometimes useful to examine two products in paralel. The best way to
proceed is as follows:

- open both products,

- minimize the Project window (click on the leftmost of the three buttons at
the top right corner on the window),

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3. Multi-product projects 39

Manufacturing/Conceptual

Manufacturing/Rel ational
manu-4.ddl/1

Figure 3.8 - A report has been generated from the conceptual schema.

i Manufacturing/Conceptual

COMPANY
ComID FRODUCT
Com-MHame - _ |Pro-ID
Com-&ddress _D-N-N Pro-Hatme
Com-Fevenue id: Pra-ID
id: Com- 1D
e 1
X Manufacturing/Relational
COMPANY manufactures FRODUCT
Com-I1D Com-ID Pro-ID
Cotm- atue Pro-ID Pro-Hatne
Com-Address id: Pro-ID id: Pro-ID
Com-Bevenue Com-ID ace
id: Com-ID ace
ace ref’: Fro-ID
ace
ref: Com-ID
ace
el W 4

MANU-4.19__ [El=] E3 |

Figure 3.9 - Comparing the conceptual and logical schemas.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

3-10

3.6

Lesson 3: Multi-product projects

- organize the windows by Window / Tile.

Figure 3.9 shows the conceptual and logical schemas while Figure 3.10 pre-
sents thelogical schemaand its SQL equivalent side by side.

If we want to make the schema disappear from the screen, we can close its
Schema window by clicking on the close button of that window (the X button
at the top right corner). Opening it again can be done by double-clicking on
itsicon in the Project window (Figure 3.8).

Deleting objects

Deleting components of a project is the simplest thing on earth: we select the
objects, then we press the Del key on the keyboard. This applies to entity ty-
pes, relationship types, roles, attributes, groups (e.g., identifiers), constraints
and even schemas. An aternate way consists in executing the command Edit
/ Delete.

There is no way to delete a project but by deleting its * . 1un file from Win-
dows.

EX Manufacturing/Relational R manu-4.ddIA1 - |O] x|
22 create table COMPANY (|
pey—— p— 23 Com-ID chat(15) fot sl
oD oD = FrolD 24 Com-Mame char(25) not null,
 oam Harme IooID Tro-Hane 25 Com-Address cha(50) not null,
Com- Address id: Pro-ID id: Fro-ID 26 Com-Fevenue mumeric(1d) not nuall
Con- Fenretne Corn- 1T acc 27 pma_qr ke:;‘r (Cgm_IDjj,
id: Comm-IT A 28
il e E:-]D 29 create table mamafactures
ref: Com ID 20 Com-ID chanl5) not mull,
40c 3 Pro-1D chan®) not nall,
32 primary key (Pro-ID, Com- 1T,
33
34 create table PRODUCT [
35 Pro-ID char®) not null,
36 Pro-Name chat(25) not ool
+||=7 primaty key (Pro-ICN); -
Kl | A7 1SS o[

Figure 3.10 - Comparing the logical schema with its SQL text.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 3: Multi-product projects 311
3.7 Quitting the lesson

We can now quit DB-MAIN through command File / Exit. The modified pro-
ject can be saved as suggested by DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

312

Lesson 3: Multi-product projects

Summary of Lesson 3

¢ In thislesson, we have studied the following concepts:
- conceptua and logical schemas

- products, which are either schemas or text files,

- multi-product projects

e Wehave also learnt:
- to create and use a multi-product project

- to make acopy of aproduct: Product / Copy product

- totransform a schema Transform / Relational model
- to generate SQL code File / Generate

- to delete an object Edit / Delete or Del key

- to arrange the schemawindows: Window / Tile

3.1

3.2
3.3

20/03/2002

Exercises for Lesson 3

Open the project SALES1 you built asasolution to Exercise 1.2. Com-
plete this project by building arelational logical schema, and by gene-
rating a SQL program. Examine the schemas side by side, and compare
them.

Can you understand some of the rulesthat have been applied during the
schema transformation? If you don't, never mind, we will study them
in detail later on.

Same exercise on project STUDENT1 of Exercise 1.3.

Same exercise on project LIBRARY (or its French version BIBLIO).
Make sureyou don't savetheresult inadvertently, except through aSave
as command.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4

Conceptual Modeling

Objective

Thislesson will introduce the reader to more powerful features of
the DB-MAIN conceptual model. In particular, he will learn to
define optional/mandatory attributes, atomic/compound at-
tributes, single-valued/multivalued attributes, multiple identifi-
ers, hybrid identifiers, N-ary relationship types, relationship
types with attributes, and others with identifiers, cyclic relation-
ship types.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-2

4.1

4.2

4.3

Lesson 4: Conceptual Modeling

Preliminary checking. In this lesson, we will use project MANU-3 (file
manu-3 . lun) that has been created in Lesson 3.

Starting Lesson 4

We start DB-MAIN and we open the project MANU- 3. We delete all the pro-
ducts but the Conceptua schema. We rename the project MANU-4 and we
save it under the name MANU-4 . 1un (File / Save project as). We open the
schema MANUFACTURING/Conceptual.

Updating an object

We have seen in Lesson 3 how to update the properties of a schema (namely

itsVersion). Thistechnique also appliesto any object of a project:

« either double-click on the object name in its Schemawindow, or select the
object (by clicking on its name) and press the RETURN key; either of these
actions opens the object box;

» change the concerned properties of the object;

« either validate the operation by clicking on the OK button, or discard the
modifications by clicking on the Cancel button.

This works fine for schemas, entity types, relationship types, attributes and
groupsl. Theonly exceptionisthe project itself, that only appears asapassive
object on the screen?. To modify its properties, use the command File/ Pro-
ject properties instead.

What is a conceptual schema?

Degspite its limited scope, Lesson 1 has introduced some important notions
about conceptual schemas. First, it showed that such schemas are technol ogy-
independent in that they comprise abstract objects that denote application do-
main concepts independently of their representation through DBMS cons-

... and for collections, constraints, etc, aswe will see later on.
Infact it isless passive than it seems to be, but we shall ignore its behaviour in these les-
sons.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-3

tructs. The schema of Figure 4.1 has been developed by the analysis of the
facts the application domainis made up of. The way these factswill be repre-
sented in terms of tables, columns and foreign keysisirrelevant at this stage.

COMPANY
Com-ID PRODUCT
Com-Name | .| Pro-ID
Com-Address 0 Nl ! Pro-Name
Com-Revenue id: Pro-ID
id: Com-1D

Figure 4.1 - The conceptual schema we built in Lesson 1.

Thisfirst experiment has taught us that a conceptual schema comprises entity
types (COMPANY, PRODUCT), relationship types (manufactures), attribu-
tes (Com-ID, Pro-Name) and identifiers ({ Com-ID}, {Pro-ID}).

An entity type represents a class of similar objects, or entities, that are percei-
ved as significant when we talk about the application domain. Such objects
are modeled through an entity type when we want to record information about
them, when they are associated with other entities and when they obey to spe-
cific behaviour rules.

A relationship type (rel-type) models similar associations between the enti-
ties of two entity types. A relationship is apair of entities, each of them be-
longing to one of the participating entity types. Each participating entity type
plays adefinite role in the rel-type. Thisroleis characterized by a cardinality
constraint expressed as apair of symbols such as[1-1] or [0-N].

An attribute denotes a property of an entity type. It hasatype (numeric, cha-
racter, date, etc.), alength and a cardinality.

An identifier is a group of attributes that uniquely qualifies the entities of a
type. At any time, two entities of this type must have distinct values for the
attributes of the identifier.

In this lesson, we will discuss variants of these concepts as well as new con-
cepts that will be useful to build more expressive conceptual schemas.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-4

Lesson 4: Conceptual Modeling

4.4 Cardinality of an attribute

Until now, we have implicitly considered that each entity of a given type had
one and only onevaluefor each of itsattributes: each COMPANY entity hasone
valueof Com- ID, onevalueof Com-Name, onevalueof Com-Address and
onevalue of Com-Revenue.

We now consider that thisis not true for the latter attribute: some companies
have revenues while others may have none. Therefore, some COMPANY enti-
ties have one vaue of Com-Revenue, while others have none. In genera,
we can say that any COMPANY entity has from 0 to 1 Com-Revenue value
and from1to 1, i.e, exactly one, Com-Name value.

Thevalues 0-1 and 1-1 are called the cardinality of the attribute. Any couple
of non-negative values is valid, provided the first one is not greater than the
second one and the second oneisat least 1. Thedefault valueis1-1, andisnot
displayed in the Schema windows.

To illustrate this concept, we double-click on the attribute Com-Revenue to
call its Attribute box, and change its cardinality from 1-1 to 0-1. Then, we de-
fine a new attribute, named Phone -Number, that is given cardinality 1-4,
stating that any company has from 1 to 4 phone numbers (Figure 4.2).

COMPANY
Com-1D
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[0-4]
Country
Area
Local

id: Com-I1D

Figure 4.2 - Various kinds of attributes.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-5

4.5

4.6

4.7

Mandatory and optional attributes

An attribute whose cardinality has alower bound of O iscalled optional. Con-
versely, an attribute whose cardinality has a non-zero lower bound is called
mandatory. For instance,

e Com-Revenue isoptiona,
e Com-Name is mandatory,
¢ Phone-Number is mandatory.

Single- and multivalued attributes

An attribute whose cardinality hasan upper bound greater than 1 iscalled mul-
tivalued, while those with cardinality 0-1 or 1-1, are said to be single-valued.
For instance,

¢ Phone-Number is multivalued,
* Com-Name issingle-valued.

Atomic and compound attributes

Some attributes can be broken down into fragments that still are significant.
For instance, any value of Com-Address can be seen as composed of avalue
of Number + avalue of Street +avalueof City.

Com-Address iS acompound attribute and Number, Street and City
are its components. Note that a component can itself be compound; suchis
the case of City, which consists of Zip-Code and City-Name.

An attribute that isnot compoundiscalled atomic (i.e., unbreakable). Forins-
tance, Com-Name, Com-Address. Number3 and Com-Address.Ci-
ty.City-Name are atomic attributes.

Both single-valued (Com-Address) and multivalued (Phone -Number) at-
tributes can be compound.

Changing Com-Address from atomic to compound cannot be easier:

e we select attribute Com-Address then we click on button in the

3. Thisnotation designates the component Number of the compound attribute Address.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4.8

Lesson 4: Conceptual Modeling

Standard tool bar;
* we defineits first component, Number;

« weclick on the button Next att. in the Attribute property box to define the
other components.

We modify the structure of COMPANY as shown in Figure 4.2.

Note that a compound attribute has alength too. However, this length is cal-
culated, and cannot be changed through the Attribute box itself.

Y ou probably have observed that entity types and relationship types also are
assigned alength field. Itsvalueisthe sum of the lengths of their attributes, if
any.

Multiple identifiers

An entity type can have more than one identifier. For instance, the entity type
COMPANY isidentified by Com- ID, which means that, in the database descri-
bed by the schema, no two COMPANY entitieswill be allowed to sharethe same
value of Com- ID.

In addition, let us assume that there are no two companies with, simultaneous-
ly, the same name and the same address. Therefore, we will specify a second
identifier, comprising Com-Name and Com-Address: we select both attri-
butes, then we proceed asin Lesson 1, by clicking on button in the Stan-
dard tool bar. The new identified appears with prefix 1d’.

If an entity type has identifier(s), one of them generaly is declared primary
(notation 1d), while the others, if any, are declared secondary, and are noted
id’ instead. Such isthe case of the new identifier (Figure 4.3).

Note that an entity type can have secondary identifiers only. However, it can
have only one primary id. Itisagood practice to define the most natural iden-
tifier as primary. The problem of choosing identifiers can be abit more com-
plex, and will be discussed later on.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-7

COMPANY
Com-ID
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[0-4]
Country
Area
Loca
id: Com-1D
id':Com-Name
Com-Address

Figure 4.3 - Primary (id) and secondary identifiers (id’) of an entity type.

4.9 Hybrid identifiers

Until now, the identifiers have been made up of one or several attributes of
their entity type. In some situations however, an identifier can be more com-
plex.

Toillustrate this point, we need amore sophisticated schema. We supposethat
a company comprises at least one branch, and that branches, not companies,
manufacture products. Therefore:

e we create the entity type BRANCH, with attributes Name and Country

(button);

* we create the one-to-many relationship type belongs between BRANCH
and COMPANY (button);

* inmanufactures, we replace COMPANY with BRANCH (we delete the
old role then we draw a new arc with button).

In addition, let us supposethat all the branches of acompany arelocated in dis-
tinct countries.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-8

Lesson 4: Conceptual Modeling

Such asituation can be described by stating that aBRANCH entity isidentified
by its COMPANY (viabelongs) + its Country. An identifier made up of
attributes and roles, is called hybrid. By extention, we will call hybrid any
identifier comprising at least onerole.

A hybrid identifier is defined in the same way as all-attribute identifiers. by
sel ecting the components, be they attributes or rolesthen by clicking on button

We complete the schema as shown in Figure 4.4.

COMPANY
Com-1D
Com-Name
Com-Address
Com-Revenue[0-1]
Phone-Number[0-4]

id: Com-ID
id":Com-Name
Com-Address PRODUCT
o_IN Pro-ID
Pro-Name
id: Pro-ID
I
1;1 O-N
BRANCH
Country

e o

id: belongs. COMPANY
Country

Figure 4.4 - Hybrid identifier. To save space, the components of the compond
attributes have been ignored.

In short, the identifier of an entity type can be made up of:
» either any number of attributes (at least 1);
e Or one role + any number (at least 1) of attributes and/or roles.

Any non empty combination of roles and attributes is allowed, except that
whichismade of oneroleonly. The concept of identifier can be more complex
than it appearsin thislesson. It will be discussed in detail in afuture lesson.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-9

Last remark. An entity type need not have identifiers. Entity types without
identifiers are unfrequent, but quite valid however.

4.10 N-ary relationship types

The relationship types we have defined so far are made up of two roles. Itis
possible to define relationship types with three (or more) roles.

In the following schema, we have defined anew entity type, namely MARKET,
that represents the different markets on which products can be distributed. We
give it the attributes Name and Size. In addition, we have considered that a
branch manufactures products for some markets only. Therefore, a manu-
factures relationship links one BRANCH entity, one PRODUCT entity and
one MARKET entity. Such relationship expresses the fact that this branch ma
nufactures this product for this market®.

We can change the relationship type manufactures from binary (2 roles)
to ternary (3 roles) asfollows:

+ wedraw an arc (button [) from manufactures to MARKET;
* if needed, we change the cardinality and the name of the new role.

In general, non-binary relationship types are called N-ary, where N is the
number of roles. The resulting schemais proposed in Figure 4.5.

4.11 Relationship types with attributes

Attributes can be associated to relationship types aswell. Let us suppose that

the manufacturing of a product by a branch for a given market is measured by

aratio.

Theattribute describing thisratio is created in the sameway asfor entity types:

¢ weselect manufactures by clicking on its name;

» weclick on the button in the Standard tool bar and we define the attri-
bute.

4. We suppose that there is no constraint on the possible associations between branches, pro-
ducts and markets. For instance, a branch can manufacture a product for some markets,
and another one for other markets. In technical terms, specidists will say that there is no
dependencies holding in this relationship type. More on thislater on.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-10 Lesson 4: Conceptual Modeling

The relationship type manufactures should look like in Figure 4.6.

MARKET

Name

Size

id: Name

|
0-N
BRANCH 0-N 0-N PRODUCT
Country — “~ProlD
Name Pro-Name
id: belongs. COMPANY id: Pro-ID
Country

Figure 4.5 - An N-ary relationship type. To save space, the attributes have
been ignored.

MARKET
Name
Size

id: Name

0-N

manufactures

BRANCH PRODUCT
0-N O-N
Country — “~Pro-iD
Name Pro-Name
id: belongs. COMPANY id: Pro-ID
Country

Figure 4.6 - A relationship type with an attribute.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-11

4.12 Relationship types with identifier(s)

Relationship types can haveidentifierstoo. For instance, we could consider a
new rule stating that

when a branch manufactures a product, it does it for one market only.

This property can be expressed by an identifier of manufactures compri-
sing PRODUCT and BRANCH. If we designate a PRODUCT entity and a
BRANCH entity, the database can include only one manufactures rela
tionship in which they both appear, and therefore only one MARKET entity.

Such an identifier is defined in a more complex way than for entity typess:
e weselect manufactures by clicking on its name;

we execute the command New / Group; we define agroup as Primary (by

clicking on the buton 1d), and we move components PRODUCT and
BRANCH from theright list to the left list (Figure 4.7).

Group Properties |
Examine/madify the properties of a group of the rel-type
araup
‘ Mame Imanufactures Length 32+
— Functionz Cardinality

ey F'rimar_l,lID I_ Coexistence I- Uzer const. ki Iu—j

[~ Exclusive I "l
-
Secondary 1D ™ Atlsastone I ecess key b a. |1 :I

4 I+

2

— Components
rmanufactures, PRODUCT Fiatio
rmanufactures, ERAMCH £ondd Firstl rmanufactures. MARKET

ll_l _Il Hemu:uve>>| Ll_l Ll

Sem. | Tech. | Prop. ” D:nnstraintl Ok | Cancel |

Figure 4.7 - Defining an identifier as a group of roles.

5. Infact, thistechnique is the standard way to define any identifier, but so far, we have used
asimpler onewhichisvalid for entity types only.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-12 Lesson 4: Conceptual Modeling

MARKET
Name
Size

id: Name

0-N

manufactures

Ratio

BRANCH A Id: PRODUCT /\ PRODUCT
0-N BRANCH 0-N
Country — “~Pro-D

Name Pro-Name
id: belongs. COMPANY id: Pro-ID
Country

Figure 4.8 - Relationship type identifier.

The new version of manufactures isshownin Figure 4.8.

In fact, every relationship type has (at least) one identifier, but most of them
should not be declared explicitly as illustrated hereabove. DB-MAIN will
consider as an implicit identifier of relationship type R,

« eachrole of R with cardinality 0-1 or 1-1,

« dl the roles of R when there are no such 0-1 or 1-1 role, and when no
explicit identifier is declared.

For instance, the (implicit) identifier of relationship type BELONGS is
BRANCH, and the (implicit) identifier of MANUFACTURES in MANU-1 is
(COMPANY, PRODUCT)6. Therefore, such identifiers need not be declared,
DB-MAIN being able to cope with them adequately.

6. According to the maximum cardinality of 1, there is only one belongs relationship in
which a given BRANCH entity appears. Concerning themanufactures relationship
type, there is no need to state more than once that a given company manufactures a given
product, hence therule.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-13

4.13 Cyclic relationship types

Each role of arelationship typeisdefined as the participation of an entity type.
A relationship type in which the same entity type participates more than once
is perfectly valid.

Let us consider that a product can be replaced, when unavailable, by another
product. This fact can be represented easily by relationships between some
PRODUCT entities and other PRODUCT entities. Such relationshipsform acy-
clic relationship type.

To represent this, we define a new relationship type, with name replaces,
and with two roles, both defined on PRODUCT, with cardinality 0-1 and 0-N
respectively. To distinguish the function of each of these roles, we will give
them distinct names. The role corresponding to the product that is replaced
will be caled replaced, whilethe role corresponding to the product that re-
places the former will be caled substitute (Figure4.9).

replaced substitute
0-1 0-N

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID

Figure 4.9 - A cyclic relationship type.

About role names

Until now, we haveignored the names of roles. When we give arole no name,
DB-MAIN gives it as default name that of the participating entity type. For
instance, the belongs relationship type has two roles with default names
COMPANY and BRANCH, though we gave them no explicit names.

Thisbeing said, we can state a property each relationship type must satisfy: its
roles have distinct names, be they explicit or default. Applying this property
to cyclic relationship types means that al the roles played by the same entity
type (more precisely all of them but one) must receive an explicit name which
is different from that of the entity type.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-14 Lesson 4: Conceptual Modeling

COMPANY
Com-1D
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[0-4]

Country

Area

L
_Locd MARKET
id: Com-1D N
id’:Com-Name Name

Com-Address Size
T id: Name

O-N O-N
el e

1-1 Ratio 0-1 O-N
BRA;\ICH O-N)\ d: EFFS\EL(J:S{T AO—N PRODUCT
Country — ™ Pro-1D
Name Pro-Name
id: belongs. COMPANY id: Pro-ID
Country

Figure 4.10 - The complete schema.

Since the same role name may appear in severa relationship types, its name
aone cannot identify it in its schema. Therefore, the full name of aroleinclu-
desalso that of itsrelationship type. For instance, theroles of BELONGS have
full names belongs.BRANCH and belong.COMPANY, and those of re-
places havenamesreplaces.substituteand replaces.repla-
ced. Accordingly, these full names appear in the list boxes of the Group
boxes and in the specification of the groups in the schemas.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling

415

BRANCH
Country
Name
id: belongs.COMPANY, Country

PRODUCT
Pro-ID
Pro-Name
id: Pro-ID
COMPANY
Com-ID
Com-Name
Com-Address
Number
Street
City
Zip-Code
City-Name
Com-Revenue [0-1]
Phone-Number [1-4]
Country
Area
Local
id: Com-ID
id’: Com-Name, Com-Address
MARKET
Name
Size
id: Name

manufactures (
[0-N] : BRANCH
[0-N] : PRODUCT
[0-N] : MARKET
Ratio)
id: PRODUCT, BRANCH

belongs (
[0-N] : COMPANY
[1-1] : BRANCH)
replaces (
substitute [0-N]: PRODUCT
replaced [0-1]: PRODUCT)

Schema Manufacturing/Conceptual-Final

Figure 4.11 - The complete schema in text view.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

4-16 Lesson 4: Conceptual Modeling
4.14 The complete schema

If al the extensions described above have been included, the schema should
appear asin Figure 4.10 or asin Figure 4.11 in the Text standard view.

4.15 Quitting the lesson

Thislessonisfinished. We save the current project and we quit DB-MAIN.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 4: Conceptual Modeling 4-17

Summary of Lesson 4

¢ In thislesson, we have studied the following concepts:
- the cardinality of an attribute

- single-valued / multivalued attributes
- mandatory / optional attributes

- atomic/ compound attributes

- multiple identifiers

- hybrid identifiers

- N-ary relationship types

- attributes of relationship types

- identifiers of relationship types

- cyclic relationship types

- role names.

e We have also learnt to:

- update the properties of an object
double-clik on the object description
or File / Project properties

- definethe cardinality of an attribute

- define a compound attribute

button
- add aroleto arelationship type

button

- add attributes to arelationship type
button

- defineanid. for arelationship type
New / Group

- giveanametoarole

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

4-18 Lesson 4: Conceptual Modeling

Exercises for Lesson 4

4.1 Build aschema describing persons who have each a person id, a name,
1 to 3 christian names, possibly amaiden name, and an arbitrary number
of addresses.

4.2 These persons may have children, who are persons too.

4.3 Build a schema which represents customers, products and suppliers
(with some natural properties such as name, address, quantity on hand,
etc). Represent thefact that suppliers supply productsto customers, and
that they do so in agiven supplied quantity.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5

Logical and Physical Modeling

Objective

The 5th lesson discusses some concepts of the DB-MAIN model
dedicated to the representation of technical constructs, i.e., com-
ponents that appear in DBM S schemas as opposed to those that
make up computer-independent conceptual schemas. We will
describe and manipul ate additional integrity constraints (e.g., ref-
erential constraints), access keys (representing indexes for in-
stance) and entity collections (representing record files). Wewill
also examine how to transform the names in a schema.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-2

5.1

5.2

Lesson 5: Logical and Physical Modeling

Preliminary checking. In this lesson, we will use the project MANU-4 (file
manu-4 . lun) that has been created in lesson 4.

Starting Lesson 5

We start DB-MAIN and we open the project MANU-4. Asusual, we change
its name (MANU- 5) and we save it (manu-5. lun).

In this project, we then open the schemaManufacturing/Conceptual.

What is a logical schema?

Lesson 3 shown how a conceptual schema can be translated into a relationa
schema. Both schema represent the same information, but the latter expresses
it through the constructs of a DBMS!, while the former is claimed to be
DBMS-independent. A relational schema is considered to be logical. The
same conceptual schema can be transformed into several relational logical
schemas, according to the design criteriawe have in mind: readability, simpli-
city, ease of evolution, response time, space occupied on disk, etc. To keep
things simple, we will mainly concentrate on relational schemas, i.e., on lo-
gical schemas that comply with the relational model.

COMPANY manufactures PRODUCT
Com-ID Com-ID Pro-ID
Com-Name Pro-1D Pro-Name
Com-Address id: Pro-ID id: Pro-ID
Com-Revenue Com-1D acc
id: Com-ID acc

acc ref: Pro-1D
acc
ref: Com-ID
acc

Figure 5.1 - The logical schema built in Lesson 3.

1. In other words, the conceptual structures are expressed into the model of a DBMS, or,

more precisely, into the model of afamily of DBMSs.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-3

A relational logical schemacomprises tables made up of columns, primary (or
secondary) keys and foreign key. Figure 5.1 showsthelogica schemawe built
in Lesson 3. It includes three tables, eight columns, three primary keys (id),
two foreign keys (ref). Inaddition, it includes indexes (acc, for access keys),
which have been defined on each key.

In this lesson, we will discussin greater detail the concepts of which al rela-
tional logical schemas are made up.

5.3 Transformation into a logical schema

Let us produce a relationa logical schema for the conceptual schema we de-
veloped in Lesson 4. We proceed as suggested in Lesson 3:

- we make a copy of the schema (we select schema Manufacturing/
Conceptual then execute Product / Copy schema) and we change its
version valueto "Logical";

- inthis new schema, we execute Transform / Relational model to produce
therelational structures;

- we change the graphical representation by adding shade to the entity types
(View / Graphical settings), to make them look like tables? (with alittle
imagination!).

Schema Manufacturing/Logical is transformed into relational data

structures (Figure 5.3 and Figure 5.4).

From now on, we should usethetermstable instead of entity type, column ins-
tead of attribute, etc. However, the logical model is independent of specific
technologies, and in particular of relational DBMS. Figure5.2 givesthetrans-
lation rules for RDBMS. Similar tables can be built for other data manage-
ment systems. We will keep using the standard terms of entity types and
attributes, except when mentioned otherwise.

This schemaisinevitably more complicated and less readabl e than its concep-
tual counterpart (otherwise it would have been preferable to reason from the
beginning in the relational model!). The objective of thislessonis not to des-
cribein detail how and why the transformation was carried out. Therefore, we
just have to accept this schemaasit is.

2. Theideaisthat shading gives the objects a 3D look, which makes them more concrete.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

Lesson 5: Logical and Physical Modeling

DB-MAIN concepts

Relational terms (SQL)

entity type

attribute

primary identifier
secondary identifier
reference group
access key

entity collection

table
column

primary key

candidate key (not pure SQL)

foreign key
index

(table-/db-)space (not standard)

Figure 5.2 - Translation table of DB-MAIN names into relational names.

COMPANY Phone-Number
Com-ID Com-ID
Com-Name Country
Com_Number Area
Com_Street Loca
Com_Zip-Code id: Com-ID
Com_City-Name Country
Com-Revenue[0-1] Area
id: Com-ID Loca
acc acc
id': Com-Name ref: Com-1D
Com_Number acc
Com_Street
Com_Zip-Code manufactures MARKET
Com_City-Name Com-1D Name
acc Country Size
Pro-1D id: Name
BRANCH g;ri’r:)e xc
Com-1D id: Pro-ID
Country Com-ID
Name Country PRODUCT
id: Com-1D acce Pro-ID
Country ref: Name Pro-Name
acc acc Substitute]0-1]
ref: Com-1D ref: Pro-ID id: Pro-ID
acc acc acc
ref: Com-1D ref: Substitute
Country acc
acc

Figure 5.3 - First version of the logical schema.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-5

BRANCH

Cou

id:

ref

id:

manufa

Cou.
Pro

Rat
id:

ref

ref

MARKET

Siz
id:

Com-ID

Name

COMPANY
Com-1ID
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
Com-Revenue [0-1]

id’:

Com-ID

Name

ref:

Name

Schema Manufacturing/SQL

ntry

Com-1ID, Country
access key

: Com-ID -> COMPANY.Com-ID
access key

Com-ID
access key
Com-Name, Com_Number, Com Street,Com Zip-Code, Com City-Name
access key

ctures

ntry
-ID

io
Pro-1D, Com-ID, Country
access key
: Name -> MARKET.Name
access key
Pro-ID -> PRODUCT.Pro-ID
access key
: Com-ID,Country -> BRANCH. (Com-ID,Country)
access key

e
Name
access key

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-6

5.4

Lesson 5: Logical and Physical Modeling

Phone-Number

Com-ID

Local

Area

Country

id: Com-ID,Local,Area,Country
access key

equ: Com-ID = COMPANY.Com-ID
access key

PRODUCT

Pro-ID

Pro-Name

Substitute[0-1]

id: Pro-ID
access key

ref: Substitute -> PRODUCT.Pro-ID
access key

Figure 5.4 - First version of the logical schema - Text standard view.

Now, wewill discussin greater detail someimportant constructsthat we alrea-
dy encountered in lesson 3, and that appear again in this schema, namely the
reference attributes and the access keys.

Reference attributes (foreign keys)

A reference attribute is an attribute whose values act as references to other
entities. For instance, attribute Com- ID in entity type BRANCH isaimed at de-
signating a COMPANY entity. Since each entity type represents atable in this
logical SQL schema, Com-ID iswhat iscalled a foreign key in the RDBMS
language. In general, since aforeign key can comprise more than one attribu-
te, we will talk about reference groups.

Theway thisattributeisdenoted in DB-MAIN views expressesthat each value
of Com-ID inany BRANCH entity must beaCom- ID valuein some COMPA -
NY entity. We observe that the attribute mentioned in the target entity type
(here COMPANY) isits primary identifier. In some situations, the target attri-
bute can be a secondary identifier aswell.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-7

COMPANY
Com-1D
Com-Name
Com_Number
Com_Street
Com_Zip-Code
Com_City-Name
BRANCH Com-Revenue[0-1]
Com-ID id: Com-ID
Country acc
Name id':Com-Name
id: Com-ID Com_Number
Country Com_Street
acc Com_Zip-Code
ref: Com-ID Com_City-Name
ace acc

Figure 5.5 - Reference group, aka foreign key.

If the identifier of the target entity type is made of severa attributes, then the
reference must be supported by several reference attributes, asin manufac-
tures entity type, where the values of attributes (Com- ID, Country) desi-
gnate a BRANCH entity (Figure 5.6).

BRANCH manufactures
Com-ID Com-I1D
Country Country
Name Pro-ID
id: Com-ID Name

Country Ratio
acc id: Pro-1D
ref: Com-ID Com-1D
acc Country
acc
ref: Name
acc
ref: Pro-1D
acc
ref: Com-1D
Country
acc

Figure 5.6 - Multicomponent reference group.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-8

Lesson 5: Logical and Physical Modeling

5.5 Equality reference

There isamore sophisticated form of reference attributes that can be found in
entity type (i.e. table) Phone -Number. Let usfirst observe that each entity
of this type represents a phone number of a company, and that al the phone
numbers of company X are represented by the Phone -Number entities with
Com-ID = X. Therefore, Com-1ID isareference attribute (or foreign key)
to COMPANY.

However, the conceptual schematellsusthat each company must have at least
one phone number (cardinality [1-41). This property trandates, in the cur-
rent logical schema, into a constraint stating that each COMPANY entity must
have at |east one corresponding Phone -Number entity. More precisely, the
value of Com- ID of each COMPANY entity must match the Com- ID value of
at least one Phone -Number entity.

Since the COMPANY . Com-ID vaues form a subset of the PHONE-NUM-
BER. Com- ID valuesand the PHONE - NUMBER . Com- ID valuesform asub-
set of the COMPANY . Com- ID values, we can conclude that,

the set of COMPANY. Com-ID values is equal to the set of PHONE-
NUMBER. Com-ID values.

To represent this constraint, DB-MAIN usestheterm equ, that expresses that
the value sets of Com- ID in both entity types are equal (Figure 5.7).

COMPANY
Com-1D
Com-Name
Com_Number
Com_Street Phone-Number
Com_Zip-Code Com-ID
Com_City-Name Country
Com-Revenue[0-1] Area
id: Com-ID Loca
acc id: Com-ID
id': Com-Name Country
Com_Number Area
Com_Street Local
Com_Zip-Code acc
Com_City-Name ref: Com-ID
acc acc

Figure 5.7 - Equality reference group.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-9

5.6 Defining a foreign key

So far, referentia attributes are automatically defined as the representation of
relationship types. Later on we could find it useful to define referential cons-
traints manually, for instance to document an existing SQL database.

To practice defining referential attributes, we delete the last constraint of enti-

ty type manufactures by clicking on the "ref: Com-ID, Country"

line, and pressing the Del key. The line disappears.

To build it again, we define for entity type (table) manufactures, agroup

of attributes comprising COM-ID and Country:

- we select both attributes, and we click on the button in the Standard
tools bar (Figure 5.8);

- we open the Property box of thisgroup (pressthe Enter key or double-click)
(Figure 5.9).

Now we haveto tell DB-MAIN that thisgroup is areferenceto table BRANCH.

We click on the Constraint button (for inter-group constraint). The Constraint
box opens (Figure 5.10). We have two propertiesto specify:

manufactures
Com-ID
Country
Pro-ID
Name
Ratio
id: Pro-ID
Com-ID
Country
acc
ref: Name
acc
ref: Pro-1D
acc
gr: Com-ID
Country

Figure 5.8 - A group comprising {Com-ID, Country} has been defined

- what kind of constraint do we want? Let us click on the Ref button;

- what isthe target entity type, and what is the target identifier? DB-MAIN
will help us considerably by suggesting candidate entity types, and for each
of them suggesting candidate identifiers. These suggestions are based on

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-10 Lesson 5: Logical and Physical Modeling

the structure of the source group we have built, i.e., its composition, the type
and thelength of itscomponents. Inthiscase, thereisnot much choice: only
the BRANCH entity type has an identifier composed of two attributes whose
types and lengths match those of the current group. Therefore, DB-MAIN
proposes this target entity type and this identifier only.

To make this schema equivalent to its former version, don't forget to click on
the Access key button as well (more on this below).

5.7 Access keys

The transformation has generated access keys. Thisterm designates technical
data structures that provide efficient selective access to data records. An ac-
cesskey will generally beimplemented as an index or ahash table inrelationa
DBMS. However, the term access key has been chosen instead of index since
each DBMS generally proposes its own names to denote these techniques®.

Group Properties

E xamine/modify the properties of a group of the entity type

qraup
| Name [Fman_BRE: Length 18]
— Functions - - g - u Cardinality
) Frimanul u EDEEISFEHCE ser const Iir. ID_ﬁ
s i I~ Exclusive I 'I =
et I dtleastore | [Gespey || N
— Components
Com-1D Pro-D
Country <<hdd Firstl Ratio
M ame
cehdd Newtl EEE;E]:EDm-ID,EDuntry}
{Pro-lD}
FRemowves: |
4| Ja 4] | 33

Senm. | Tech. | Prop. ” Cu:unstraintl Ok I Cancel |

Figure 5.9 - The properties of the newly defined group.

3. Let usciterecord keys in COBOL files and calculated keys in CODASY L databases.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-11

Constraint Properties I

Ewamine/modify the properties of a constraint of
PAMUFACTURES FEMAR_BRA

Mame FrMaM_BRA

Type

o HeF " Inclusion | Generic | Copy

" RefEqu [Inverse [[nel Equ [Copy Equ

Target entity types

{BRANCH =l

Referenced keys

[{COM_ID COUNTRY} =]
Bemaove | Ok LCancel |

Figure 5.10 - Choosing the target of the reference group.

Let us consider entity type MARKET (Figure 5.11). Its attribute Name is de-
clared both identifier (1d) and access key (acc or access key). Indeed,
RDBMS generally require that each identifier be anindex aswell. This means
that Name is an identifier, and, in addition, an access key. Therefore, asking
for the MARKET whose Name is known will lead to a quick answer from the

database.
MARKET MAREET
Name a,'me
Size Size
id: Name id: Name
acc access key

Figure 5.11 - Identifiers often are supported by access keys.

In addition, al the reference groups (foreign keys) have been made access
keys as well (Figure 5.12). It is not mandatory, but DB-MAIN has found it
handy to proposethisinitstransformation process. Indeed, such attributesim-
plement relationship types, and therefore will most probably be used as selec-
tion criteriain the programs (in join-based queries for instance).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-12

Lesson 5: Logical and Physical Modeling

So far, an access key isjust an additional property of another construct (iden-
tifier or referential group). We can also decide to declare other access keys if
we think they can boost the performance of queries.

For instance, we can consider that asking for a product of which only the name
is known, is afrequent query. To accelerate the processing of this query, we
decide to build an access key on Pro-Name of PRODUCT.

BRANCH BRANCH
Com-1D Com-1ID
Country Country
Name Name
id: Com-1D id: Com-ID, Country
Country access key
acc ref: Com-ID -> COMPANY.Com-ID
ref: Com-1D access key
acc

Figure 5.12 - Reference groups (foreign keys) are supported by access keys.

An access key isjust aspecid kind of agroup. Toillustrateit, we add a new
group to PRODUCT:

- we select attribute the Pro-Name, and we click on the button :

- we open the Property box of thisgroup (pressthe Enter key or double-click)
(Figure 5.9);

- weclick on the button Access key and we confirm the operation.
The entity type PRODUCT now reads asin Figure 5.13.

PRODUCT PRODUCT

Pro-1D Pro-ID

Pro-Name Pro-Name

Substitute]0-1] Substitute [0-1]

id: Pro-ID id: Pro-ID
acc access key

ref: Substitute ref: Substitute -> PRODUCT.Pro-ID
acc access key

acc: Pro-Name access key: Pro-Name

Figure 5.13 - An additional access key.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-13

5.8

Some access keys enjoys an interesting property, provided they are based on a
special kind of implementation, called B-trees™:

An access key defined on any prefix of another access key can be dis-

carded.

L et us suppose that an access key has been defined on <A, B, C>. According
to this property, candidate access keys <A ,B> and <A> are useless, and can be
removed from the schema. Indeed, the DBMS can use the first access key to
answer queries that would use any of the prefix access keys, without any pe-
nalty. Thisremoving can be considered as a simple but efficient optimization
technique.

As an application of this technique, we will remove the three prefix access
keys of thelogical schema (compare the final schema of Figure 5.19 with that
of Figure 5.3).

Defining entity collections

Inareal database, that is, one which isimplemented in an actual computer, ta-
ble rows and records are stored in alarge secondary memory, such asonama-
gnetic disk. More specifically, they are stored in storage units called,
depending on the data management system, files, data files, datasets, areas,
realms, DBspaces or tablespaces.

DB-MAIN proposes a concept to represent such storage units, namely the en-
tity collection, or, more simply, the collection.

Let us suppose that the six tables of the relational database have to be stored
into two distinct files, one, called PR_ STORE, which can accomodate the rows
of PRODUCT, MARKET and manufactures, and the other, called
CY STORE, inwhichtherowsof COMPANY, BRANCH and Phone -Number
will be stored.

A collection is created through the button and specified through the Col-
lection property box, called up by pressing the Enter key or by double-clicking
on the name of the collection (Figure 5.14). It allows usto specify the name,
short name, semantic and technical (see below) descriptions, and thelist of the
entity types (or tables) whose entities (rows) areto be stored in the collection.

... whose description falls out of the scope of thistutorial. It sufficesto know that standard
indexes, i.e., those which are not based on hashing techniques, most often are B-tree
indexes.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

514 Lesson 5: Logical and Physical Modeling

Collection Properties |

E xamine/madify the properties of a collection

Name |CY-STORE

Short namel

— Entity tppes
COMPANY : manufactures
BRANCH <<Add FIrSt| MARKET
Phore-Mumber PRODUCT

<<idd Ne:-:d
‘I I _’I Flemu:uve>>| ‘I I ﬂ

Sem. | Tech. | Frop. |

Newu:ull.l Ok I Cancel |

Figure 5.14 - Defining the entity collection CY_STORE.

Any number of entity types can be stored in acollection, and an entity type can
be stored in any number of collections. However, some DBMS can impose
more limited configuration. For instance, many relational DBMS force the
rows of each table to be stored in one table space only, though the latter can
receive rows from several tables.

These collections appear in all schema views (Figure 5.15 and Figure 5.16).

PRODUCT
MARKET
manufactures

COMPANY

BRANCH
Phone-Number

Figure 5.15 - Entity collections: storage units to store table rows in.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-15

5.9

Schema Manufacturing/SQL / Manu

collection CY-STORE
COMPANY
BRANCH
Phone-Number
collection PR-STORE
PRODUCT
MARKET
manufactures

BRANCH
in CY-STORE
Com-ID: char (15) [S]
Name: char (1)

LS

COMPANY / COM [S]
in CY-STORE
Com-ID: char (15) [S]
Com-Name: char (25) [S]

manufactures [S]
in PR-STORE
Com-ID: char (15) [S]
Country: num (3)

Figure 5.16 - Entity collections, according to the Text extended view.

Name processing

Now we could believe that we are ready to generate the SQL schemathat cor-
responds to the final version of our relational database.

However, a quick look at this schema will show a little but potentially an-
noying problem: some namesincludethe character "-" (dash), whichisinvalid
in SQL datanames. A standard remedy consistsin replacing each character

"-" by, say, the character " " (underscore). For instance, Com- 1D should be
replaced by Com_ID, and so on.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-16

Lesson 5: Logical and Physical Modeling

DB-MAIN has aspecific processor for that task. Itiscalled up through Trans-
form / Name processing, which opens the Name Processing panel (Figure

5.17).

We proceed as follows:
- we set the scope to Global (i.e., processing the whole schema);

we want to process both the Names and the Short names ...
... of the Entity types, Attributes and Collections;
first, we tell the processor that we want all the names to be converted into

uppercase characters (button lower -> uppercase)

then we define the translation pattern:

we click on button Add, therefore opening the New pattern box (Fi-
gure 5.18):

the character - istyped in the Search for field,
the character _istyped in the Replace by field,
and we confirm by clicking on the button OK;

the trandation pattern "-" -> " " now appears in the Patterns
field (Figure 5.17);

Mame Processing E3

% Global v Mames v Collections [~ Processing units
" Selected ¥ Shotnames W Entitytypes [Roles
© Marked [~ Rekypes [Groups
M athibutes
Fatterns : Add | Inzert | Delete |

XTI

" upper-:lowercase " Capitalize
[T Remove accents [~ Shorten to I_characters

[Confirm Ol I Qancell Help | Load | Save |

Figure 5.17 - Processing the names of the schema.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-17

Mew pattern

Search for :

Feplace by :

Cancel |

Figure 5.18 - Defining a substitution pattern.

COMPANY PHONE_NUMBER PR_STORE
COM ID COM_ID
COM_ID PRODUCT
COM_NAME COUNTRY
_ AREA MARKET
COM_NUMBER ALEA MANUFACTURES
COM_STREET LOCAL ~__ @
COM_ZIP_CODE id: COM_ID
COM_CITY_NAME COUNTRY
COM_REVENUE[0-1] AREA
id: COM_ID LOCAL PHONE_NUMBER
acc N acc BRANCH
id:COM_NAME ref: COM_ID COMPANY
COM_NUMBER ~ @~
COM_STREET
COM_ZIP_CODE AEKET
COM_CITY_NAME MANUFACTURES
acc NAME
COM_ID SIZE
COUNTRY o
PRO ID id: NAME
NAME ac
RATIO
BRANCH id: COM_ID
‘fggmN'TDRY COUNTRY
NAME PRO_ID PRODUCT
- ace PRO_ID
id: COM_ID ref: NAME
COUNTRY acc 2535%“655 0-1
acc ref: PRO_ID - [0-1]
ref: COM_ID ace id: PRO_ID
. acc
ref: ggmNITDRY ref: SUBSTITUTE
acc

Figure 5.19 - The final physical schema. Note that the prefix access keys
have been removed.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-18

Lesson 5: Logical and Physical Modeling

- we leave the button Confirm unchecked to avoid being asked for confirma:
tion before each substitution;

- we validate by clicking on the button OK.

All the characters "-" have been replaced with the character "_", just as we
wanted them to be and al the names are now in uppercase (Figure 5.19).

The same procedure will also be used to remove space characters or to replace
the reserved words it may comprise: no user name can belong to alist that in-
cludes such words as create, table, integer, char, date, index, references, uni-
que, check, etc.

5.10 SQL code generation

Now we can ask for the SQL translation function as proposed in lesson 3
through the command File / Generate / Standard SQL(check).

—— kkkhkkhkkhkkkhkkhkkkhkhkhkkhkkhkkhkhkkhkhkdhkhkhkhkhhkhkdkhkhkhkkhkhxkxx

-- * Standard SQL generation *
co Woooooooocoocoooocooooco oo ooo oo oo cooo e ooo oo *
-- * Generator date: Mar 8 2000 &

-- * Generation date: Mon Apr 03 21:50:31 2000 *
—— kkkkkhkhkhkkkhkkkhkhkhkhkhkkhkhkkhkhkhkhkdhkhkhkkdhhkhkhkdkkhkhkhhkkdkx

-- Database Section --
create database Manufacturing;
-- DBSpace Section --

create dbspace CY STORE;
create dbspace PR_STORE;

-- Table Section --

create table BRANCH (
COM_ID char(15) not null,
NAME char(20) not null,
COUNTRY numeric(3) not null,
primary key (COM_ID,COUNTRY))
in CY STORE;

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling

create table COMPANY (
COM_ID char(15) not null,
COM_NAME char (25) not null,
COM_NUMBER numeric (5) not null,
COM_STREET char (20) not null,
COM_ZIP_CODE numeric(7) not null,
COM _CITY NAME char(18) not null,
COM_REVENUE numeric(12),
primary key (COM_ID),

COM_CITY NAME))
in CY STORE;

create table MANUFACTURES (
COM_ID char (15) not null,
COUNTRY numeric (3) not null,
PRO ID char(8) not null,
NAME char (24) not null,
RATIO numeric(4,4) not null,
primary key (COM_ID, COUNTRY,PRO_ID))
in PR_STORE;

create table MARKET (
NAME char (24) not null,
SIZE numeric(6) not null,
primary key (NAME))
in PR_STORE;

create table PHONE_NUMBER (
COM_ID char(15) not null,
LOCAL numeric(8) not null,
AREA numeric (3) not null,
COUNTRY numeric(3) not null,

in CY STORE;

create table PRODUCT (
PRO_ID char(8) not null,
PRO_NAME char (25) not null,
SUBSTITUTE char (8),
primary key (PRO_ID))
in PR_STORE;

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

unique (COM NAME,COM NUMBER, COM STREET,COM ZIP CODE,

primary key (COM ID, LOCAL, AREA, COUNTRY))

5-19

20/03/2002

5-20 Lesson 5: Logical and Physical Modeling

-- Constraints Section

alter table BRANCH add constraint FKBELONGS
foreign key (COM _ID) references COMPANY;

alter table COMPANY add constraint
check (exists (select * from PHONE_NUMBER
where PHONE NUMBER.COM ID = COM_ID));

alter table MANUFACTURES add constraint FKMAN MAR
foreign key (NAME) references MARKET;

alter table MANUFACTURES add constraint FKMAN_PRO
foreign key (PRO_ID) references PRODUCT;

alter table MANUFACTURES add constraint FKMAN_ BRA
foreign key (COM_ID,COUNTRY) references BRANCH;

alter table PHONE NUMBER add constraint FKCOM_PHO
foreign key (COM_ID) references COMPANY;

alter table PRODUCT add constraint FKREPLACES
foreign key (SUBSTITUTE) references PRODUCT;

-- Index Section --
create unique index IDBRANCH on BRANCH (COM ID, COUNTRY) ;

create unique index IDCOMPANY on COMPANY (COM_ID) ;

create unique index IDCOMPANY on COMPANY (COM NAME, COM NUMBER,
COM_STREET,COM ZIP CODE,COM CITY NAME);

create unique index MANUFACTURES on MANUFACTURES (COM_ID,
COUNTRY, PRO_1ID) ;

create index FKMAN MAR on MANUFACTURES (NAME) ;

create index FKMAN PRO on MANUFACTURES (PRO_ID) ;

create unique index IDMARKET on MARKET (NAME) ;

create unique index IDPHONE NUMBER on PHONE NUMBER (COM ID,LOCAL,
AREA, COUNTRY) ;

create unique index IDPRODUCT on PRODUCT (PRO_ID) ;

create index FKREPLACES on PRODUCT (SUBSTITUTE) ;

Figure 5.20 - The SQL program creating the database.

As we have already mentioned in the first lessons, this SQL text is not quite
consistent with therelational schemawhich it isatrandation of. For instance,

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling 5-21

the equ constraint that appears in the PHONE NUMBER table has been ex-
pressed asamere ref constraint. These problemswill be addressed in afur-
ther lesson.

5.11 Quitting the lesson

We can save the current project and quit DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

5-22

Lesson 5: Logical and Physical Modeling

Summary of Lesson 5

In this lesson, we have studied new notions:
ref reference group (or foreign key)

equ reference group

access key (e.g., index)

entity collections

We have also compared logical schemas With conceptual schemas.

We have learnt,
to define a group New / Group
to define a reference group
theConstraint buttoninthe Group Property box
to define an access key
the Access key button in the Group property box

New / Collection

to replace substrings in names

Transform / Name processing

to define a collection

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 5: Logical and Physical Modeling

51

Exercises for Lesson 5

5-23

Enter manual Iy5 arelational logical schemadescribing the database that
was built by the following SQL program:

create

create

create

create

create

database RESULTS;

table STD (
STD ID char(15) not null,
STD NM char (25) not null,
STD_PHONE char (10),
primary key (STD-ID));
table LCT (
LCT CD char(5) not null,
LCT_NM char (25) not null,
primary key (LCT CD)) ;
table CRS (
CRS NM char (25) not null,
LCT CD char(5) not null,
HOURS decimal (3) not null,
primary key (CRS NM,LCT CD),
foreign key (LCT_CD) references LCT));
table RES (

STUD_ID char(15) not null,

CRS NM char (25) not null,

LCT_CD char (5) not null,

GRADE decimal (5,1),

primary key (STUD_ ID,CRS_NM,LCT_CD),
foreign key (STUD ID) reference STUD,

foreign key (CRS NM,LCT CD) references CRS

)

5. Frustratingly (for you!), DB-MAIN includes a powerful tool that can build logical schemas

from SQL code. However, using it would make you miss the objective of the exercise.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

5-24

5.2

53

5.4

5.5

Lesson 5: Logical and Physical Modeling

This schemais particularly obscure, due to the choice of (too) short na
mes. Infact, the names can be changed to make them moreinformative.
Applying the following substitution leads to a much more readable
schema:

STD — STUDENT
LCT — LECTURE
CRS — COURSE
RES — RESULT
NM — NAME

CD — CODE
Use the Name processing function to carry out these replacements.
Note that you can add severa patternsin the Patterns field, so that
al the transformations can be executed in one operation.

Define the access keys (applying Transform / Relational model will
dothejob), then generate anew SQL creation program. Though struc-
turaly equivalent to the first one, it enjoys a highly desirable quality:
readability.

Try to guess which conceptual schema this logical schema could have
come from®.

Consider Project MANU-6 again. Rework the schema hierarchy and
some schema constructs in order to propose a neater organi zation:

- thehierarchy showsthe conceptual, logical, physical and coded sche-
mas;
- the physical schema does not include prefix access keys.

6. Notethat thiskind of problem resorts to the Database Reverse Engineering domain, which
will be addressed later on.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6

Advanced Conceptual Modeling

Objective

This lesson will introduce to more powerful features of the DB-
MAIN conceptual model : supertype/subtype relations (is-a), to-
tal/partial and exclusive/overlapping subtypes, inheritance, coex-
istence constraint, exclusive constraint, at-least-one constraint,
exactly-one constraint. In addition, afirst approach is proposed
to schema transformation, and to the reversibility concept.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-2

6.1

6.2

Lesson 6: Advanced Conceptual Modeling

Starting Lesson 6

We start DB-MAIN and we create a new project called SEM-6.

Subtypes and supertypes (is-a relations)

We create a new schema with name ISA and version 1.

Let us suppose that we are describing the activities of factories which arein
relation to their suppliers and their customers, which al are companies.

In other words, factories, suppliers and customers are companies. In addition,
each factory can have customers and can have suppliers. From now on howe-
ver, we will ignore the latter facts.

If we represent factories, suppliers, customers and companies by entity types
FACTORY, SUPPLIER, CUSTOMER and COMPANY respectively, we get the
schema of Figure 6.1.

COMPANY
SUPPLIER FACTORY CUSTOMER

Figure 6.1 - Four unrelated entity types (so far!).

We then have to express some additional facts:
- afactory isacompany aswell;
- similarly, each supplier is a company;
- and each customer is acompany.

Another way to describethesefactsisto say that afactory (aswell asasupplier
and a customer) isaspecial kind of company. Thistranslatesin the Entity-re-
lationship model as follows:

- FACTORY isdeclared asubtype of COMPANY;
- SUPPLIER isasubtype of COMPANY;
- CUSTOMER isasubtype of COMPANY.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-3

Conversely, we can say that COMPANY is a supertype of FACTORY, SUP-
PLIER and CUSTOMER.

To definethissubtype/supertype relation, we open the Entity box of FACTORY
(double-click as usual), and we move the hame COMPANY from the right list
to the Supertypes list on the left (Figure 6.2).

Entity type Properties |

Examine/modify the properties of an entity type

Name |FACTORY
Shart name IF.t'l'-.Ej

Length 0
— Supertypes
I Totall) Disiaint
COMPANY CUSTOMER

c<iid | [SUPPLIER

Remaove >>|
| 2 | 2

Sem. | Tech. | Prop. |

MHew ent. | Mew att, |‘ Ok, I Cancel |

Figure 6.2 - FACTORY is being declared a subtype of COMPANY.

Defining similarly that SUPPLIER and CUSTOMER both have COMPANY as
their supertype leads to the schema of Figure 6.3.

Itiscommon to talk about IS-A relation between the supertype and its subty-
pes. The origin of this name lies in the natural language interpretation of the
facts modeled in thisway:

each supplier is a company, each factory is a company, etc.
The standard view is shown in Figure 6.4 and the extended view in Figure 6.5.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-4 Lesson 6: Advanced Conceptual Modeling

COMPANY

FACTORY CUSTOMER

Figure 6.3 - SUPPLIER, FACTORY and CUSTOMER are subtypes of COM-
PANY

COMPANY

CUSTOMER
is-a COMPANY

FACTORY
is-a COMPANY

etc.

Figure 6.4 - The Text standard view of IS-A relations.

COMPANY / CY
sub-types: SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

FACTORY / FAC
is-a COMPANY

etc.

Figure 6.5 - The Text extended view of I1S-A relations.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-5

6.3

As we can guess by playing with the Entity box, it is possible to state that an
entity type has more than one supertype. However, such situations, often cal-
led multiple inheritance, are much more complicated, and will be ignored in
this volume®.

Properties of the subtypes of an entity type

So far, we have defined the relation between each subtype and its supertype:
each entity of the subtype is an entity of the supertype. So we know that each
customer is also acompany, and so forth for factories and suppliers.

Now, what about a customer being a supplier aswell? ... and about acompany
which is neither a customer, afactory, nor a supplier?

These questions address two main properties that concern the entity typesin-
volved into a supertype/subtype relation. The questions can be stated more
formally:

- are any two subtypes disjoint, or can they overlapz? If the subtypes are pai-
rwise digjoint, then any supertype entity belong to at most one of its subty-
pes; otherwise it can belong to several subtypes. To assert this property, we
will say that the subtypes of entity type COMPANY are Disjoint. Since this
property concernsall the subtypes of COMPANY, it isconsidered to be apro-
perty of the supertype.

- must each entity of the supertype belong to a subtype, or can it be in none
of them? |f each supertype entity must belong to at least one subtype, we
will say that the subtypes of entity type COMPANY are Total. Thistooisa
property of the supertype.

When the collection of the subtypes of E is both digoint and total, this collec-
tionformsaPartition. Inapartition, each E entity belongsto exactly one sub-
type.

To alow usto declarethese properties, the Entity box of the supertypeincludes
two buttons, named Disjoint and Total (Figure 6.6). Each can be checked and
unchecked independently. When both are checked, the subtypes form a Parti-
tion, that is, each COMPANY entity is of exactly one subtype.

1

2.

So far, there is no agreement on what multiple super-types exactly mean, and how to deal
with them when validating, transforming and generating a schema. More on this later on.
To be more precise, this question concerns the set of entities of each type.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-6 Lesson 6: Advanced Conceptual Modeling

Entity type Properties |

E wamine/modify the properties of an entity type

Name |COMPANY

Short name IEY
Lenath 1]
— Supertypes

v iTotal [Disjoint

< Add |

Remaove >>|
] 2 | il

Sem. | Tech. | Prop. |

Mew ent, | Mew att, |‘ Ok, I Cancel |

Figure 6.6 - The subtypes of COMPANY totally cover the entity set of COM-
DPANY.

To practice these concepts, we define the subtypes of COMPANY as being to-
tal:

- we open the Entity box of COMPANY (by double-clicking on its name);
- weclick on Total;

- weclick on OK.

The schema appears asin Figure 6.7 and Figure 6.8.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-7

COMPANY

SUPPLIER FACTORY CUSTOMER

Figure 6.7 - Each COMPANY entity also is a SUPPLIER, a FACTORY or a
CUSTOMER entity (or several of them).

COMPANY / CY
sub-types (T): SUPPLIER, CUSTOMER, FACTORY

CUSTOMER / CUS
is-a COMPANY

etc.

Figure 6.8 - The Text extended view of the IS-A relations of Figure 6.7.

The triangle symbol represents a collection of subtypes. This symbol can in-
clude an additional character: T for Total, D for Disjoint and P for Partition.
The absence of character means both non-disjoint and non-total, i.e., an over-
lapping and partial collection of subtypes.

This point being very important in modeling, we will synthesize the different
situationsin Figure 6.9. It showsasimple IS-A hierarchy made up of super-
type A and subtypes B1 and B2. Each pattern is defined as follows.

o Partition: each A entity is either aB1 entity or a
W Totsl ¥ Disioint B2 entity but not both.

Total: each A entity iseither aB1 entity or aB2
¥ Taotal [Disjgint entity or both.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-8

Lesson 6: Advanced Conceptual Modeling

Disjoint: an A entity canbeaB1 entity or aB2 en-

I™ Total W Disioint tity but not both. Some A entities are neither B1
nor B2 entities.
- Disio Free: an A entity can beaB1 entity or aB2 entity
Total Disjoint or both. Some A entities are neither B1 nor B2
entities.
Total (T) Partial (—T)
Disjoint
D) P D
| 1] | B2 | | B1| | B2 |
Overlapping
(=D) T
| 1] | B2 | | B1| | B2 |

Figure 6.9 - Synthesis of subtype properties.

6.4

Supertype / subtype inheritance

The Supertype/subtype |S-A relation isnot assimple asit appears at first glan-
ce. One of its most dramatic consegquences is the so-called inheritance me-
chanism. To describe it, we need first to enrich our schema a little bit by
giving entity types some attributes. Let us record the following facts:

- each company has a name (identifier) and an address,

- each supplier has an account number;

- each factory has a production type;

- each customer has a customer number (identifier), a status and an amount

due.

The current schema can be completed easily (Figure 6.10).

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-9

Though it isquite correct, this schema does not show explicitly all its contents.
For instance, each customer, being a company, has also aname (which identi-
fiesit) and an address.

COMPANY

Name

Address

id: Name

T
CUSTOMER
SUPPLIER FACTORY gjatgilgm
AccountNbr ProductType AmountDue

id: CustNbr

Figure 6.10 - An IS-A hierarchy with attributes.

Thus, the whole list of attributes of entity type CUSTOMER isin fact made of:
CustNbr, Name, Address, Status and AmountDue. Among them,
CustNbr, Status and AmountDue are called the proper attributes, whi-
leName and Address aretheinherited attributes. |n addition, CUSTOMER
has two identifiers, namely CustNbr (a proper identifier) and Name (an in-
herited identifier).

Should the schema show all the attributes and all the identifiers of each entity
type, it would appear asin Figure 6.11.

Thefirst version is more concise, while the latter is more informative and in-
cludes redundant specificationsS. However, both views have the same infor-
mation contents. The only difference is how we have to interpret them.

The concept of inheritance also applies to all the structura properties of the
entity types, and is not restricted to attributes and identifiers as discussed so
far. More specifically, the subtypes also inherit al the roles and the integrity
constraints oOf their supertype.

3. For instance, it tells us twice that a customer has a name: once through an inherited attri-
bute and once as a proper attribute of the supertype.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-10 Lesson 6: Advanced Conceptual Modeling

For instance, if COMPANY islinked to entity type REGION, then CUSTOMER,
FACTORY and SUPPLIER are linked to REGION as well (Figure 6.12). Its
explicit semantic contents are shown in Figure 6.13.

COMPANY
Name
Address
id: Name
T
CUSTOMER
SUPPLIER FACTORY CustNbr
Name Name Name
Address Address étc;dur:ss
AccountNbr ProductType
N N AmountDue
1d: Name 1d: Name Id CUQNbI’
id':Name

Figure 6.11 - Attribute and identifier inheritance explicitly shown. The inheri-
ted components are marked for readability.

COMPANY REGION
Name s | Name
Address 0 1@0 N~ Population
id: Name id: Name
T
CUSTOMER
SUPRLIER| FACTORY Satus
AccountNbr ProductType AmountDue
id: CustNbr

Figure 6.12 - The supertype plays a role in a rel-type.

By comparing both views, the gain of conciseness induced by the supertype/
subtype relation is obvious, especially in large schemas. There are other ad-

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-11

6.5

vantages aswell. For instance, inherited components are described only once
at the supertype level. Therefore, changing the definition of an attribute (or a
role), adding an attribute or deleting an existing attribute, must be done only
once. All these changes are automatically applicableto all the subtypes of the
supertype.

COMPANY REGION
Name Name
Address | 0N < > ON— Population
id: Name id: Name
T
CUSTOMER
SUPPLIER FACTORY CustNbr
Name
Name Name Address
Address Address Stat
AccountNbr ProductType us
N N AmountDue
id:Name id:Name id CusiNDr
id':Name

0-N

0-N 0-N 0-N
f_in 0-N
s_in

Figure 6.13 - Attribute, identifier and role inheritance shown explicitly.

The drawback of I1S-A constructs is that the schema can be less readable. In-
deed, the actual attributes (and other components) comprise the proper attribu-
tes + the inherited ones.

Coexistent components of an entity type

We create a new schema, called Coexistence, in which we will describe
persons who may work in companies and who may be married (afairly com-
mon combination). More precisely, each person is described by its personal

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-12

Lesson 6: Advanced Conceptual Modeling

number, its name, the name of his’her spouse, the date s/he was married, the
company s/he works for, and the date s’he was hired by this company.

However, not all the persons are married and/or work in acompany. Therefo-
re, attributes SpouseName, DateMarried and DateHired are optiona
and role works-in.PERSON is optional too. The corresponding schema
looks like Figure 6.14.

COMPANY

CompNumber

CompName ’

id: CompNumber 01

\
PERSON

PersiD
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersiD

Figure 6.14 - A schema describing persons working in companies.

However, things are not so simple. For instance, al married persons have
both valid date married and valid spouse name properties, while non-married
persons have neither of them.

Similarly, working persons have a date hired property and a company they
work in, while non-working persons have neither.

We can say that attributesDateMarried and SpouseName are coexistent,

i.e., some entities have avalue for these attributes, while al the others have no

values for them.

DB-MAIN providesuswith aspecific feature to declare this coexistence cons-

traint: the coexistence group. It works asfollows:

- we create a group® comprising attributes SpouseName and DateMar -
ried, and we give it the coexistence characteristics by clicking on the
Coexistence button in the Group box (Figure 6.15);

Proceed as usudl: select all the components then click on button GR in the Standard tools
bar. To open a selected group, just press the Enter key.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6. Advanced Conceptual Modeling 6-13

Group Properties

E xamine/modify the properties of a group of the entity tpe
PERSOMN

Name [GRFERSON Length 4,
— Functions - - ru Cardinality
 Primary D - e canst tin. Iﬂ_ﬂ
s oo D = [Eeslivsive I ﬂ -
econdary IE | Arastane I | Access kep b &, IN j
— Components
SpouseMane PerzlD
Datebd amied <<Add£irst| Mame
DateHin_ad
<cehdd Heﬁll i.georrslla;-in.CDMF'ﬁNY
Bemower: |
KN o KN 0

Sem. | Tech. | Frop. || I:Dnstrgintl Ok I LCancel |

Figure 6.15 - Defining a coexistence group.

COMPANY
CompNumber
Compiame | 0N worksin
CompName ’
id: CompNumber 01
\
PERSON
PersiD
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
id: PersiD
coex: works-in. COMPANY
DateHired
coex: SpouseName
DateMarried

Figure 6.16 - Any person who works in a company must have a date hired,
and conversely. All married persons, and only they, have a spouse name and
a date of marriage.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-14 Lesson 6: Advanced Conceptual Modeling

- similarly, we define works-in.COMPANY and DateHired as another
coexistence group.

The completed schemais shown in Figure 6.16 and in Figure 6.17.

COMPANY
CompNumber
CompName
id: CompNumber
PERSON
PersID
Name
SpouseName [0-1]
DateMarried[0-1]
DateHired [0-1]
id: PersID
coexist: works-in.COMPANY, DateHired
coexist: SpouseName, DateMarried

works-in (
[0-N] : COMPANY
[0-1] : PERSON)

Figure 6.17 - Text view of coexistence constraints.

Note

1. All the components of a coexistence group must be optional. This condi-
tion is easy to check for attributes: their cardinality must be [0-j]. For the
role components (e.g., works - in. COMPANY), therule is a bit different:
the role specifies arelationship type whose other role must be optional, i.e.
it has cardinality [0-1]. This rule can be explained by the following inter-
pretation: a PERSON optionally (i.e., [0-1]) works-in a COMPANY.

2. A coexistence group can aso be defined among the attributes of a rela
tionship type.

6.6 Schema transformations : a first glance

To help understand the concept of coexistence constraint, we will propose an
equivalent structure which may be more illustrative of the very nature of this
constraint. To do so, we will usefor the first time avery powerful component

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-15

of the DB-MAIN tool, namely itstransformation toolkit. Thiscomponent will
be studied in great detail in future lessons, but the current situation is a good
opportunity to experiment one of its simplest tool : attribute aggregation.

We consider the schema of Figure 6.16, and we proceed as follows:

- we select, by clicking on it, the group that comprises SpouseName and
DateMarried,;

- we execute command Transform / Group / Aggregation (Figure 6.18);

- anew attribute is created; we give it the nameMarriage (or any other na
me);

MEEGEGIOE Azzizt Engneenng Log Miew W

Enfitype 3
Heltpe F
fritate 3
Frale F

> etype
CHangel prefis... Aggiegation
Mame processing... -r Multi-valued

R elational model

Quick SOL...

Figure 6.18 - Asking for the aggregation of the components of the selected
group into a compound attribute.

Asillustrated in Figure 6.19, the set of attributes of PERSON has been restruc-
tured asfollows:

- now, SpouseName and DateMarried are the components of the new
compound attribute Marriage;

- these attributes are mandatory for their parent attribute;
- Marriage isoptiond;
- the coexistence constraint has been removed.

It isimportant to be convinced that the schemas of Figure 6.16 and Figure 6.19
convey exactly the same semantics, i.e., they describe the same portion of the
application domain. Indeed, Figure 6.19 tells that a PERSON entity can have
aMarriage value. Inthiscase, it hasavaluefor each of its components, na
mely SpouseName and DateMarried. If it has no Marriage value,

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-16 Lesson 6: Advanced Conceptual Modeling

then, quite naturally, it hasno valuesfor the components of thisattribute. This
is exactly what the coexistence constraint is intended to express.

PERSON
PersiD
Name
Marriage[0-1]
SpouseName
DateMarried
DateHired[0-1]
id: PersiD

Figure 6.19 - Coexistent group {SpouseName,DateMarriage} has been
transformed into optional compound attribute Marriage.

To push the experiment a bit further, we select the attribute Marriage, and
we execute the command Transform / Attribute / Disaggregation.

(Not really) surprisingly, we get the origin schemal We can draw from this
two essential conclusions that will be discussed later on:

1. each transformation is the inverse of the other one: each one erases the
effect of the other one; they are called inverse transformations;

2. both schemas are equivalent, i.e., they represent exactly the same reality,
though through different structures. The choice of one of them will be
guided by criteria which are beyond the scope of this lesson. A transfor-
mation which replaces a schema with an equivaent one is called reversi-
ble, or semantics-preserving.

PERSON PERSON
PersiD PersiD
Name _— Name
SpouseName{0-1] Marriae
DateMarried[0-1] SpouseName
DateHired[0-1] DateMarried
id: PersiD DateHired[0-1]
coex: SpouseName id: PersiD

DateMarried

Figure 6.20 - A couple of reversible transformations: Group/Aggregate (left to
right) and Attribute/Disaggregate (right to left).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-17

6.7

Aswewill seelater on, such atransformation can be summarized asin Figure
6.20.

DB-MAIN offersafairly large number of schema restructuring techniques, or
schema transformations. These are among the most simple, but not the least
useful, aswill beillustrated in further lessons.

Note
The other coexistence group can be processed in asimilar way. However,

it would need amore sophisticated transformation since it includes attribu-
tesand roles. Thus, wewill leaveit to afurther lesson.

Exclusive components of an entity type

This concept is quite similar to the coexistence of components.

Let us record in the current schema information about the wages of the per-
sons. Considering that some persons are paid on an hourly basis, while the
others are paid at the end of each month, we can define two attributes, namely
HourlyWages and MonthlyWages.

However, no PERSON entity can haveavaluefor both attributes. We consider
these attributes as exclusive.

Itisfairly easy to define an exclusive constraint in DB-MAIN through an ex-
clusive group:

1. we create a new group® comprising attributes HourlyWages and
MonthlyWages,

2. we give it the exclusive characteristic by clicking on the Exclusive button
in the Group box.

The schema appears asin Figure 6.21.

L et usnow consider an additional rule, stating that companies do not hire mar-
ried personsG. In other words, a person ismarried, or worksin acompany, (or
none), but not both.

Provided no such group already exists. In such a case, just double-click on it and proceed
astoldin step 2.

Non-equal-opportunity companies must be modeled as well. Whether describing paliti-
caly incorrect situations is politically correct or not is beyond the scope of this introduc-
tion.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-18

Lesson 6: Advanced Conceptual Modeling

PERSON

PersiD

Name

SpouseName[0-1]

DateMarried[0-1]

DateHired[0-1]

MonthlyWages0-1]

HourlyWages[0-1]

id: PersiD

coex: works-in.COMPANY
DateHired

coex: SpouseName
DateMarried

excl: MonthlyWages
HourlyWages

Figure 6.21 - A person paid monthly cannot be paid per hour, and conversely.

Theinformation concerning the marriage is gathered into a coexistence group
{SpouseName, DateMarried} while the information related to the pro-
fessional activity of the person is represented by the coexistence group
{works-in.COMPANY, DateHired}.

The exclusive constraint is defined by an exclusive group as follows:
1. we declare a new group comprising group {works-in.COMPANY,
DateHired} and group { SpouseName, DateMarried} [

2. we give it the exclusive characteristic by clicking on the Exclusive button
in the Group box.

We get the schema of Figure 6.22.

Notes

1. All the components of an exclusive group must be optional.

2. An exclusive group can also be defined among the attributes of a rela
tionship type.

3. The exclusive constraint can be expressed in a smpler way: excl:
works-in.COMPANY, SpouseName. Canyou explain why thiscons-

Same procedure as for attributes: select the groups then click on button GR in the Stan-
dard tools bar.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-19

6.8

traint is equivalent to the former expression?

PERSON

PersiD
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages0-1]
HourlyWages[0-1]
id: PersID
coex: works-in.COMPANY
DateHired
coex: SpouseName
DateMarried
excl: MonthlyWages
HourlyWages
excl; {works-in.COMPANY
DateHired}
{SpouseName
DateMarried}

Figure 6.22 - Married persons cannot work in a company, and conversely. A
simplified expression will be discussed in the following.

Groups with at least one, or exactly one, existing com-
ponent

Let us consider again the last schema. For the purpose of the demonstration,
we delete exclusive group {MonthlyWages, HourlyWages}.

Now we consider that all the persons are paid, in away or in another. In our
schema, this rule trandates as follows: ar least one of the attributes Hour -
lyWages and MonthlyWages must have avalue.

Thisproperty iscalled the at-least-one constraint, and can be specified throu-
gh an at-least-one group asfollows:

1. wedeclareanew group {Monthly-Wages, Hourly-Wages},
2. weclick on button At-least-one in the Group box.
Without surprise, we get the schema of Figure 6.23.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-20 Lesson 6: Advanced Conceptual Modeling

PERSON
PersID
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersID
at-Ist-1: MonthlyWages
HourlyWages

Figure 6.23 - Every person must be paid, in whatever way(s)!

Very often, such a group will also be given the exclusive property, to declare
that one and only one component must haveavaue. To statethis, we openthe
group again and we click on the Exclusive button, so that both Exclusive and
At-least-1 buttons are checked.

This condition is defined by the Exactly-one property (symbolized with
exact-1 in the schema) as shown in Figure 6.24.

PERSON
PerslD
Name
SpouseName[0-1]
DateMarried[0-1]
DateHired[0-1]
MonthlyWages[0-1]
HourlyWages[0-1]
id: PersiD
exact-1: MonthlyWages
HourlyWages

Figure 6.24 - Every person must be paid, but in one way only.

Notes

1. All the components of an At-least-one group must be optional.

2. A group cannot have both Coexistence and At-least-one properties.

3. An At-least-one group can aso be defined among the attributes of arela

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-21

tionship type.

6.9 Quitting the lesson

We save the current project and we quit DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-22

Lesson 6: Advanced Conceptual Modeling

Summary of Lesson 6

In this lesson, we have studied new notions:

supertypes, subtypes, supertype/subtype relation

total, disjoint and partition properties

inheritance

coexistence constraint

exclusive constraint

at-least-one congtraint

exactly-one constraint

schema transformation, inverse transformation, reversible transformation
the transformation toolkit of DB-MAIN

We have also learnt:

- to specify the supertype of an entity type
in the Entity type box of the subtype : include the name of the su-
pertype in the Supertype list box

- to definethetotal, disjoint properties

in the Entity type box of the supertype : click on the Total,
Disjoint button

- to define coexistent, exclusive, at-least-one groups

in the Group box : click on the Coexistent, Exclusive,
At-least-one button

- to define a compound attribute from its components
if needed, make a group with the components; then:
Transform / Group / Aggregation

- to disaggregate a compound attribute
Transform / Attribute / Disaggregation

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-23

Exercises for Lesson 6

6.1 Inthebegining of thislesson, wewrote: ... factories, suppliers and cus-
tomers are companies. In addition, each factory can have customers
and can have suppliers. ...

Complete the corresponding schemain order to include these specifica-
tions.

6.2 Inthe same schema, describe the fact that each company can be a sub-
sidiary of another company (hint : useacyclic relationship type). Show
how this fact must be interpreted as far as the subtypes are concerned.
In other words, make explicit theinherited relationship type. Ontheba
sisof thissmall example, what do you think of the conciseness of theis-
arelation ?

6.3 Build aschema (called PERSONAL) representing the following appli-
cation domain :
The company has employees. Each of them is identified by an employee
id, and has a name and an address. An employee can have a personal
file. This file has an identifying code, a date and a content. Among the
employees, there are clerks and workers. Workers are characterized by
a salary, and must be affiliated to a trade union. A clerk has a level and
a function. A trade union has a name and an address.
Consider four different hypotheses :
- each employeeiseither aclerk or aworker, but not both (version 1);
- an employee can be a clerk or aworker, but not both (version 2);
- each employeeiseither aclerk or aworker, or both (version 3);

- an employee can be a clerk or aworker, or both (version 4).

6.4 Derivefrom these schemas other schemas (versions 1-1, 2-1, etc) which
make explicit all the properties of each entity type by showing the effect
of the inheritance mechanism.

6.5 Letusconsider theschemas PERSONNEL (versionsl, 2, 3, 4). For each
of them, derive another schema (versions 1-2, 2-2, etc) in which the is-
a relation has been eliminated. Proceed as follows:

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-24

6.6

6.7

6.8

20/03/2002

Lesson 6: Advanced Conceptual Modeling

replace each supertype/subtype relation by a one-to-one relationship
type;
Take specia careto al the derived integrity constraints.

L et usconsider the schemas PERSONNEL (versions 1, 2, 3, 4). For each

of them, derive another schema (versions 1-3, 2-3, etc) in which theis-

arelation has been eliminated. Proceed asfollows:

- propagate (by inheritance) al the properties of the supertype (attri-
butes, roles, constraints) to each of its subtype;

- remove the supertype.

Pay special attention to all the derived integrity constraints. Be aware
that employees who are neither clerks nor workers must be represented

L et usconsider the schemas PERSONNEL (versions 1, 2, 3, 4). For each
of them, derive another schema (versions 1-4, 2-4, etc) in which theis-
arelation has been eliminated. Proceed asfollows:

- moveall the properties of the subtypesto their supertype; for instan-
ce, the fact that all clerks have a function can be represented by an
optional attribute of EMPLOYEE;

- when al the properties have been pushed up to the supertype, remo-
ve the subtypes.

Take a special careto al the derived integrity constraints. The role of
an employee (clerk, worker, both or none) should be represented, e.g.,
through the new attribute Employee-type.

Can you put forward an opinion concerning these three techniques to
eliminate super-type/subtype relations? Some criteriaz readability,
simplicity, conciseness, complexity of the additional integrity cons-
traints, easiness of translation into arelational database.

Do you think that some of these techniques are more fitted in some si-
tuations?

Note.The problem of is-a relation trandation is complex, particularly
when the database is to be implemented into a standard DBMS (e.g., a
relational DBMS). Itwill bedealt within afuturelesson. Nevertheless,
the techniques illustrated in questions 6.5, 6.6 and 6.7 represent the
three standard families of representations.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 6: Advanced Conceptual Modeling 6-25

6.9

6.10

6.11

6.12

A relational schemaincludestwo tables, A and B built by the following
SQL program (column domains are ignored) :

create table A (Al not null, A2 not null, A3, A4,
primary key (Al,A2))

create table B (Bl not null, B2, B3, B4,
primary key (B1l),
foreign key (B3,B4) references A))

Represent these structures by alogical schema (asin lesson 5).

Observethat theforeign key isoptional. Ideally, two casesonly areva-
lid: either both B3 and B4 are null, or both have a value, in which case
these values must match an A row. Represent this constraint in the lo-
gical schema.

Propose an equivalent conceptual schema.

Build an entity type PERSON with, ao., the optional attributes
COUNTRY, AREA, LOCAL. Expressthefact that these attributes are si-
multaneously null or valued. Make a compound attribute from them
and name it TELEPHONE.

Add to PERSON the mandatory attribute ADDRESS, made of (NUMBER,
STREET and CITY); CITY isinturn acompound attribute comprising
ZIP-CODE and CITY-NAME.

- Disaggregate these attributes.
- Make ADDRESS optional then apply the same manipulations.

- Starting from these resulting flat structures, try to go back to the nes-
ted structures (Hint : if needed define agroup [without function] be-
fore executing the aggregation of attributes).

Consider once again the entity type PERSON. Add two entity types, na-
mely COMPANY and ADMINISTRATION. A person can work in a
company (where (s)he receives a salary), in an administration (where
(s)he has a level) or is unemployed (in which case (s)he receives an
unemployment allowance). Add the necessary attributes and/or rela-
tionship type to represent these facts. Without resorting to is-a rela
tions, add the group constraints expressing the following situations :

- aperson must either be in a company, or in an administration or
unemployed, but only in one of these situations,

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

6-26 Lesson 6: Advanced Conceptual Modeling

- aperson can either bein acompany, or in an administration or unem-
ployed, or nothing at all, but only in one of these situations,

- aperson must be in a company, or in an administration or unem-
ployed, or in more than one of these situations;

- aperson can be in a company, or in an administration or unem-
ployed, in more than one of these situations, or in none of them.

Now, try to express these application domains through is-a relations.
What is your opinion when you compare both expressions?

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7

Conceptual Analysis (1)

Objective

About Lessons 7 to 12

Thisisthefirst of aseriesof lessons dedicated to the analysis and
the design of adatabase. They will describe, through the solving
of arepresentatigve case study, how informal users requirements
can be translated into a relational database in a systematic way.
While the procedure basically is tool independent, we will see
that using a CASE tool such as DB-MAIN can help, even for
small projects.

About this lesson

This lesson presents the application domain to be described, and
builds the first part of its conceptual schema. It will aso intro-
duce the reader to the concept of schema transformation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

71

7.2

Lesson 7: Conceptual Analysis (1)

Objective of these lessons

Through the first six lessons, we have mainly discussed the different cons-
tructs that make up a database schema, both at the conceptual and logical le-
vels. In addition, we have learned how such schemas can be represented,
entered, viewed, manipulated and managed in the DB-MAIN CASE tool.
These lessons basically were of a descriptive nature, though the exercises
should have given you the opportunity to practice these concepts more acti-
vely.

Now it is time to tackle the problems related to the analysis and design of an
actual database. Of course, it isout of question to try to address the devel op-
ment of a large scale system, such as those that are developed in companies.
Instead, we will proposeto build arealistic database related to a part of asmall
organization, i.e., asmall library.

First practice, then theory!

Thefinal objective of thisseriesof lessonsisto introduce the novice devel oper
to the principles of database analysis and design. However, for obvious moti-
vation reasons, we have chosen to start with practicing these activities, and to
conclude with the systematic description of the methodological principles.
Lessons 7 and 8 will be dedicated to conceptual analysis and design of the li-
brary database, lesson 9 to 11 will develop itslogical design and lesson 12 its
physical design. Other volumeswill address more sophisticated aspects of da-
tabases engineering.

Conceptual analysis and design

We will follow a simple procedure which applies elegantly to problems for
which we are provided with a semi-formal textual description. Such adescrip-
tion consists in factual sentences describing the application domain (i.e., the
problem to solve or the system to describe) in terms of its concepts, of their
properties and of their organizing rules. In other words, such atext can bein-
terpreted as a linguistic expression of the future conceptual schema.

We will decompose this text, and somewhat rework it, in order to obtain alist
of elementary propositions that are easy to interpret and to trandate into Enti-
ty-relationship constructs.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-3

7.3

7.4

Of course, thistext may include someflaws, such as redundencies and conflic-
ting information, and can lack some important information as well. Conse-
quently, we may be forced to ask people from the application domain for
additional information.

Y ou should be aware that, in actual situations, many other sources of informa-
tion can be used to contribute to the conceptual analysis. Let us mention ad-
ministrative and legal documents, observation of working procedures, forms
and other documents, screen layouts and printed reports, existing files and da-
tabases, existing programs. They may need more advanced techniques and
methods, and will be addressed in other volumes.

The case study

The problem that will be solved in the following lessonsisto build a database
describing asmall library organized by a consortium of companies.

A descriptivedocument isavailable. Thisdocument resultsfrom theinterview
of the employees in charge of the management and storage of the books, advi-
sing and helping readers and borrowers, and managing the borrowings of
books. We assume that the employees can be contacted if needed.

The text of Figure 7.1 comprises the main excerpts of the interviews.

The analysis

This text will be decomposed into elementary sentences, each of them stating
an elementary fact about the application domain.

Each elementary sentence will be analyzed in order to interpret the new facts
that it tellsus. Then, if needed, actions will be taken on the current schemato
integrate the knowledge extracted from this sentence.

At starting time, the current schemais empty.

To make the development more readabl e, we have organized the analysisinto
specific sections, each dedicated to amajor concept of the application domain.
This can be perceived as a bit artificial, since some concepts may appear
thanks to the contribution of several sentences scattered through the text.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-4

Lesson 7: Conceptual Analysis (1)

A book is considered a piece of literary, scientific or technical writing.
Every book has an identifying number, a title, a publisher, a first pu-
blished date, key words, and an abstract (the abstracts are being enco-
ded), the names of its authors, and its bibliographic references (i.e., the
books it references).

For each book, the library has acquired a certain number (0, 1 or more)
of copies. The copies of a given book have distinct serial numbers. For
each copy, the date it was acquired is known, as well as its location in
the library (i.e., the store, the shelf and the row in which it is normally
stored), its borrower (if any), the number of volumes it comprises. It ap-
pears that one cannot borrow one individual volume, but that one must
borrow all the volumes of a copy. In addition, the copies of a given book
may have different numbers of volumes. A book is also characterized
by its physical state (new, used, worn, torn, damaged, etc), specified by
a one-character code, and by an optional comment on this state.

The author of a book has a name, a first name and an origin (i.e., the
organization which (s)he came from when the book was written). For
some authors, only the name is known. The employees admit that two
authors may have the same name (and first name), but such a situation
does not seem to raise any problem. Only the authors of books known
by the library are recorded.

A copy can be borrowed, at a given date, by a borrower. Borrowers are
identified by a personal id. The library records the name, the first name,
the address (name of the company, street, zip-code and city name), as
well as the phone numbers of each borrower. In addition, when (s)he is
absent, another borrower (who is responsible for the former) can be
contacted instead. A copy is borrowed on behalf of a project (identified
by its title, but also by its internal code). When a copy is brought back to
the desk, the employee records the following information on this copy:
borrowing date, current date, borrower and project, then the copy is put
in a basket from which it is extracted at the end of the day to be stored
in its location, so that it can be available again from the following day
on...

Figure 7.1 - The interview report.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-5

7.5 Starting Lesson 7

We execute DB-MAIN and we create anew project called concep- 7, throu-
gh command File / New project.

7.6 Starting the analysis

We createanew schemacalled LIBRARY withaversionlabel Conceptual.

For each sentence, we proceed to an analysis phase (Analysis) then we update
the current schema (Action). As already said, we have organized the discus-
sion in homogeneous sections.

7.7 The books

(1) A book is considered a piece of literary, scientific or technical writing.

Analysis: this proposition puts forward the (probably) central concept of
book. In addition, the fragment "is considered a piece of ... writing"
can be interpreted in two ways (Figure 7.2):

1. asthe definition of the concept of book;
2. as the specification of three categories of books.

Action: we create a new entity type with name BOOK. According to the
interpretation chosen, we create, or not, three subtypes, asillustrated
below. In the following, we will adopt the simplest version, i.e., the

|eft-hand side one. The sentence "piece of literary, scientific or techni-
cal writing" is entered in the semantic description of BOOK.

We could add an attribute that define the category of the book. Howe-
ver, we will ignore it unless the rest of the text mentions it again.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-6

Lesson 7: Conceptual Analysis (1)

BOOK

LITERARY-BOOK| |SCI ENTIFIC—BOOK| |TECHNICAL-BOOK

Figure 7.2 - Two views of the concept of book.

(2)

3

(4)

()

20/03/2002

Every book has an identifying number,
Analysis: thisis amere property of the books.

Action: we add an attribute called BOOK-ID. We declare it the primary
id of BOOK (Figure 7.3).

a title,
Analysis: property of books.
Action: we add the attribute TITLE (Figure 7.3).

a publisher,

Analysis: a first glance, a property of books. However, we could have
interpreted this proposition as the existence of a major concept of the
application domain.

Action: we choose the simplest interpretation, and we add the attribute
PUBLISHER to BOOK. Later on the concept of publisher may appear
essential; in this case we will transform this attribute into an entity
type (Figure 7.3).

a first published date,
Analysis: obviously a property of books.
Action: we add the attribute DATE - PUBLISHED to BOOK (Figure 7.3).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-7

(6)

(7)

(8)

)

key words,

Analysis: depending on whether bibliographic retrieval is considered im-
portant or not, the concept of key word will be perceived as a major
one, or as a mere property of books.

Action: without any other information, we choose the minimal interpre-
tation, and we define the attribute KEY-WORD of BOOK. Should the
concept become more important in the future, we will transform this
attribute into an entity type.

This attribute is obviously optional and multivalued. By further dis-
cussing with the employees, we are told that ten key wordsis an abso-
lute maximum. Hencethe cardinality [0-10]1 (Figure 7.3).

and an abstract
Analysis: aproperty of books.
Action: we add the attribute ABSTRACT to BOOK (Figure 7.3).

(the abstracts are being encoded)
Analysis: the abstract is optional .
Action: the cardinality isset to [0-1] (Figure 7.3).

its author names,

Analysis: the author names can be understood either asamultiple proper-
ty of books, or as an important concept of the application domain.

Action: we choose to represent them by the multivalued attribute
AUTHOR of BOOK. Thecardinality isundefined, solet ussetitto [0-
N].

The resulting schema then appears asin Figure 7.3.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-8 Lesson 7: Conceptual Analysis (1)

BOOK
Book-1D
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
id: Book-1D

Figure 7.3 - The first attributes of BOOK.

(10) and its bibliographic references (i.e., the books it references).

Analysis: we interpret this proposition as follows: a book can reference
an arbitrary number of other books, and any book can be referenced
by other books. We can trandlate this by a cyclic relationship type.

Action: we define the relationship type BIBLIO-REF. One of theroles
is named ORIGIN (the book which includes the reference) while the
other one is named REFERENCE (the book which appears as a refe-
rence in the former one). Both cardinalitiesare [0-N] (Figure 7.4).

reference
origi reference

O0-N BOOK O0-N

Book-1D

Title

Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]

id: Book-1D

Figure 7.4 - Books can be the origin of references to other books.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-9

7.8 The copies
(11) For each book, the library has acquired a certain number (0, 1 or mo-
re) of copies.

Analysis: at this stage, it is still unclear whether the concept of copy is
important in the application domain. At least, the number of copies
must be known.

Action: wait and see.

(12) The copies of a given book have distinct serial numbers.

Analysis: obviously, more must be recorded about the copies. Thelist of
serial numbersis agood candidate.

Action: we define a new attribute SER-NUMBER of BOOK. Since the
exact number of copies is unknown, we set the cardinality to [0-N]
(Figure 7.5).

BOOK
Book-1D
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
Serial-Number[0-N]
id: Book-1D

Figure 7.5 - The copies of a book have distinct serial numbers.

(13) For each copy, the date it was acquired is known,

Analysis: now, there is too much information about copies to keep them
asamere property of books. We propose to include the copies among
the main concepts of the application domain (not very surprising in-
deed). The date will become a specific property of this concept.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-10

Lesson 7: Conceptual Analysis (1)

Action: thefirst thing to do isto define an entity type representing the co-

pies. There are two possible waysto do so.

The first one consists in deleting the attribute SER-NUMBER [0 -N]
and in creating anew entity type COPY with the attributes SER - NUM -
BER and DATE - ACQUIRED.

Thesecond oneismuch more elegant, and allowsustoillustrate anew
way of reasoning when building a conceptual schema incrementally:
namely schema transformation.

Let us select the attribute SER-NUMBER (by clicking on its name),
and let us promote it to the entity type status. We call the function
Transform / Attribute / -> Entity type. We choose the Instance re-
presentation technique, that will be discussed later on. Thistransfor-
mation replaces the selected attribute with an entity type. We choose
the name Ccopy for the entity type, and the name of for the rela
tionship type between BOOK and COPY.

The transformation can be represented as follows:

BOOK BOOK
Book-1D Book-1D
Title Title
Publisher Publisher
Date-Published Date-Published
Key-Word[0-10] Key-Word[0-10]
Abstract[0-1] Abstract[0-1]
Author[0-N] Author[0-N]
Serial-Number[0-N] id: Book-1D
id: Book-1D T
o
1-I1
COPY
Serial-Number
id: of. BOOK
Serial-Number

Figure 7.6 - Copies need to be represented by entity types.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-11

Before going on, we have to discuss in further detail the notion of schema
transformation, which was aready introduced in Lesson 6 (Section 6.6).

First of al let us convince ourself that both schemas are strictly equivalent as
far as their information contents are concerned. Can we imagine a situation
described by one of these schemas which cannot be described by the other
one? A book without copies? A book with 419 copies? Severa bookswhich
have each a copy with sequence number 14? A book with copiesidentified by
numbers 1, 3, 4, 18, 24? Note in particular that none alow two copies of the
same book to have the same number. Itispossibleto prove that these schemas
are equivalent in any circumstance, but relying on our intuition will suffice for
now?.

Though this specific transformation will be described in further detail at the
end of this lesson (see the Addendum), we will give some indications which
may be necessary to understand its application in the current situation.

It isintended to replace an attribute with an equivalent entity type. Two tech-
niques are proposed, namely Instance representation and Value representa-
tion.

Through the Instance representation technique, each instance of the attribute
SER-NUMBER is represented by an individual COPY entity. For instance, if
2627 books have a copy with number 5, there will be 2627 COPY entitieswith
SER-NUMBER value 5. Consequently, SER-NUMBER isin no way the iden-
tifier of COPY, but it isacomponent of itsidentifier. In addition, the rel-type
of isone-to-many.

With the Value representation technique, each distinct value of SER-NUM-
BER isrepresented by an individual COPY entity. For instance, in the situation
described above, there will be only 1 COPY entity with SER-NUMBER value
5. SER-NUMBER is the identifier of COPY. of is now many-to-many. Of
course, such an entity type has no particular meaning in this situation; therefo-
re, we have chosen the Instance representation technique.

Finally, let us observe that there exists another transformation through which
we can go back to theinitial schema: transforming an entity type (at |east some
kind of entity types) into an attribute. To experiment this, we select the entity
type coPY we have just produced and we call the command Transform / En-

1. This transformation, and some others, have been defined in the reference: Hainaut, J-L,
Entity-generating Transformations for Entity-relationship Schemas, in Proc. of the 10th
Int. Conf. on the ER Approach (San Mateo, 1991), North-Holland, 1992.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-12

Lesson 7: Conceptual Analysis (1)

tity type / -> Attribute. The final schema is the same as the starting one,
which should not be so surprising.

Now we can introduce the date the copy was acquired: we add the attribute
DATE-ACQUIRED to entity type COPY (Figure 7.7).

(14) as well as its location in the library
Analysis: aproperty of the copies.
Action: add the attribute LOCATION to entity type cOPY (Figure 7.7).

(15) (i.e., the store, the shelf and the row in which it is normally stored),
Analysis: thisisadefinition of what is the location of the copy.

Action: we make LOCATION a compound attribute with components
STORE, SHELF and ROW (Figure 7.7).

(16) its borrower (if any),

Analysis: are borrowers an essential concept in this application domain,
or arethey aproperty of copiesonly? Waiting for further information,
we decide to represent the borrower of each copy by an attribute. This
attribute is optional (some copies only are borrowed at a given time)
and single-valued (a copy is borrowed only once at atime).

Action: we add anew attribute (BORROWER [0-1]) to entity type COPY
(Figure 7.7).

(17) the number of volumes it comprises.

Analysis: the problem seems to be the same as for the copies of a book:
do we represent the number of volumes (as an integer) or each volume
individually (asamultivalued attribute or even as an entity type)? We
choosethefirst representation. A second question: have all the copies
of agiven book the same number of volumes? If they have, it is best
to associate the attribute to BOOK instead of to COPY. Following the
text (but we should be ready to change our mind), we associate the at-
tribute to copy.

Action: we add the attribute NBR - OF - VOLUMES to COPY (Figure 7.7).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-13

(18) It appears that one cannot borrow one individual volume, but that one
must borrow all the volumes of a copy.

Analysis: thisruleindicates that thereisno need to represent each volume
individually.

Action: none.

(19) In addition, the copies of a given book may have different numbers of
volumes.

Analysis: thisis a confirmation that the number of volumes characterizes
the copies and not the books.

Action: none.

(20) A book is also characterized by its physical state (new, used, worn,
torn, damaged, etc), specified by a one-character code,

Analysis: apparently a property of books. However, thisis not realistic:
the physical state is a property of the physical objects, i.e., copies.
Some copies of abook can be in good condition, while others can be
severely damaged. Therefore, book must be understood as copy ins-
tead.

Action: we add the attribute STATE to entity type COPY. Its domain of
value ismade of individual characters (Figure 7.7).

(21) and by an optional comment on this state.
Analysis: an optional property of copies.

Action: we add an optional attribute (STATE - COMMENT) to COPY.

Finally, the schemaappears asin Figure 7.7.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-14 Lesson 7: Conceptual Analysis (1)

0-N

11
|

COPY
Serial-Number
Date-Acquired
Location

Store

Shelf

Row
Borrower[0-1]
Nbr-of-Volumes
State
State-Comment[0-1]
id: of BOOK

Serial-Number

Figure 7.7 - COPY has some new attributes.

7.9 The authors

(22) The author of a book has a name,

Analysis: this does not change our first perception. It just precises the
kind of information conveyed by the attribute Aut hor of BOOK.

Action: we can adjust the type of values of Author so that it can repre-
sent author names.

(23) a first name,

Analysis: the name of the authorsis extended. We could make Author
a compound attribute (with components Name and First -Name).
We could also propose to represent authors by a specific entity type.
We choose the first structure.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-15

Action: we select the attribute Author, and we give it a component
through command New / Attribute / First att. Inthisway, we add a
first component to Author, which automatically becomes com-
pound. This new attribute is named Name. Then we create an addi-
tional attribute by clicking on the Next att. button in the Attribute box
of Name. We call thisnew attribute First -Name.

The structure of BOOK isshown in (Figure 7.8):

BOOK
Book-1D
Title
Publisher
Date-Published
Key-Word[0-10]
Abstract[0-1]
Author[0-N]
Name
First-Name
id: Book-1D

Figure 7.8 - Details are obtained on the authors of books.

(24) and an origin (i.e., the organization which (s)he came from when the
book was written).,

Analysis: OK, thereisalittle too much information for acompound attri-
bute. We must represent authors by an entity type. Then we will re-
present the origin of the authors.

Action: since the authors aready are represented as components of
BOOK, wewill choose the transformational approach (in the sameway
as for defining copies from books).

We select the attribute AUTHOR, and we call the command Trans-
form / Attribute / -> Entity type. Do we need to represent each ins-
tance of AUTHOR, or each distinct value of AUTHOR? |n other words,
if "Hugo, Victor" is the author of 6 books (in this library), do we re-
present him by 6 AUTHOR entities, or by one only? Obviously the
answer isone only. It seems best to represent each author by one and

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-16

Lesson 7: Conceptual Analysis (1)

only one AUTHOR entity. Therefore, we must choose the Value repre-
sentation technique. Theresultisin Figure7.9.

BOOK
Book-1D AUTHOR
:’:Jt:)‘le'm Name

I1sher .
Date-Published _O'Nl'N_ First-Name
Key-Word[0-10] id .Ei?rsTt]-eName
Abstract[0-1]
id: Book-1D

Figure 7.9 - Due to additional information on authors, it is best to represent
them by entity type AUTHOR. Technically, the attributes of AUTHOR form its
identifier. To be confirmed.

We can then add the attribute Origin to AUTHOR (Figure 7.10).

(25) For some authors, only the name is known.

Analysis: we aretold that First-Name, Birth-Date and Origin
are optional attributes.

Action: we set their cardinality to [0-1]. The result is not quite correct,
since the primary identifier now include an optional component. To
be checked later on (Figure 7.10).

(26) The employees admit that two authors may have the same name (and
first name), but such a situation does not seem to raise any problem.

Analysis: thisis a conflicting information. To be honest, since this was
produced by the transformation, we have taken for granted that (1) all
the Author vaues of a BOOK entity were distinct, and (2) two
authors must have distinct name and first name. Hence the identifier
of AUTHOR. We learn here that there is no known way to uniquely
characterized the authors. We have to remove the primary identifier
of AUTHOR.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-17

Action: we select the identifier of AUTHOR (by clicking on its declara
tion), and we delete it by pressing the Delete key (Figure 7.10).

(27) Only the authors of books known by the library are recorded.

Analysis: every author has written at least one book. This confirms the
[1-N] cardinality of therole AUTHOR inwritten.

Action: none.

BOOK
Book-ID
Title AUTHOR
Publisher Name
Date-Published _O'Nl'N_ First-Name[0-1]
Key-Word[0-10] Origin[0-1]
Abstract[0-1]
id: Book-1D

Figure 7.10 - New attributes of AUTHOR. In fact, AUTHOR has no formal
identifier.

7.10 The current schema

It is a good time to close this lesson. Of course, the analysis is far from fi-
nished, but we will leave its completion to the next lesson. Before quitting, let
us just have alook to the current state of the schema (Figure 7.11).

7.11 Quitting the lesson

We save the current project through File / Save project under the name con -
cep-7 and we quit DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-18 Lesson 7: Conceptual Analysis (1)

reference
origi reference

O0-N 0-N

BOOK

Book-ID
Title AUTHOR

Publisher Name
Date-Published _O'Nl'N_ First-Name[0-1]
Key-Word[0-10] Origin[0-1]
Abstract[0-1]

id: Book-1D

O0-N

COPY
Serial-Number
Date-Acquired
Location

Store

Shelf

Row
Borrower[0-1]
Nbr-of-Volumes
State
State-Comment[0-1]
id: of BOOK

Serial-Number

Figure 7.11 - The final schema - First version.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-19

Technical addendum

In this lesson, we have been faced with the problem of replacing an attribute
with an entity type, particularly when a concept was represented with an attri-
bute, then happened to have more properties than earlier thought, or should be
linked with other concepts.

This replacement operation, called a transformation, is an important tool in
database engineering. It deserve to be discussed in more technical detail,
which is the aim of this addendum.

7.12 The attribute/entity type transformation

We will avoid a formal analysis of this technique. Rather, we will present
some important examples of application.

The reader is invited to learn from these examples the principles of the main
variants of the attribute/entity type transformation. Anyway, the DB-MAIN
tool itself will prove the best companion when you want to practice this tech-
nigue. So, try by yourself on your own examples.

The transformation that will be analyzed has an interesting property: it is se-
mantics-preserving, i.e., the resulting schema has exactly (no more, no less)
the same information contents as the source schema. One essential conse-
guence of thiseguivalenceisthat any semantics-preserving transformation has
an inverse with which we could transform the resulting schemainto the source
schema.

Though the attribute/entity type transformation is semantics-preserving, and
therefore can be read both way, the following examples have been prepared to
be interpreted from left to right. In other words, we present them as attribute
to entity-type transformations. Reading them from right to left gives interes-
ting hints on how to reduce an entity type into a mere attribute without | oss of
information.

Processing single-valued mandatory attributes

In thefirst examples, we transform asingle-valued, mandatory, attribute (NA -
ME) into an entity type. First, we apply the Value representation technique.
The entity type NAME represents a dictionary of all the names corresponding

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-20

Lesson 7: Conceptual Analysis (1)

to at least one person. Each name is represented once and only once. There-
lationship type of is one-to-many (Figure 7.12).

PERSON NAME
PID Name —1—N
Name id: Name
Maiden-Name[0-1] 1-|1
Chr-Name{[0-5] = PERSON
Address
Number PID
Street Maiden-Name[0-1]
Ci Chr-Name[0-5]
Ity Address
Pers-File-Nbr
- Number
id: PID Street
id":Pers-File-Nbr City
Pers-File-Nbr
id: PID
id":Pers-File-Nbr

Figure 7.12 - Extracting attribute Name as an entity type through Value repre-
sentation.

Then, we apply the Instance representation technique. Each NAME-OF -
PERS entity represents the NAME instance of one PERSON entity. Each name
can be represented more than once. The relationship type of is one-to-one,
and NAME - PERS has no identifier (in fact, PERSON is an implicit identifier
of it, since a person has only one NAME entity) (Figure 7.13).

Processing single-valued optional attributes

In the following example, we transform a single-valued, optional, attribute
(MAIDEN-NAME) into an entity type. We apply the Value representation
technique; experiment the other one by yourself. The discussion is the same
as for NAME, except that the attribute MAIDEN-NAME (left), and the rela-
tionship type of (right) both are optional (Figure 7.14).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-21

PERSON PERSON
PID PID
Name Maiden-Name[0-1]
Maiden-Name[0-1] Chr-Name[0-5]
Chr-Name{0-5] D Address
Address Number
Number Street
Street City
City Pers-File-Nbr
Pers-File-Nbr id: PID
id: PID id :Pers-File-Nbr
id':Pers-File-Nbr 1_|1
1-I1
NAME-OF-PERS
Name

Figure 7.13 - Extracting attribute Name as an entity type through Instance re-

presentation.
PERSON MAIDEN-NAME
PID Miaiden-Name —1-N
Name id: Maiden-Name
Maiden-Name[0-1] o1
Chr-Name[0-5] & PERSON
Address PID
Number Name
Street Chr-Name[0-5]
City) Address
Eers—Fllerr Number
!d: PID _ Street
id":Pers-File-Nbr City
Pers-File-Nbr
id: PID
id’:Pers-File-Nbr

Figure 7.14 - Extracting attribute Maiden-Name as an entity type through Va-
lue representation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-22

Lesson 7: Conceptual Analysis (1)

Processing multivalued attributes

L et usnow process amultivalued attribute (CHR-NAME [0-5]). First, weap-
ply the Value representation technique. The entity type CHR-NAME repre-
sents a dictionary of all the christian names corresponding to at least one
person. Each christian name is represented once and only once. The rela
tionship type of is many-to-many (Figure 7.15).

PERSON

PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number

Street

City
Pers-File-Nbr

id: PID
id":Pers-File-Nbr

CHR-NAME

Chr-Name —1-N
0-5

id: Chr-Name

1

— PERSON
PID
Name
Maiden-Name[0-1]
Address

Number

Street

City
Pers-File-Nbr
id: PID
id’:Pers-File-Nbr

Figure 7.15 - Extracting attribute Chr-Name as an entity type through Value
representation.

Then we apply the Instance representation technique. The entity type CHR -
NAME-OF - PERS does not represent a dictionary, but collects al the CHR -
NAME vauesof all the PERSON entities. There are asmany CHR -NAME - OF -
PERS with value "Marie" as there are persons with this christian name. The
relationship type of is one-to-many (Figure 7.16).

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-23

PERSON PERSON
PID PID
Name Name
Maiden-Name[0-1] Maiden-Name[0-1]
Chr-Name[0-5] = Address
Address Number
Number Street
Street City
City Pers-File-Nbr
Pers-File-Nbr id: PID
id: PID id’:Pers-File-Nbr
id":Pers-File-Nbr 015
1—|1
CHR-NAME-OF-PERS
Chr-Name
id: of. PERSON
Chr-Name

Figure 7.16 - Extracting attribute Chr-Name as an entity type through Instance
representation.

Processing compound attributes

When the attribute to process is compound, the transformation also proceeds
to its further decomposition, asit is the case for ADDRESS. In this example,
we have chosen the Value representation technique (Figure 7.17). Can you
guess what would have been the result with the Instance representation tech-
nique?

Processing identifier attributes

The next example concerns an attribute defined as an identifier of PERSON
(Pers-File-Nbr). Applying either technique (Value or Instance repre-
sentation) gives the same result (why?) (Figure 7.18). Observe that, in both
schemas, Pers-File-Nbr can beused to uniquely designate aPERSON en-
tity, either directly (Ieft) or indirectly (right).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-24

20/03/2002

Lesson 7: Conceptual Analysis (1)

PERSON

PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Address

Number

Street

City
Pers-File-Nbr

id: PID
id":Pers-File-Nbr

ADDRESS
Number
Street
el id: Number
Street 1-1
City '
PERSON
PID
Name
Maiden-Name[0-1]
Chr-Name[0-5]
Pers-File-Nbr
id: PID
id’:Pers-File-Nbr

Figure 7.17 - Extracting attribute Address as an entity type through Value re-

presentation.
PERSON PERSON
PID PID
Name Name
Maiden-Name[0-1] Maiden-Name[0-1]
Chr-Name[0-5] & Chr-Name[0-5]
Address Address
Number Number
Street Street
City City
Pers-File-Nbr id: PID
id: PID I
id’:Pers-File-Nbr 11
1-|1
PERS-FILE
Pers-File-Nbr
id: Pers-File-Nbr

Figure 7.18 - Extracting attribute Pers-File-Nbr as an entity type through Va-
lue or Instance representation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-25

Processing components of an identifier

Let us now examine how the transformation behaves when applied on a com-
ponent of an identifier (or of agroupin general). Intheexampleof Figure7.19
(Ieft), the identifier is made up of three components. Two of them are succes-
sively transformed into the entity types SUPPLIER and PRODUCT. Theiden-
tifier has been modified accordingly.

These three schemas conveys exactly the same semantics, though through dif-
ferent presentations.

SALES SUPPLIER SUPPLIER PRODUCT
Supplier Supplier Supplier Product
Product id: Supplier id: Supplier| [id: Product
Date 1IN I I
Qy & ' & W LN
id: Supplier
o
Date 1-1
I 1-1 1-1
SALES
Product Ba SALES
Date €
Qty Qty
id: by. SUPPLIER id: Ef";E%Et’IETR
Product D);t
Date €

Figure 7.19 - Evolution of an identifier when its components are transformed
into entity types.

Combined attribute transformations

The last example shows that combining several transformations can lead to
new techniques. Let us consider once again the coexistence constraint dis-
cussed in Lesson 6. To get a better feeling of what this constraint exactly
means, we gave an equivalent structure: an optional compound attribute, na-
mely Marriage. Now, let usapply the Atribute/Entity type transformation
to this compound attribute. We get a third schema (in fact two schemas, ac-
cording to the technique chosen), which is strictly equivalent to the first one.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-26 Lesson 7: Conceptual Analysis (1)

Therefore, we can consider anew transformation? which replaces a coexisten-
ce group by an entity type. It can beillustrated as follows:

PERSON PERSON
AD PID
Name Name 0'1
Spouse-Name{0-1] o idPID
Date-Married[0-1] 1_I1
id: PID
coex: Spouse-Name MARRIAGE
Date-Married SpouseNa_me
Date-Married

Figure 7.20 - Transformation of a coexistence constraint

2. In this composed transformation, we have chosen the Instance representation technique.
Can you justify this choice?

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1) 7-27

Summary of Lesson 7

In this lesson, we have studied no new notions.

However, we have learned how
- to build a conceptual schemaincrementally

- totransform an atomic attribute into a compound attribute by giving it a
first component New / Attribute / First att.

- totransform an attribute into an entity type

Transform / Attribute / -> Entity type
- totransform an entity type into an attribute

Transform / Entity type / -> Attribute

Exercises for Lesson 7

7.1 Consider thefollowing schema. Propose another equivalent schemain which
the coexistence constraint does not appear.

Note: the eraser cannot be considered a semantics-preserving transformation!

CUSTOMER
C-Nbr
ACCOUNT Name
Acc-Nbr —1—N0—1— Amount[0-1]
id: Acc-Nbr id: C-Nbr
coex: of ACCOUNT
Amount

7.2 You find the following schema a bit too complex. Therefore, you propose to
integrate CITY into CUSTOMER asan attribute. Try to do thisthrough the En-

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-28

7.3

74

Lesson 7: Conceptual Analysis (1)

tity type/Attribute transformation. Can you explain the behaviour of DB-
MAIN?

o CUSTOER
STz Nae —o-N—of >—11—{
& Hyrame id: C-Nbr

Suppose that, so far, the analysis has led to the following schema.

ORDER
Ord-Nbr
Ord-Date
Detail[1-10]

Pro-Nbr
id: Ord-Nbr

Add the constructs which represent these facts:

"For each detail of an order, we know the quantity ordered. The order is cha-
racterized by the id of its customer. Each product has a unit price, a name,
and a quantity on hand. Each customer has an id, a name, and an address.
In a given order, there are no two details specifying the same product”.

A first analysis has produced the following schema. We want to build simple
schemas only, i.e., schemas without compound attributes. Suggest an equiva-
lent schema which satisfies this constraint. First, use Attribute/Entity type
transformations only.

Then, try another solution by allowing also the disaggregation transformation
(Transform / Attribute / Disaggregation). Which do you prefer? Why?

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 7: Conceptual Analysis (1)

PRODUCT

Pro-Nbr
Description
Sales[1-100]
Date
Salesman
S-Name
Address
Street

City

id: Pro-Nbr

7-29

7.5 Your colleague thinks that these two schemas are equivalent. Do you agree

with her?
ADDRESS CUSTOMER
Number cITY CID
Street 1-1—@—1—N— City-Name Name
idinCITY m Address
Number 1o: Lity-Name Number
Street Street Supplier
T 9 City-Name Supplier
1-N id: CID id: Supplier
- [[
0-20 1-N
11
.
CUSTOMER o N
CID
Name Statistics
Statistics[0-20] Product
Supplier Date
gmd“d id: by.Supplier
_Date for. CUSTOMER
id:CID Product
Date

7.6 Consider the following schema. One claimsthat it is equivalent to those of Fi-
gure 7.19. True or false? You could be wise to explore the transformation

toolkit of DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

7-30 Lesson 7: Conceptual Analysis (1)

SALES

Date

SUPPLIER Oty PRODUCT
li 1-N 1-N Product

Supplier id: PRODUCT Frocu

id: Supplier SUPPLIER id: Product

Date

7.7 Let us go back to entity type copPY (Figure 7.11). We assume that attribute
Stateisoptiona, andthat State-Comment only existsif State hasava
lue. In other words, the valid patterns are the following:

-Stateisvoid and State-Comment iSvoid,

- State isnot void and State-Comment isvoid,

- Stateisnot void and State-Comment isnot void.

Modify the structure of entity type COPY to represent this property explicitly.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8

Conceptual Analysis (2)

Objective

Through this lesson, we will complete the analysis and design of
the conceptua schemawe initiated in Lesson 7. We will also go
on discussing the important Attribute/Entity type schema trans-
formation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-2 Lesson 8: Conceptual Analysis (2)

8.1 Starting Lesson 8

We start DB-MAIN and we open the project concept-7.1lun. We imme-
diately change the name of the project to Concept -8 and save it as con-
cept-8

8.2 The analysis

Let us remind the procedure followed so far: the text is decomposed into ele-
mentary sentences, each of them stating an elementary fact about the applica-
tion domain. If this fact seems to be new, it is introduced in the current
conceptual schemaas new constructs, or asamodification of some parts of the
schema.

8.3 The borrowers

(28) A copy can be borrowed, from a given date, by a borrower.

Analysis: so far, facts about the borrowings are represented by the optio-
nal attribute BORROWER of COPY. This sentence tell us more about
the fact that a copy was borrowed by a borrower: this fact occurred on
agiven date. Thisinformation isabout the action of borrowing itself,
so we should make this action explicit, for instance as a relationship
type
Being said in passing, have you observed that houns often are repre-
sented by entity types - or attributes - and verbs by relationship types?

Action: Since we know that borrowers borrow copies, we first represent
borrowers by an entity type (BORROWER), by transforming the attri-
bute Borrower into an entity type. We select this attribute, then we
execute command Transform / Attribute / -> Entity type. We give
the entity type the name BORROWER, and the attribute the name, say,
Borrower-ID. Therel-typewill be named borrowed.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-3
COPY COPY BORROWER

Serial-Number Serial-Number Borrower-1D
Date-Acquired Date-Acquired id: Borrower-1D
Location Location T

Store Store 1-N

Shelf Shelf

Row Row _O-l
Borrower[0-1] Nbr-of-Volumes
Nbr-of-Volumes State
State State-Comment[0-1]
State-Comment[0-1] id: of. BOOK
id: of. BOOK Serial-Number

Serial-Number

Figure 8.1 - Borrowers are explicitly represented by entity type BORROWER

Let us observe the cardinality [1-N] of BORROWER. It results from
the fact that the left-side schema does not allow representing bor-
rowers independently of their copies. Consequently, the right-hand
schema does not represent borrowers without copies [1-N] either.
The transformation normally ensures the strict equivalence of both left
and right side schemas, and cannot introduce new constructs or modi-
fy the properties of the source schema. However, we could find more
interesting to represent borrowers even when they currently borrow no
books. Therefore, we change the cardinality into [0-N1.

Now, at last, we can represent the borrowing date by adding the attri-
bute Borrow-Date to the rel-type borrowed (Figure 8.2)

(29) Borrowers are identified by a personal id.

Analysis: what we have called Borrower - ID, the identifying property
of borrowers, is nothing else than their pid.

Action: we change the name of attribute Borrower-ID into Pid (Fi-
gure 8.2).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-4

Lesson 8: Conceptual Analysis (2)

COPY
Serial-Number
Date-Acquired
Location

Store
Shelf borrowed BORROWER

—0-1 0-N— Pid
R -
ow Borrow-Date dPd

Nbr-of-V olumes
State
State-Comment[0-1]
id: of. BOOK
Serial-Number

Figure 8.2 - Recording the borrowing date.

(30) The library records the name, [. . . of each borrower]
Analysis: each borrower has a name.

Action: we add attribute Name to BORROWER.

(31) the first name,
Analysis: they each have afirst name as well.

Action: we add the attribute First -Name.

(32) the address
Analysis: ... and an address.
Action: we add the attribute Address.

(33) (name of the company, street, zip-code and city name),

Analysis: this address comprises the name of the company of the bor-
rower, the street name, as well as the zip-code and the city name.

Action: we make Address acompound attribute as follows. We open
the Attribute box of Address, and we click on the button First att.,
which opens the box of the first component of Address. We enter

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 85

the description of the attribute Company, then we click on Next att. to
add the other components. Street, Zip-Code and City.

(34) as well as the phone numbers of each borrower.

Analysis: aborrower can have several phone numbers. How many? The
text is vague on this, so that we could represent this fact by the attri-
bute Phone [0-N]. Onthe other hand we could try to precise thein-
formation by asking it to the clercks of thelibrary. A short phone call
inform us that:

- ... a borrower MUST have a phone number, otherwise we cannot
contact him when needed;

- and how many such numbers can they have?

- any number, but | don't remember any of them having more than
three or four.

- would you agree on a maximum of five?
- surel!
So: PHONE [1-5]!

Action: we add such an attribute (Figure 8.3).

BORROWER|
Pid
Name
First-Name
Address
Company
Street
Zip-Code
City
Phone[1-5]
id: Pid

Figure 8.3 - Representation of phone numbers.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-6 Lesson 8: Conceptual Analysis (2)

(35) In addition, when (s)he is absent, another borrower (who is responsi-
ble for the former) can be contacted instead.

Analysis: at first glance, this can be reworded as: each borrower can be
associated with another borrower (hisresponsible). Two questions:

1. can someone be responsible for more than one borrower?
2. has each borrower aresponsible?

We suggest that the answersare Y ES and NO respectively, but the se-
cond question deserves being discussed abit further. 1f each borrower
must have a responsible, then who will be the responsible of the first
borrower? Perhaps himself? Obviously not. According to the inten-
ded purpose, a responsible must be a different person. On the other
hand, the responsiblefor agiven borrower may be unknown at the pre-
sent time. Sowe must state that each borrower can have aresponsible.

Action: we declareacyclic, one-to-many relationship type named res -
ponsible-for. Ithasa [0-1] role named borrower (the bor-
rower) and a [0-N] role named responsible (the responsible).
Sincethefirst role has the same name as the entity type, we decide not
to name it explicitly (Figure 8.4).

responsible-for
responsible

0-1 0-N
/

BORROWER
Pid
Name
First-Name
Address
Company
Street
Zip-Code
City
Phone[1-5]
id: Pid

Figure 8.4 - Each borrower can be associated with another borrower, called
his responsible.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-7

8.4 Borrowings and projects

(36) A copy is borrowed on behalf of a project

Analysis: the information on the fact that a copy is borrowed is augmen-
ted by the project for which this copy has been borrowed.

Action: we add the attribute Project to the relationship type bor-
rowed (Figure 8.5).

Borrow-Date
Project

Figure 8.5 - Introducing Projects as an attribute of rel-type borrowed.

COPY 0-1 O-N BORROWER

(37) (identified by its title, ...

Analysis: each project has a hame, and all project names are distincts.
Thisinformation does not contradict the current schema: the values of
attribute Project are project titles.

Action: none

(38) ... but also by its internal code).

Analysis: now projects have several properties: they have names, they
have codes and they areinvolved in borrowed copies. Thisisabit too
much to keep them as mere attributes. 1t would be better to make them
entities, characterized by their names and their codes. 1n addition, na-
mes and codes identify the projects.

Action: thefirst thing to do isto transform attribute Project into an at-
tribute: we select Project, then execute the command Transform /
Attribute / -> Entity type. The attribute Project of entity type
PROJECT isrenamed as Tit 1le (Figure 8.6) and we add a second at-
tribute Pcode. We define two identifiers, one made of Title and
the other made of Pcode. We suppose that the code is the preferred
identifier, so we make it the primary id of PROJECT.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-8 Lesson 8: Conceptual Analysis (2)

COPY BORROWER|
Serial-Number Pid
Date-Acquired id: Pid
Location

Store ON

Shelf 01 borrowed

Row e Borrow-Date
Nbr-of-Volumes
State 1-N
State-Comment[0-1] PROJECT
id: of BOOK Title

Serial-Number id: Title

Figure 8.6 - Projects are represented through entity type PROJECT.

Thetransformation proposesthe cardinality [1-N] for therole PRO-
JECT (this fact will be discussed in the Addendum of this lesson).
However we could find it better to change it into [0-N7, allowing
projects to live without borrowings (Figure 8.7).

COPY BORROWER|
Serial-Number Pid
Date-Acquired id: Pid
Location

Store ON

and o

Row ‘
Nbr-of-Volumes
State O-N_|PROJECT
State-Comment[0-1] Pcode
id: of BOOK Title

Serial-Number id: Pcode
id' :Title

Figure 8.7 - Specifying the identifiers of PROJECT.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-9

8.5 Borrowing history

(39) When a copy is brought back to the desk, the employee records the
following information on this copy: the borrowing date, the current da-
te, the borrower and the project;

Analysis: this sentence suggests that when a copy is brought back, some
information isrecorded about the borrowing. The copy, the borrower,
the project and the borrowing date are known already. They arerepre-
sented through the rel-type borrowed. The new information is the
closing date,which is the current date.

Therefore, we could add the attribute End -Date toborrowed. This
attributeisoptional, sinceit has avalue for closed borrowings and has
no valuefor current borrowings. However, thisisnot sufficient. The
cardinality [0-1] of copPY states that a copy can be borrowed only
once at a given instant. If BORROWED now represents both current
and closed borrowings, then we must admit that a given copy can have
been borrowed more than once, in the past and currently, so that we
must generalize the cardinality of CoOpY to [0-N].

Unfortunately, this question of cardinality still is a bit more complex.
Indeed, we should add the following constraint: if the attribute END -
DATE of arelationship BORROWED hasno value, then thisrelationship
represents the fact that the copy is currently borrowed; this copy can-
not appear in ancther relationship with no End-Date value. This
constraint states that in the subset of the borrowed relationships
with no End-Date values, the cardinality of COPY isreducedto [0-
11. Notrealy that smple! More on this later on.

Action: we add the optional attribute End-Date to borrowing (Figu-
re 8.8) ... and we keep the complex constraint on the cardinality of
COPY in our head (we could better write it in the SEM description of
therole)!

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-10

Lesson 8: Conceptual Analysis (2)

CoPY BORROWER
Serial-Number Pid
Date-Acquired id: Pid
Location O-N

i
Shelf
Row —O0-N Borrow-Date
Nbr-of-Volumes End-Date{0-1]
State 0-N |PROJECT
State-Comment[0-1] Pcode
id: of BOOK Title
Serial-Number id: Pcode
id" :Title

Figure 8.8 - A copy can have one current borrowing (with no End-Date value)
but sveral closed boirrowings (with End-Date values).

(40) . . . then, the copy is put in a basket from which it is extracted at the

20/03/2002

end of the day to be stored in its location, so that it can be available
again from the following day on.

Analysis: in short, a copy cannot be borrowed the day it was brought

back. This property is not as simple as those we encountered so far.
It tells us about time constraints related to sequences of events. Nor-
mally, such properties would require a richer model, allowing the re-
presentation of events, and of time constraints. However, we could try
to expressit as follows:

a copy must be borrowed on a date which is later than the latest date
it has been brought back.

A possible translation could be: the Borrow-Date of the bor-
rowed relationship which concernsthe COPY entity ¢, and which has
no End-Date value(i.e., the current borrowing of C), must be greater
than the greatest value of End-Date of al the borrowed rela
tionships in which C appears (i.e., the closed borrowings of C).

From this constraint, several properties can beinferred. For instance:
al the borrowed relationships of agiven COPY entity have distinct
Borrow-Date (Or End-Date) values. This property is weaker

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-11

than itsorigin, but is easier to express. Indeed, it can be expressed as
an identifier of borrowed comprising COPY and Borrow-Date.

Due to the limited scope of this volume, we will prefer the latter for-
mul ation, despite the fact that it translates the true constraint only par-
tially, and should be considered a poor substitute for it.

Action: we declare this identifier of borrowed.

CoPY BORROWER
Serial-Number m i
Date-Acquired id: Pid

O0-N

Store

Borrow-Date
Nbr-of-Volumes
State Borrow-Date/ \ [PROJECT
State-Comment[0-1] Pcode
id: of BOOK Title
Serial-Number id: Pcode
id":Title

Figure 8.9 - Attempting to express the fact that copies can be borrowed only
the day after they were brought back.

Discussion

Thissolutionisworth being analysed abit further. Indeed, theborrowed re-
lationship type is submitted to several complex constraints. Most of this com-
plexity comes from the fact that this rel-type represents two kinds of
borrowings, namely the current borrowings and the closed borrowings. In ad-
dition, these two classes of concepts have different behaviours and usage pro-
files:

- current borrowings have a short life, they appear then disappear in a few

weeks, while closed borrowings live much longer;

- current borrowings are created and deleted, while closed borrowing are
created but never deleted;

- most current borrowings are consulted several times, while the closed bor-
rowings are used very unfrequently (if any);

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-12

- current borrowings are submitted to management functions, while the

Lesson 8: Conceptual Analysis (2)

closed borrowings are only used for statistical analysis;

- dfter a while, there are much more closed borrowings than current bor-

rowings.

All this suggests representing these two classes by two distinct relationship ty-
pes, one that represents the current borrowings, and the other representing the
closed borrowings. So, we go back to the former representation of current bor-
rowings (Figure 8.7), and we define a new relationship type, closed-bor-
rowing. To normalize the names, we give borrowed the new name

borrowing.

In this splitting, the complex identifier is associated with closed-bor-
rowing only. Thisweakens this constraint still more, but the result isfairly

easy to express (Figure 8.10).
BORROWER
COPY 0-N—{Pid

Seria-Number . \(i Pid
Date-Acquired 0-1 borrowing
Location Borrow-Date

Store O-N

Shelf

Row O-N
Nbr-of-Volumes § Borrow-Date PROJECT
gate . op | ON End-Date Pcode
State-Comment{0-1] i COPY 0-N— Title
id: Of-Ba?OK N Borrow-Date id: Pcode

Serial-Number id:Title

Figure 8.10 - Distinguishing current and closed borrowings.

8.6 The final schema

The schema can be considered as completed. It appearsasin Figure 8.11.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-13

origi reference
O-N O-N
AUTHOR
BOOK A -) Name
Book-id & w N Fir_st_—Name[O—l]
Title Origin[0-1]
Publisher
Date-Published
ﬁﬁ);\l:;tc[igoﬁo] responsible-for
id: Book-id 01 responsible
i O-N
on \
BORROWER
© m:
Name
First-Name
Lt Address
| 0-N Company
COPY Street
Serial-Number - Zip-code
) borrowing / "
1
EaIeAchI red 01 Borrow-Date City
ocation ON Phone[1-5]
Store id: Pid
Shelf
Row -
Nbr-of-Volumes O-N
State Borrow-Date PROJECT
State-Comment[0-1]] ~ O-N End-Date .
id: of.BOOK id: COPY O-N Title
Seria-Number Borrow-Date & Poode
id: Title

Figure 8.11 - The final schema.

We must verify that all the attributes have correct types and lengths. In addi-
tion, we should add to each object a description which can be represented by
a SEMantic description (button SEM in each property box). This material
could be made of excerpts from the text used to build the schema.

The textual extended version of the schema could appear in Figure 8.12.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-14

Lesson 8: Conceptual Analysis (2)

20/03/2002

Schema LIBRARY/Conceptual / LIB

AUTHOR / AUT [S]
Name char (30)

First-Name [0-1] char (30)

Origin[0-1] char (30) [S]
BOOK / BOOK [S]

Book-ID numeric (6)

Title char (30)
Publisher char (40)

Date-Published date (6)
Key-Word [0-10] char (30) [S]
Abstract [0-1] char (80) [S]
id: Book-ID

BORROWER / BER [S]

Pid char (6)

Name char (30)

First-Name char (30)

Address compound (124) [S]
Company char (40) [S]
Street char (40)
Zip-Code numeric (4)
City char (40)

Phone [1-5] numeric (10) [S]

id: PID
COPY / COPY [S]

Serial-Number numeric (6) [S]

Date-Acquired date (10)

Location compound (6) [S]
Store numeric (2)

Shelf numeric (2)

Row numeric (2)
Nbr-of-Volumes numeric (3) [S]
State char (10) [S]
State-Comment [0-1] char (80) [S]

id: of.BOOK, Ser-Number
PROJECT / PRO [S].

Pcode char (6)

Title char (30)

id: Pcode

id’: Title

[ST]

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2)

reference / REF [S] (

origin [0-N]: BOOK [S]

reference [0-N]: BOOK [S])
borrowing / BING [S] (

[0-1]: COPY

[0-N] : BORROWER

[0-N] : PROJECT

Borrow-Date date (6))
closed-borrowing / CLO [S] (

[0-N] : COPY
[0-N] : BORROWER
[0-N] : PROJECT

Borrow-Date date (6)

[s]

End-Date date (6) [S])

id: BORROW-DATE, COPY
of / OF [S] (

[0-N] : BOOK

[1-1]: COPY)

responsible / RESP [S] (
[0-1] : BORROWER [S]
responsible [0-N] :

written / WRIT [S] (
[1-N] : AUTHOR
[0-N] : BOOK)

BORROWER [S]

8-15

)

Figure 8.12 - The text expression of the final schema. The role clauses of en-
tity types have been removed for conciseness reasons.

8.7 Quitting the lesson

We save the current project under the name concept -8), and we quit DB-

MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

8-16

8.8

Lesson 8: Conceptual Analysis (2)

Technical addendum

Discussion on the attribute/entity type transformation
(continued)

In this lesson, we have used an extended version of the transformation dis-
cussed in lesson 7 that processes rel-type attributes as well. This version is
worth being described by some representative applications.

Let us start with the following schema, expressing that products are manufac-
tured for markets by companies according to specified ratios. For simplicity,
each entity type has an identifying attribute which has been given the name of
the entity type. In actual situations, these attributes would have other names.

PRODUCT
Product-1D
id: Product-1D

I
1-N

Company
1-N
|
MARKET

Market-Name
id: Market-Name

Figure 8.13 - A binary relationship type with attributes.

In the same way as we did with PROJECT in this lesson, we can extract the
COMPANY attribute to replace it by an equivalent entity type. We select this
attribute and we ask for its transformation into an entity type as usual.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-17

PRODUCT PRODUCT
Product-ID Product
id: Product-1D id: Product
1—|N 1-N

g;ri]:)pany idPRODUCT /- V] Mﬁ?goﬁqnan
MARKET - ~ompany
N 1N
|
MARKET MARKET
Market-Name Market
id: Market-Name id: Market

Figure 8.14 - Extracting an attribute to form as new role.

The resulting schema exhibit some interesting characteristics.

First, quite naturally, the attribute COMPANY has disappeared, and has been re-
placed by the entity type COMPANY.

Secondly, manufacture hasbe given athird role, and is now of degree 3.

Thirdly, manufacture has got an explicit identifier. Where does it come
from? In the left-side schema, MANUFACTURE has no declared identifiers.
Thismeansthat it hasadefault (i.e., undeclared) identifier made of al itsroles,
namely PRODUCT and MARKET (seeLesson 4). Theattribute Company isno
part of thisidentifier, otherwise it should have been declared explicitly. Asa
result of the transformation, the composition of the rel-type has changed, and
the identifier can no longer be considered implicit (the implicit id would com-
prise al the roles). Hence the declared identifier, making both schemas fully
equivalent.

Finally, we observethat the cardinality of thenew roleis [1-N], andnot [0 -
N] asit would bethought at first glance. DB-MAIN isright, and our first fee-
ling was wrong. Indeed, a [0-N] cardinaity would have meant that some
companies could exist without being involved in manufacturing products for
markets. Such a situation would be quite natural, but it cannot be represented

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-18 Lesson 8: Conceptual Analysis (2)

in theleft-side schema, in which companies can only be represented when they
appear inmanufacture relationships.

Now, let us practice the reverse transformation by reducing, say, entity type
MARKET to a mere attribute. We select the entity type MARKET, and we exe-
cute the command Transform / Entity type / -> Attribute. The evolution of
the identifier is worth being examined.

PRODUCT PRODUCT
Product Product
id: Product id: Product
1-N 1-‘N
= COMPANY <:> Ratio
Ratio
i 1-N+ Company Market
id: PRODUCT = e o
MARKET id: Company id:
Market
1-N =Y
MARKET COMPANY
Market Company
id: Market id: Company

Figure 8.15 - Reducing a role to an attribute.

Other equivalent versions of the source schema can be derived by the applica-
tion of these transformations.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-19

Summary of Lesson 8

In thislesson, we have encountered some interesting situations:

- complex time constraints, and how to get rid of them (thus degrading the
quality of the schema by tolerating weaker constraints);

- whentoreplace [1-N] cardinalities, resulting from reversible transfor-
mations, by more general cardinalities [0-NTJ;

- an entity type with two identifiers (PROJECT);
- arelationship type with an explicit identifier.

We have also gonein further detail about how

- to transform an attribute of a rel-type into an entity type, therefore in-
creasing the degree (number of roles) of the rel-type:

Transform / Attribute / -> Entity type

- totransform arole of arel-type into an attribute, therefore decreasing the
degree (number of roles) of the rel-type:

Transform / Entity-type / -> Attribute

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-20

Lesson 8: Conceptual Analysis (2)

Exercises for Lesson 8

8.1 Do you think that each of the following three schemas can be obtained
by transforming the schema of Figure 8.13?
COMPANY PRODUCT RATIO RATIO
Company Product Ratio Ratio
id: Company id: Product id: Ratio id: Ratio
N 1N 1N N

Ratio
id: MARKET
Product

manufacture

id: PRODUCT
MARKET

N 1-N 1-N N
MARKET MARKET COMPANY MARKET
Market Market Company Market
id: Market id: Market id: Company id: Market

Product
id: Product

8.2

ORM / Entity-relationship conversion

TheEntity-relationship (ER) model, together with all itsvariants, ispro-
bably the most widespread formalism to specify conceptual database
schemas. However, severa other models exist with the same purpose.
One of the most interesting of them is the Object-Role model, a variant
of the NIAM mode!, particularly suited to precise conceptual analysis®.
In this model, there are two kinds of objects, namely the lexical object
types (LOT) and the non lexical object types (NOLOT). A LOT repre-
sents a class of printable symbols (such as NAME, COLOUR, LENGTH)
while a NOLOT represents a class of abstract objects (CUSTOMER,
PRODUCTS, ADDRESS). A LOT and a NOLOT can be associated
through a naming bridge and two NOLOTSs can be associated through
an idea bridge. Each bridge is a binary relationship type (possibly N-

1. see Halpin,T., Conceptual Schema and Relational Database Design, Prentice-Hall, 1995,
ISBN 0-13-355702-2. Consult also http://www.inconcept.com.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 8: Conceptual Analysis (2) 8-21

ary for ideas in some models), with which some constraints are associa
ted: identifiers, totality, exclusiveness, etc. The bridges have no names,
but each role has a name which suggests the semantic link from therole
object type to the other object type(s).

The ORM graphical representation is quite specific, but it is possible to
mimic an ORM schema with Entity-relationship constructs. An ORM
schema can be represented as follows:

LOT A isrepresented by entity type A, which has oneidentifying at-
tribute named A too;

NOLOT E isrepresented by entity type named E, without attributes;

anaming bridge is represented by a binary rel-type between a LOT
entity type and aNOLOT entity type;

anideaisrepresented by arel-type between two or more NOLOT en-
tity types.

To make the schema more readlistic, we have left the rel-types unna-
med?, and given each role a meaningful name.

For instance, the following schemais the Entity-rel ationship expression
of an ORM schema®

PROYD | jenifies has
Poib | <O
id: Pro-ID
of iscalled has price of PRICE
N 1 11 O_l-N_fg_'ﬁice
sold to i
NAME 0-N
Name <>
id: Name
buys
0-N
identifi h I a host ADDRESY
identifies as name_["- " OMIER ives OSIS_ | es
1-1 1-1 1-1 1I-N |
id: Address

2. The DB-MAIN tool has a special feature for this: any object name can include the symbol
"I", in which case this symbol as well as the following characters are not displayed.

3. To highlight some objects in a schema, such as PRODUCT and CUSTOMER, select them
then click on the button Mark in the Standard tool bar.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

8-22

8.3

Lesson 8: Conceptual Analysis (2)

The ER expression of an ORM schema offers the following characteris-
tics:

- the rel-types have no attributes,

- some entity types (NOLOT) have no attributes,

- al the other entity types (LOT) have one attribute, which isitsidenti-
fier, and which has the same name as its entity type.

Question: What is the source ER schema which the above ORM-like
schema is an expression of ? Rebuild the source ER schema through
schema transformations.

Transform the following schemainto an ORM-like schema. Use sche-
matransformations (you could need some operators currently lackingin
the tool: could you suggest some new schema transformations?).

CUSTOMER
C-ID
Name
Address
Street
City
Phone[1-5] O-N
1d:C-1D VENDOR
PID
id: CUSTOMER o-N—| Name
VENDOR Address
MACHINE Street
MACHINE] N Date City
M-Code
Type
id: M-Code

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9

Logical Design

Objective

This (long) lesson discusses how a conceptual schema can be
transformed into relational structures. Such atranslationiscalled
Logical design. 1t also defines the concept of SQL-compliant
schema, i.e., a schema whose constructs can be explicitly and di-
rectly expressed into SQL structures. Some new powerful rela-
tionship type transformations are presented.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-2 Lesson 9: Logical Design (1)

9.1 Starting Lesson 9

We start DB-MAIN and we open the project concept -8 in which we have
built the conceptual schemaof our case study. We change the name of the pro-
ject nameinto Logical-9 and wesaveitaslogical-9.

9.2 Logical design

All along lessons 7 and 8, we have carefully built the conceptual schema of a
small library. Thisschemaisareal piece of art which deserves being admired
much longer than we did so far. However, it isan abstract piece of art. Being
said more practically, it does not work! Feeding a DBM St with the * . 1un
expression of this schemais useless. DBMS only understand SQL texts (or
any other similar material), and are therefore not overly impressed by our per-
formance in the previous lessons.

Our objective now is alittle clearer: it is to trandlate this conceptual schema
into the equivalent SQL text. Let us examine in some detail the idea before
developing this translation process.

Asserting that our schemaisniceisnot (only) an aesthetic claim. 1t meansthat
the schema expresses correctly, and in an elegant way, al the meaning inclu-
ded in the starting text (and more generally in any information source we could
have used), and nothing else. Specialists say that this schema formalizes the
user's requirements oOf the future database. This property is more generally
caled correctness: the conceptual schema is correct if it expresses all the
user's requirements.

The concept of equivalent SQL text isanimportant onetoo. Itimpliesthat this
text is an operational expression® of all the specificationsincluded in the con-
ceptual schema, and nothing more.

1. A DBMSisaDatabase Management System. ORACLE, SYBASE, DB2 and SQL-Server
arerelational DBMS which understand some diaect of the SQL language. Non-relational
DBMS do exist as well. IMS, IDMS, DATACOM/DB, TOTAL or IMAGE are such
DBMS, generally used as the data engine of legacy systems. Even plain programming lan-
guages offer data management systems, generally called File Management Systems. \When
we do not want to distinguish these categories, we talk about Data Management Systems,
or DMS.

2. l.e., an expression which can be operated or processed by a software.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-3

Y ou could probably think that we are a bit fussy about this problem. Indeed,
producing the SQL text of a conceptual schemais not that complicated: it suf-
ficesto execute the Transform / Quick SQL command (seeLesson 1). Right,
but such a procedure wouldn't tell us anything on exactly how the resulting
SQL structures have been obtained. Knowing thisisimportant to understand
a not-so-elementary translation process, in such away that we can control it
more effectively when needed, that is, when coping with more complex data-
bases. The automatic Quick SQL procedure is basically an unsophisticated
way to get arather naive relational database. It is not a bad procedure, but
should we consider additional requirements such as space or execution time
minimization, the schema resulting from this oversimplistic translation would
most probably be highly unsatisfactory, whatever the tuning effort you carry
out afterwards. However, producing efficient database structuresisacomplex
task that is clearly beyond the scope of this introductory volume.

Inthislesson, and in Lessons 10 and 11, we will learn how to get a correct re-
lational database structure which is equivalent to a conceptual schema. We
will proceed in two steps. Through thefirst one, called logical design, we will
obtain alogical schema, i.e., a schema representing tables, columns, primary
and foreign keys, aswell asother constraints. The second step, called physical
design, will augment the logical schema with physical specifications such as
index and files, therefore producing the physical schema, and will generate the
corresponding SQL text.

This process can be sketched asin Figure 9.1.

In Lesson 9, 10 and 11, we will study how to perform the logical design of a
database. We will propose a simple procedure only, similar to those carried
out by the Transform / Quick SQL and Transform / Relational model, but
that will give us an clear understanding of how thefinal result will be obtained.
Lesson 12 will cope with physical design and SQL generation.

9.3 The concept of Relational Logical Schema

A Entity-relationship schema can be called SQL-compliant if each of its com-
ponents can be directly and explicitly represented by arelational object in a
one-to-oneway. Such aschemawill also becalled arelational logical schema.

For instance, the entity type COMPANY can be represented by the table coM -
PANY, the attribute Com-Address can be represented by the column Com-

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-4 Lesson 9: Logical Design (1)

Address, the reference attribute Pro-ID can be represented by declaring
Pro-1ID aforeign key, etc.

conceptual schema

LOGICAL DESIGN

logical schema

PHYSICAL DESIGN

v

Figure 9.1 - The 2-step process that transforms a conceptual schema into a
SQL schema.

On the contrary, a relationship type, a multivalued attribute, or a supertype/
subtype structure have no direct representation in the relational model, and
should not appear in any so-called relational logical schema. 1n short, a 8-year
old child should be able to trandate any relational logical schema in SQL-
DDL without particular effort. For instance, the schema of Figure 9.2, bor-
rowed from Lesson 3, is SQL-compliant.

COMPANY MANUFACTURES PRODUCT
Com-1D Com-1D Pro-ID
Com-Name Pro-ID Pro-Name
Com-Address id: Pro-1ID id: Pro-ID
Com-Revenue Com-ID f
id: Com-ID ref: Pro-1D

N ref: Com-I1D

Figure 9.2 - A SQL-compliant schema made up of tables, columns, primary
and foreign keys.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-5

Indeed, it describes 3 tables, 8 columns, 3 primary keysand 2 foreign keys. Its
SQL trandation isimmediate and does not require any particular skill:

create database Manufacturing;

create table COMPANY (
Com-ID char(15) not null,
Com-Name char (25) not null,
Com-Address char (50) not null,
Com-Revenue numeric(12) not null,
primary key (Com-ID)) ;

create table PRODUCT (
Pro-ID char(8) not null,
Pro-Name char (25) not null,
primary key (Pro-ID)) ;

create table MANUFACTURES (
Com-ID char(15) not null,
Pro-ID char(8) not null,
primary key (Pro-ID,Com-ID),
foreign key (Com-ID) references COMPANY
foreign key (Pro-ID) references PRODUCT) ;

The concept of SQL-compliant schema

What is exactly a SQL-compliant schema? According to the definition pro-
posed hereabove, it can be grossly defined as follows:

A SQL-compliant schema comprises only:

- entity types

- single-valued and atomic attributes
- identifiers

- reference attributes

In other words;

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-6 Lesson 9: Logical Design (1)

A SQL-compliant schemadoes not comprise:

- IS-A relations

- relationship types

- compound attributes
- multivalued attributes

Theinterpretation of a SQL-compliant schemainto SQL conceptsisimmedia
te, and can be summarized by the following translation table;

DB-MAIN objects SQL objects
entity type table

attribute column

primary identifier primary key
secondary identifier unique constraint
reference attribute(s) foreign key

Of course, thistable is not complete, but it is quite sufficient to tackle the lo-
gical design process.

9.4 Transformational approach to Logical design

Obviously enough, the hard job is not to translate SQL -compliant structuresin
SQL (remember, an 8-year old kid job), but to derive the logical schemafrom
the conceptual schema, i.e., to transform the conceptual schemainto an SQL-
compliant schema.

For instance, the logical design aims at transforming in a systematic way the
well known conceptual schema of Figure 9.3 into the SQL-compliant logical
schema of Figure 9.4.

In this example, the trandation is not particularly painful, but we can imagine
that processing actual conceptual schemas, including alot of compound, mul-

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-7

tivalued attributes, and of N-ary rel-types, could be somewhat more complex,
and deserves more devel opment.

COMPANY
Com-1D PRODUCT
Com-Name | - | Pro-1D
Com-Address 0 NMO N Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 9.3 - A small conceptual schema ...

COMPANY MANUFACTURES PRODUCT
Com-ID Com-ID Pro-1D
Com-Name Pro-1D Pro-Name
Com-Address id: Pro-ID id: Pro-1ID
Com-Revenue Com-ID f
id: Com-ID ref: Pro-1D

x ref: Com-1D

Figure 9.4 - . . . and its logical relational equivalent.

To help usin thistranglation process, we will use very powerful tools, namely
schema transformations. We are already fairly acquainted with some of the-
seoperators. For instance, we know how to disaggregate compound attributes,
or how to replace an attribute by an equivalent entity type, and conversely.
However, thisbasic set isnot sufficient. We need more techniquesto carry out
the logical design of areal database. Nevertheless we can already consider
that the logical design can be considered as applying selected schematransfor-
mations on the source conceptual schema until it becomes fully SQL-com-
pliant.

Two magjor questions arise:

1. what transformations do we need?

2. inwhat order must we apply these transformations to process any concep-
tual schema?

The first question will be addressed in Lessons 9 and 10, while the second
question will be discussed in Lesson 11.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-8 Lesson 9: Logical Design (1)

9.5 Dealing with one-to-many relationship types

Let us consider this elementary structure through the schema of Figure 9.5.

DEPARTMENT
Dpt-Num

O-N— Name
Address

1-1 id: Dpt-Num
I

EMPLOYEE

Emp-Num

Name

id: Emp-Num

Figure 9.5 - A one-to-many relationship type.

The entity types and all the attributes are SQL-compliant and can be represen-
ted by tables and columns. There is only one invalid construct, namely the
works in relationship type.

Representing a one-to-many rel-type isfairly easy: we add to EMPLOYEE the
reference attribute Dpt - Num towardsDEPARTMENT. Inthisway, onecanre-
trieve the department an employee works in, and one can retrieve al the em-
ployees who work in a given department.

So we get the fully SQL-compliant logical schema of Figure 9.6.

DEPARTMENT
Dpt-Num
Name
Address
EMPLOYEE id: Dpt-Num
Emp-Num
Name
Dpt-Num
id: Emp-Num
ref: Dpt-Num

Figure 9.6 - Expressing a one-to-many relationship type through a foreign
key.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

In fact, the latter schema can be obtained automatically, through a specific
schema transf ormation which replaces each one-to-many rel-type by reference
attributes. We select the rel-type works in, and we execute the command

Transform / Rel-type / -> Attribute.

So, we are provided with atool which can process al the one-to-many rel-ty-
pes of our schemas. Let ustry it on another example. We consider the con-

ceptual schema of Figure 9.7.

CUSTOMER
CNum

Name
Address

id: CNum

O-N

ONum
1'1_ Date

By transforming places, detail of and specifies, we get the logica

ORDER

id: ONum

0-N

Figure 9.7 - A more comprehensive schema including one-to-many rel-types.

schema of Figure 9.8.

DETAIL

Qty

id: detail of. ORDER
specifies PRODUCT

PRODUCT

PNum
Name
Price

id: PNum

CUSTOMER ORDER DETAIL PRODUCT
CNum ONum PNum PNum
Name Date ONum Name
Address CNum Qty Price
id: CNum id: ONum id: ONum id: PNum
ﬂ\ ref: CNum \ PNum
ref: ONum
ref: PNum
Figure 9.8 - . . . and its relational expression.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

9-10

These transformations show how the role components of the identifier of en-
tity type DETAIL have been replaced by reference attributes (or foreign keys)

ONum and PNum.

Thistransformation is quite able to process one-to-one rel-typesaswell, asil-

lustrated in the schema of Figure 9.9.

Lesson 9: Logical Design (1)

ﬁ:EDRSON FILE
- File-Number
Name —0-11-1— Date

Address I BleNumber
id: PID 1d- Fieum

Figure 9.9 - A one-to-one relationship type.

... which is thoroughly transformed as in Figure 9.10.

Figure 9.10 - Expressing a one-to-one relationship type through an identifying

foreign key.

PERSON FILE
PID File-Number
Name PID
Address Date
id: PID id: File-Number
\ id': PID
ref

We can make three observations:

1

id.

theforeign key PID of FILE isan identifier aswell; indeed, there can be
only one file per person, and therefore only one file per PID value. This
identifier have been considered secondary since there already is a primary

the foreign key has been added to FILE, and not to PERSON, otherwise,
the foreign key would have been optional, a situation designers do not like
too much; DB-MAIN knows this, and has chosen to add the foreign key
tothe[1-1] side. But what about bi-optional rel-types, both roles of which

areoptional? Let usjust try it (Figure 9.11).

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-11

9.6

iFDRSON FILE
o File-Number
Name —0-10-1— D e
Address - -
0 PID id: File-Number,
PERSON FILE
PID File-Number
Name PID[0-1]
Address Date
id: PID id: File-Number
\ id': PID
ref

Figure 9.11 - Expressing an bi-optional rel-type.

Since there are two [0-1] roles, DB-MAIN is forced to make the foreign key
optional, whether you choose to assign it to the table PERSON or to the table
FILE.

Just like al the transformations studied so far, thisone hasan inverse (seeLes-

son 6). Y ou can experiment this fact easily by recovering the origin schema:

1. select the foreign key by clicking on its group (not on the attribute it com-
prisest),

2. execute Transform / Group / -> Rel-type, call the new rel-type of.

Processing many-to-many relationship types

Y ou probably think we have a straighforward solution to get rid of such rel-
types:. translating them into atable with two foreign keys, just in the way ma -
nufactures was processed at the beginning of thislesson. Yesand no!

Y es, this could be a nice solution, but we will not adopt it. We will prefer an
indirect, but more genera procedure through which the rel-type will first be
transformed into an entity type + 2 one-to-many rel-types.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-12 Lesson 9: Logical Design (1)

Let us apply such atransformation on manufactures (Figure 9.12).

COMPANY

Com-1D PRODUCT
Com-Name Pro-1D
Com-Address _O'O'N_ Pro-Name
Com-Revenue id: Pro-ID
id: Com-ID

Figure 9.12 - A many-to-many relationship type.

We select thisrel-type, then we execute Transform / Rel-type / -> Entity ty-
pe. Theresultis shown in Figure 9.13.

COMPANY

Com-ID

Com-Name PRODUCT

Com-Address Pro-ID

Com-Revenue Pro-Name

id: Com-1D id: Pro-ID
O-IN O-IN

MANUFACTURES
{ MAN_COM >-1-1-{7d MAN_COM .COMPANY|—1-1—< MAN_PRO

MAN_PRO.PRODUCT

Figure 9.13 - Entity type equivalent of a many-to-many rel-type.

The rel-type has disappeared, and has been replaced by an entity type. The
identifier of MANUFACTURES is worth being examined. In the source sche-
ma, there cannot be more than one relationship between a given company and
a given product. Therefore, according to the resulting schema, there cannot
exist more than one MANUFACTURES entity depending on the same COMPA -
NY and the same PRODUCT. Hencetheidentifier.

Now, let us consider how we could further transform this schemainto a pure
SQL-compliant version. Thetask isnow easy: it sufficesto apply the Rel-type
to Reference attribute transformation we just studied in this lesson. We get,
quite naturally the schema of Figure 9.14.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-13

COMPANY PRODUCT
%gm_:\?me MANUFACTURES 7&8—:\|Dame
Com-Address Pro-ID id: Pro-ID
Com-Revenue Com-ID
id: Com-1D id: Com-ID
\ Pro-ID
ref: Com-1D
ref: Pro-ID

Figure 9.14 - The SQL-compliant expression of a many-to-many rel-type.

Why do we proceed in two steps? First, as we have proved it, this does not
prevent us to reduce many-to-many rel-types into pure relational structures
easily. Then, the Rel-type to entity type transformation can be used in many
other situations, for instance when building a conceptual schema®. Fi naly,
this transformation admits an interesting inverse operator: transforming arel-

type into an entity type. Y OU can exercise it easily on the previous example.

9.7 Transforming complex relationship types

Thistransformation is more general than suggested in the previous section. In
fact, it can be used to transform any rel-type into an equivalent entity type. For
instance, it can be applied on:

- N-ary rel-types (with degree greater than 2),

- rel-types with attributes (N-ary, binary),

- one-to-many rel-types,

- one-to-one rel-types,

- cyclic rel-types.

To get an idea of these applications, we will transform an excerpt of the sche-

ma developed in Lesson 4, which includes a complex entity type which has 3
roles, an attribute and an explicit identifier! (Figure 9.15).

3. Forinstance, if afact currently is represented by arel-type, and a statement suggeststo link
it to an existing entity type, this rel-type should first be transformed into an entity type.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-14 Lesson 9: Logical Design (1)

MARKET
Name
Size
id: Name
I
O-N
BRANCH id: PRODUCT
Com-1D 0- BRANCH 0-N_| PRODUCT
Country [~ Pro-ID
Name Pro-Name
id: Com-1D id: Pro-ID
Country

Figure 9.15 - A complex 3-ary relationship type.

It can be transformed into the schema of Figure 9.16, which can, if needed, be
further transformed into SQL-compliant structures.

BRANCH
Com-1D
Country MARKET PRODUCT
Name Name Pro-ID
id: Com-ID Size Pro-Name
Country id: Name id: Pro-1D
O-N O-N O-N
1-1 1;1 1-1
manufactures
Ratio
id: mp.PRODUCT
mb.BRANCH

Figure 9.16 - Transformation of a complex 3-ary rel-type into an entity type.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-15

9.8 Logical design, at last!

We will apply all this new knowledge on our conceptual schema. Of course,
we lack some techniques, for instance to process multivalued attributes. But
we know enough to reduce all the rel-types, which is afirst movein the good
direction.

First of all, we create a new schema by copying the conceptual schema. We
select the latter, then we ask Product / Copy product. Wegiveit the version
name Logical. The project windows now contains the hierarchy of Figure
9.17.

LIBRARY /Conceptual

LIBRARY/Logical

Figure 9.17 - The logical schema derives from the conceptual schema.

We open this logical schema (which so far is a mere copy of the conceptual
schema), in order to transform it into atrue SQL logical schema.

Processing the one-to-many rel-types

Let ustackle the easy problemsfirst, namely the one-ro-many rel-types. The
most visibleisrel-type of between BOOK and COPY, which can be processed
asin Figure9.18.

The next one, responsible, isabit specia: it isacyclic rel-type. Never-
theless, the transformation works as usual: it includesin BORROWER aforeign
key to the target entity type, that is, BORROWER itself (Figure 9.19).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-16

Lesson 9: Logical Design (1)

BOOK BOOK
Book-id Book-id
Title Title
Publisher Publisher
Date-Published Date-Published
Keyword[0-10] Keyword[0-10]
Abstract[0-1] Abstract[0-1]
id: Book-id 'id: Book-id |
: et
O-N
1-1 COPY
L Book-id
Copy Serial-Number
Serial-Number Date-Acquired
Date-Acquired Location
Location Store
Store Shelf
Shelf Row
Row Nbr-of-Volumes
Nbr-of-Volumes State
State State-Comment[0-1]
State-Comment[0-1] id: Book-id
id: of. BOOK Serial-Number
Serial-Number ref: Book-id

Figure 9.18 - Processing of the one-to-many rel-type of.

Processing the many-to-many rel-types

We can now address the other rel-types. We suggest to transform the many-
to-many rel-typesfirst.

reference isacyclic many-to-many rel-type. Itisfirst transformed into an
entity type and two one-to-many rel-types asillustrated in Figure 9.20.

Then, these new rel-types are reduced to foreign keys (Figure 9.21).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9-17

\

BORROWER

Pid

Name

First-Name

Address
Company
Street
Zip-code
City

Phone[1-5]

id: Pid

responsible-for
responsible

0-1

0-N

BORROWER

Pid
Name
First-Name
Address
Company
Street
Zip-code
City
Phone[1-5]
Responsible[0-1]

E id: Pid
ref: Responsible

Figure 9.19 - Processing of the cyclic one-to-many rel-type responsible-

for.

reference
id: origin.BOOK
origin reference reference. BOOK
O-N O-N .
1-1 1-1
BOOK = :—'ﬂ/ , <—‘j
- origin reference
Book-id | |
Title O-N BOOK 0-N
Publisher Book-id
Date-Published Title
Keyword[0-10] Publisher
Abstract[0-1] Date-Published
id: Book-id Keyword[0-10]
Abstract[0-1]
id: Book-id
Figure 9.20 - Reducing a cyclic many-to-many rel-type - Step 1.
DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-18 Lesson 9: Logical Design (1)

reference reference
id: origin.BOOK Reference
reference.BOOK Origin
. id: Origin
11 11 & Ref?arence
;L ref: Origin
< OI’I?II’] > < refe:ence> o Ref?arence
oN BOOK o-N
Book-id BOOK
Title Book-id
Publisher Title
Date-Published Publisher
Keyword[0-10] Date-Published
Abstract[0-1] Keyword[0-10]
id: Book-id Abstract[0-1]
id: Book-id

Figure 9.21 - Reducing a cyclic many-to-many rel-type - Step 2.

Then we transform the many-to-many rel-type written. Wefirst replace it
by an entity type (Figure 9.22). Therel-types may have strange names, but we
do not care, because they are to be replaced.

Replacing wri_ BOO is no problem. It istransformed into aforeign key (Fi-
gure 9.23).

However, when we ask DB-MAIN to transform wri AUT in sameway, it re-
fuses!! "the referenced entity type must have an all-attribute identifier" it
says. Unfortunately, itisright: wri AUT cannot bereplaced by aforeign key
if AUTHOR has no (primary) identifier.

To get rid of this rel-type, we have no other means but adding an identifier to
AUTHOR. DB-MAIN knows this problem, and if we have no imagination, it
can help us by adding to this entity type a technical identifier. Let ustry this:
we execute the command Transform / Entity type / Add Tech ID (we can
change the default name, type and length of this new attribute). Theresultis
in Figure 9.24.

AUTHOR isready to bereferenced by aforeign key. Sowe ask again thetrans-
formation of WRI_AUT, which now succeeds (Figure 9.25).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9-19

BOOK
Book-id
Tide AUTHOR
Publisher Name
ete Publshed [N itien >—1-N— First-Name{0-1]
Keyword[0-10] Origin[0-1]
Abstract[0-1]
id: Book-id
BOOK

Book-id

Title AUTHOR

Publisher N_ame

Date-Published First-Name{0-1]

Keyword[0-10] Origin[0-1]

Abstract[0-1]

id: Book-id

I
0-N 1-N
1-1 1-1
written
id: wri_AUT.AUTHOR
wri_BOO.BOOK

Figure 9.22 - Reducing the many-to-many rel-type written - Step 1.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

9-20

Lesson 9: Logical Design (1)

BOOK

Book-id

Title

Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]

id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]
I
&
1-1
written
Book-id
id: wri_ AUT.AUTHOR
Book-id
ref: Book-id

Figure 9.23 - Reducing the many-to-many rel-type written - Step 2.

BOOK

Book-id

Title

Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]

id: Book-id

AUTHOR

ID_Aut

Name
First-Name[0-1]
Origin[0-1]

id: ID_Aut

T
1-N

11

written

Book-id

Book-id
ref: Book-id

id: wri_AUT.AUTHOR

Figure 9.24 - wri AUT can only be reduced when AUTHOR is given an iden-

tifier.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9-21

BOOK AUTHOR
Book-id ID_Aut
Title Name
Publisher First-Name[0-1]
Date-Published : Origin[0-1]

written
Keyword[0-10] D Aut id: ID_Aut
Abstract[0-1] Book-id
id: Book-id mAut
Book-id
ref: Book-id
equ: ID_Aut

Figure 9.25 - The complete SQL-compliant expression of rel-type written.

Note the special form of the foreign key (ID_Aut) to AUTHOR: it has been
specified as equ, and not as ref. This means that each ID Aut value in
written mustbean ID Aut valuein AUTHOR, and conversely (hence the
name equality). This constraint has been described in Lesson 5, but now, we
can relate it to itsorigin: the [1-N] cardinality of the former rel-type WRIT-
TEN.

Processing the N-ary rel-types

Let usnow processthe two N-ary rel-types. Thefirst oneisborrowing (Fi-
gure 9.26).

borrowing isfirst transformed into an entity type (Figure 9.27).

Notethat bor COP iSone-to-one, dueto the [0-1] cardinality of theroleit de-
rives from.

Asusual, observing the identifiersis an infinite source of intellectual joy. In
this case the surprising fact is the absence of identifier of entity type bor-
rowing. Doesit mean that this entity typeissimilar to AUTHOR. Not quite.
In fact, this entity type has a sort of implicit identifier, which is COPY itself.
Indeed, since bor COP is one-to-one, if you designate a COPY entity, you
cannot get more than one associated borrowing entity.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-22

Lesson 9: Logical Design (1)

BORROWER
Pid
Name
First-Name
COPY Address
Book-1d Company
Serial-Number Street
Date-Acquired ON Zip-code
Location g Phcn)é[l .
onel 1-
?hoéi 01 borrowing id Pid
Row Borrow-Date
Nbr-of-Volumes
State O-N
State-Comment[0-1] PROJECT
id: Book-Id Pcode
Serial-Number Title
id: Pcode
id": Title
Figure 9.26 - The complex rel-type borrowing.

COPY BORROWER
Book-Id Pid
Serial-Number Name
Date-Acquired First-Name
Location Address

Store Company
Shelf Street
Row Zip-code
Nbr-of-Volumes City
State Phone[1-5]
State-Comment[0-1] id: Pid
id: Book-Id
Serial-Number PROJECT
Pcode
O-N——Title

I
0-1
bor_COP
1-

—

O-N
bor_BOR
1-1

|

borrowing
Borrow-Date

id: Pcode
bor_PRO id': Title
I
1-1

/

Figure 9.27 - Reducing the complex rel-type borrowing - Step 1.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-23

Reducing each rel-type to aforeign key gives usthe result of Figure 9.28. We
observe that the identifier of borrowing has been made explicit: (Book-
ID, Serial-Number) isboth aforeign key and an identifier.

CoPY BORROWER
Book-Id Pid
Serial-Number Name
Date-Acquired First-Name
Location Address

Store Company
Shelf borrowing %re_itode
Row Book-Id Ci?
Nbr-of-Volumes Serial-Number Phong[l-S]
State Borrow-Date T
State-Comment[0-1] Pid id: Pid
id: Book-ld Pcode
Serial-Number \ id: Book-Id PROJECT
Serial-Number Pcode
ref Title
ref: Pid id: Pcode
ref: Pcode / id': Title

Figure 9.28 - Reducing the complex rel-type borrowing - Step 2.

The same procedure can be applied to closed-borrowing (Figure 9.29)
It leads to the scenario of Figure 9.30 and Figure 9.31.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-24 Lesson 9: Logical Design (1)

BORROWER
Pid
Name
First-Name
COPY Address
Book-Id Company
Serial-Number Street
Date-Acquired 0-N"| Zip-code
Location City
Store Phone[1-5]
Shelf —O0-N id: Pid
Row id: COPY
Nbr-of-Volumes Borrow-Date o-N |PROJECT
State ™~
Pcode
State-Comment[0-1] Title
id: Book-1d —
Serial-Number :g : ?ﬁe

Figure 9.29 - The complex rel-type closed-borrowing.

COPY BORROWER
Book-Id Pid
Serial-Number Name
Date-Acquired First-Name
Location Address

Store Company
Shelf Street
Row Zip-code
Nbr-of-Volumes City
State Phone[1-5]
State-Comment[0-1] id: Pid
id: Book-1d

O0-N
T
O-N lo_BOR Peode
o Tite
!
1-1\

clo_PRO id': Title
closed-borrowing

Borrow-Date 11

End-Date

id: clo_COP.COPY
Borrow-Date

Figure 9.30 - Reducing the complex rel-type closed-borrowing - Step 1.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9.9

9-25

COPY

Book-Id
Serial-Number
Date-Acquired
Location

Store

Shelf

Row
Nbr-of-Volumes
State
State-Comment[0-1]

id: Book-Id
Serial-Number

N

BORROWER
Pid
Name
closed-borrowing First-Name
Book-Id Address
Serial-Number Company
Borrow-Date Street
End-Date Zip-code
Pid City
Pcode Phone[1-5]
id: Book-Id id: Pid
Serial-Number —
Borrow-Date PROJECT
ref: Book-1d Pcode
Serial-Number Title
ref: Pid /{>id: Pcode
ref: Pcode id': Title

Quitting the lesson

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Figure 9.31 - Reducing the complex rel-type closed-borrowing - Step 2.

If everything worked correctly, there is no rel-types any more. Our schema
should look like that of Figure 9.32.

Of course, this schemais not fully SQL-compliant yet. For instance, it inclu-
des compound and multivalued attributes which should be further processed.
But it's late now, and we should better leave this task to another lesson.

We save the current project under the name 1ogical-9.1un and we quit
DB-MAIN.

20/03/2002

9-26 Lesson 9: Logical Design (1)

LIBRARY/Logica

reference AUTHOR
reference D Aut
M . written Name
id: origin D Aut First-Name[0-1]
ref_er_ence Book-id Origin[0-1]
ref: origin d 1D Aut id: ID_Aut
ref:referenceq\ Book-id
ref: Book-id
BOOK equ: ID_Aut
Book-id
Title -
Publisher borrowing BORROWER
Date-Published M Pid
Keyword[0-10] W Name
A bstract[q- 1] H(()jrrow- € First-Name
1&> id: Book-id Poode Address
- - Company
id: Book-id
_COPY Serial-Number et
Book-id ref Zl_p-c e
Seria-Number ref: Pid Clty

Date-Acquired) Phone[1-5]
Location ref: Peode Responsible[0-1]
Store id: Pid
Shelf closed-borrowing ref: Responsible
Row Book-id
Nbr-of-Volumes Serial-Number
State Borrow-Date
State-Comment[0-1] End-Date ;F:Q%JECT
id: Book-id Pid code
Serial-Number Pcode Tlﬂe
ref: Book-id id: Book-id !d,: Pcode
Serial-Number id': Title
Borrow-Date
ref: Book-id
Serial-Number
ref: Pid
ref: Pcode

Figure 9.32 - The final schema - First version.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-27

Technical addenda

9.10 On the rel-type/entity type transformation

This transformation is an important step torwards fully relational schemas. It
can be used in many other contexts too, such as conceptual design, schemaop-
timization or logical design of other kinds of databases such as object-oriented
databases and standard files for instance.

It also induces an interesting property on the equivalence of schemas. There
have been (and still are) warm discussions on the best representation of some
conceptsor facts. should they be represented by relationship typesor by entity
types? The answer often is; don't care, because both representations are pro-
ven to be equivalent, and therefore are both valid. For instance, the schemas
of Figure 9.33 are dtrictly equivalent, and choosing one of them is not worth
being disputed very long®.

| CUSTOM ER| | PRODUCT | | CUSTOMER | | PRODUCT |
| = on on
11 11
order

id: ord CUS.CUSTOMER
ord_PRO.PRODUCT

Figure 9.33 - The fact that customers order products can be represented by
a rel-type as well as by an entity type.

Anyway, this transformation needs some additional discussion on how the se-
mantics of the rel-type can be propagated to its equivalent entity type.

First of dl, if we consider the populations of the entity types (i.e., sets of enti-
ties) and of the rel-types (i.e., sets of relationships®), we have to understand

4. Asamatter of fact, both can be trand ated into the same SQL representation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-28 Lesson 9: Logical Design (1)

that each order relationship in the left-side schemais represented by an OR -
DER entity in the right-side schema. Moreover, we aso have to observe that
each role in the left-side schema is transformed into a one-to-many (or some-
times one-to-one) rel-typein the right-side schema.

Thisbeing said, we will precise alittle hit the three basic propagation rules of
this transformation (Figure 9.34).

1. Cardinality propagation
For each (Ieft) role r (with cardinality [i-j]) in rel-typeR, thereisanew (ri-

ght) rel-type r with cardinalities ([i-j],[1-1]); thisruleisillustrated by the
pattern of Figure 9.34.

[a] [e] [c] LAl Le] [c]
iA-jA iB-jB iCjC e

o GIRON

id:rA.A
rB.B
rC.C

Figure 9.34 - Pattern of rel-type/entity type transformation.

2. Attribute propagation

The attributes of (left) rel-type R are associated with (right) entity type R;
thisrule is illustrated by the transformation of the 3-ary rel-type manu-
facture in Figure 9.16.

3. Identifier propagation

The identifiers of (left) rel-type R are translated for (right) entity type R:
each role is replaced with the corresponding role of the new rel-type, and

5. A relationship can be visualized as an arc between the related entities.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-29

each attribute is kept unchanged; this rule isillustrated by the transforma:
tion of the 3-ary rel-type manufacture in Figure 9.30.

To make sure we have understood this rather theoretical material, we will exa-
mine some representative applications.

Thefirst oneisthe transformation of a 3-ary rel-type with non standard cardi-
nalities. Observations: propagation of the cardinalities; DETAIL has no ex-
plicit identifiers, but has an implicit one (which one?).

|ORDER| |MACHINE| |SUPPLIER| |ORDER| |MACHINE| |SUPPLIER|
T

T T
1-20 1-1 O-N 1-20 1-1 O-N

@ | | |
<det_ORD <det_|;/IAC> <det_SUP>

1-1 11 1-1

Figure 9.35 - lllustration of cardinality propagation.

The second application concerns a mere one-to-one rel-type (Figure 9.36).
Observations: propagation of the cardinalities, which leadsto two one-to-one
rel-types; of hasno explicit identifiers, hasit an implicit one? How many im-
plicit identifiersin fact?

PERSON FILE PERSON FILE
PID File-Num PID File-Num
Name Date (:) Name Date
id: PID id: File-Num id: PID id: File-Num
01 01
1-1 has 1-1
L |

Figure 9.36 - Expressing a one-to-one rel-type as an entity type.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-30 Lesson 9: Logical Design (1)

The third example is about cyclic rel-types (Figure 9.37). Observations: the
cyclic structure has disappeared; composed-of has got an explicit identi-
fier.

g

PART PART
0-N 0-N

compound component &
11 11

composed-of

I

composed-of
id: component. PART
compound.PART

Figure 9.37 - Developping a cyclic rel-type into an entity type.

And the last one concerns one-to-many rel-types with attributes (Figure 9.38).
Observations: propagation of the cardinalities, which generates a one-to-one
rel-type; works-in hasno explicit identifier; hasit an implicit one?

DEPARTMENT EMPLOYEE |DEPARTM ENT| |EM PLOYEE|
T T
ON 1-1 e ON 1
m
11 11
works-in
Date-Hired

Figure 9.38 - Transforming a one-to-one rel-type with attributes
Reverse transformation: entity type into rel-type

Asmost transformation techniques we can use, thisoneisreversible. It means
that when we encounter an entity type satisfying definite conditions, we can

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-31

transform it (or ask DB-MAIN to do it for us) into an entity type. We can call
it the Entity type to Rel-type transformation.

What are these conditions on the entity type?

The first obvious condition is that it must take at least two roles. But it is not
sufficient; for instance, these roles must be [1-1]. To be more precise, the en-
tity type, say E, must satisfy each of the following conditions:

1. Eplaysat least two roles; reason: do try with only one!

2. the cardinalities of these roles must be [1-1]; reason: each E entity must be
linked to one and only one entity of the each other sides; in the same way
the (future) corresponding relationship will be made of one and only one
entity of each kind;

3. al these roles belong to distinct rel-types; reason: otherwise one of the
rel-type would be cyclic, and it would be a bit difficult to replace it by a
role!

4. E has (at least) an implicit or an explicit identifier; reason: any two rela
tionships of the same type are distinct, and cannot be made of the same
entities and attribute values. Remember that any one-to-one rel-type
makes an explicit identifier for each of its entity types.

9.11 On the rel-type/reference attribute transformation

This transformation is at the core of the logical design process for relationa
databases. Intheversion used inthislesson, thistransformation generates sin-
gle-valued foreign keys only. Asyou probably have observed, it can copewith
multivalued foreign keysaswell. Since such an extension would be uselessto
produce relational schemas®, it will not be discussed in thislesson. However,
the reverse transformation will address such structures, since they could be
found in actual traditional data structuresto be reverse engineered (recovering
aconceptual schemafrom alogical schema).

With thisrestriction in mind, the conditions arel-type R must satisfy to be re-
placed with aforeign key are easy to state. Let R be defined between entity
types B and A.

1. R is one-to-many, Or one-to-one; more precisely, the role of B is[0-1] or

6. On the contrary, it will be most useful to generate COBOL file structures or Object-orien-
ted structures.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-32 Lesson 9: Logical Design (1)

[1-1];

2. the other role (played by 2) should be [0-1], [1-1], [0-N] or [1-N]; itscar-
dinality can be different, but it will be considered [O-N] if itis[0-J], with J
>1,andas[1-N] ifitis[I-J], with1 >0and J> 1, and therefore translated
incompletely”;

3. A has at least one identifier; if one of them is primary, it must comprise
attributes only; otherwise, there must exist at least one identifier made of
attributes only.

Idedlly, the foreign key of B should be a copy of aprimary identifier of 2, but
the DB-MAIN tool can cope with more severe situations, where only secon-
dary ids are available.

We will sketch the main variants of this transformation on a common fra-
mework (relations between persons andfiles), presented with different seman-
tics.

The first situation concerns files which may describe persons (Figure 9.39).
Thisis the most common case.

PERSON FILE PERSON FILE
PID File-Num PID File-Num
Name Date & [Name Date
id: PID id: File-Num File-Num id: File-Num
id: PID /
ref: File-Num
1-1 has 0-N

Figure 9.39 - Expressing a standard one-to-many rel-type as a foreign key.

Then we suppose that some persons are not described in any file. Theforeign
key becomes optional (Figure 9.40).

7. this means that, in such cases, the transformation is not fully semantics-preserving. Note
however that DB-MAIN stores the non standard cardinality of the rolein the description of
the foreign key (see Figure 9.45, where this point is discussed). A more sophisticated SQL
generator can therefore trand ate this cardinality into validation procedures.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-33

If afile cannot describe more than one person, the foreign key becomes an
identifier aswell (Figure 9.41).

PERSON FILE PERSON FILE
PID File-Num PID File-Num
Name Date & [Name Date
id: PID id: File-Num File-Num[0-1] id: File-Num
id: PID /D
ref: File-Num
0-1 has O-N

Figure 9.40 - Expressing an optional one-to-many rel-type as an optional fo-

reign key.

PERSON FILE PERSON FILE

PID File-Num PID File-Num

Name Date & [Name Date

id: PID id: File-Num File-Num id: File-Num
id: PID
id :FiIeNum/

1-1 has 0-1 ref

Figure 9.41 - Expressing a one-to-one rel-type as an identifying foreign key.

PERSON FILE PERSON FILE
PID File-Num PID File-Num
Name Date & [Name Date
id: PID id: File-Num File-Num id: File-Num
id: PID /
equ: File-Num
1-1 has 1-N

Figure 9.42 - Expressing a bi-mandatory one-to-many rel-type as an equ fo-
reign key.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-34 Lesson 9: Logical Design (1)

Now, let us suppose that each file describes at |east one person. Thereferential
constraint induced by the foreign key is complemented with an additiona in-
clusion constraint, leading to an equality constraint (Figure 9.42).

If both roles are [1-1], the foreign key can be included in either side (Figure

9.43).

PERSON FILE PERSON FILE

PID File-Num PID File-Num

Name Date & Name Date

id: PID id: File-Num File-Num id: File-Num
id: PID /
id’:File-Num

1-1 has 11 equ

Figure 9.43 - Expressing a bi-mandatory one-to-one rel-type as an identifying
equ foreign key.

Now, there are situations where the transformation, at least as it is generally
implemented in CASE tools, does not preserve all the semantics of the source
schema. That is the case for non standard values of the cardinalities®. Let us
suppose that a file describes up to 20 persons (Figure 9.44)

PERSON FILE PERSON FILE
PID File-Num PID File-Num
Name Date & |Name Date
id: PID id: File-Num File-Num id: File-Num
id: PID /
| ref: File-Num
1-1 has 0-20

Figure 9.44 - Expression of a rel-type with non standard cardinalities. A loss
of semantics may occur if the SQL generator does not produce the code that
enforces this cardinality (through a trigger mechanism for instance).

8. l.e, other than [0-1], [1-1], [0-N], [1-N].

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9-35

The cardinality [0-20] has been approximated by the more standard value [O-
N]. Inthe same way [5-10] would have been transformed as if it were [1-N].
To prevent from this loss of semantics, the description of the foreign key now
includes the exact cardinality (Figure 9.45). Generating the SQL code that en-
forces this constraint is up to the programmer or to the generator.

Group Properties

E xamine/modify the properties of a group of the entity tupe

‘ M ame IFKhas Length '||
Functions - - /Eardinalit_l,l
) Briman| r EDEHiSFEHCE M Yoz 2l (|| Min. ID_:l
 Secondany |D [T Exclusive e Mo IED_:I
I_ Ab-leazt-one I_ Access key : 2

Figure 9.45 - The lost cardinality is stored in the description of the foreign key.

Let us now consider the situations where the referenced identifier is made up
of severd attributes. As expected, the foreign key is made of as many compo-
nents as there are attributes in the identifier (Figure 9.46).

EXPENSE

Date
Amount

1-1

from

BUDGET

EXPENSE

BUDGET

Nature
Year
Amount

id: Nature
Year

Date
Amount
Nature
Y ear

Nature
Year
Amount

[
0-N

ref: Nature
Year

_/‘D

id: Nature
Year

Figure 9.46 - A multi-component identifier in the target entity type induces a
multi-component foreign key.

The transformation is more delicate if an expense can be made independently
of abudget. Inthiscase, the from rel-typeisoptional for EXPENSE, and the

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

9-36

Lesson 9: Logical Design (1)

foreign key must be optional as well. However, this optionality implies two
properties:

- each component is optional (cardinality [0-1]),

- al the components form a coexistence group (Figure 9.47).

The latter constraint isimportant. Indeed, discarding it would allow an EX -
PENSE entity to have a value for Nature, and not for Year, a situation
which cannot be represented in the | eft-side schema.

BUDGET EXPENSE BUDGET
EXPENSE Nature Date Nature
Date Year Amount Year
Amount Amount <:> Nature[0-1] Amount
id: Nature Year[0-1] id: Nature
Year ref: Nature / Year
T Year
0-1 from O-N coex

Figure 9.47 - An optional multi-component foreign key must be accompanied
by a coexistence constraint.

Reverse transformation: foreign key into rel-type

Asusudl, this transformation can be interpreted the reverse way, as the trans-
formation of a foreign key into a rel-type. All the situations presented in this
addendum can be read from right to left. In other words, if a situation descri-
bed in the right-hand side of one of these figures is encountered, it can be re-
placed by the corresponding schema in the left-hand side. For instance, the
schema of Figure 9.48 can be interpreted as that of Figure 9.49.

EMPLOY EE DEPARTMENT
Emp-Num Dpt-Num

Name Name

Dpt-Num Address

id: Emp-Num id: Dpt-Num

ref: Dpt-Num —/D

Figure 9.48 - An observed foreign key . . .

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-37

EMPLOYEE DEPARTMENT
Emp-Num Dpt-Num
Name Name
id: Emp-Num Address
‘ id: Dpt-Num
Figure 9.49 - . . . and its rel-type interpretation.

To carry out this transformation, we select the foreign key (through its group,
not its attribute), then we execute the command Transform / Group / -> Rel-
type.

Such transformations will be of primeimportancein reverse engineering acti-
vities (see the book dedicated to this process).

Multivalued foreign keys

However, the DB-MAIN tool can address more complex foreign keys, such as
those which can be encountered in, say, COBOL file structures. We will pre-
sent an important extension, namely multivalued foreign keys.

A multivalued foreign key can reference more than one target entity. It is
transformed into a many-to-many rel-type (Figure 9.50).

ORDER PRODUCT PRODUCT
Ord-Num P-Num ORDER P-Num
Date Description = Ord-Num Description
Item[0-10] Price Date Price
id: Ord-Num id: P-Num id: Ord-Num id: P-Num
ref: Item[*] 7 |

0- |ZI.OO-N

Figure 9.50 - A non identifying multivalued foreign key is interpreted as a
many-to-many rel-type.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-38

Lesson 9: Logical Design (1)

... Or into aone-to-many rel-type if the foreign key isan idenfier aswell (Fi-
gure 9.51). DB-MAIN can interpret multivalued foreign keys, but it can also
generate them, though this function generally is of little interest for building
relational databases.

CLIENT ACCOUNT ACCOUNT
C-Num Acc-Num CLIENT Acc-Num
Name Type & C-Num Type
Account[0-5] Amount Name Amount
id: C-Num id: Acc-Num id: C-Num id: Acc-Num
id":Account[*] / | |

Figure 9.51 - An identifying multivalued foreign key is interpreted as a one-to-
many rel-type.

9.12 On the technical ID transformation

We have been faced with a situation in which transforming a one-to-many rel-
type was impossible due to the absence of identifier. We then used a specific
transformation which, when applied to an entity type,

1. adds atechnical attribute, and
2. makesit the primary identifier.

As it is now usua with transformations, this technigue can have other useful
applications. Let usexamine itstwo main variants.

Thefirst oneintroducesaprimary identifier into an entity type which hasnone
so far (Figure 9.52).

The second variant introduces a technical identifier into an entity type which
aready has one. In the example below, we suppose that { Nature,Year} is
too complex, or too long, an identifier to be used as an identifier for BUDGET.
For instance, this entity type should be referenced by alarge number of foreign
keys, leading to an important waste of space and poor performance. Introdu-
cing ashort, meaningless, identifier will certainly help. Thisnew attribute be-
comes the primary identifier, while the former one is given the secondary
status (Figure 9.53).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1)

9-39

JOURNEY
Date
Departure
Arrival
Weather

JOURNEY

1D_Journey
Date

Departure
Arrival
Westher

id: ID_Journey

Figure 9.52 - Adding a technical identifier to an unidentified entity type.

BUDGET
Nature
Year
Amount
id: Nature

Y ear

BUDGET

1D_Budget
Nature

Y ear
Amount

id: ID_Budget
id’:Nature
Year

Figure 9.53 - Substiting a short technical identifier for a complex identifier.

The property of semantics preservation or reversibility is worth a comment.
Indeed, as opposed to the other transformations encountered so far, this one
does not replace one structure with another structure: it just adds some new

structure.

Isit reversible? Yesindeed. The new structure bears absolutely no semantics
(hence the term technical id). Therefore, introducing or removing it does not
change the semantic content of the schemain any way. The transformation is

trividly reversible.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

9-40 Lesson 9: Logical Design (1)
Summary of Lesson 9

¢ |n thislesson, we have studied new notions:
- logical design;
- SQL-compliant schema;
- schemaequivalence;

¢ We have aso learnt how

- an Entity-relationship schema, called SQL -compliant, can represent rela-
tional database structures

- to transform arel-type into an entity type:
Transform / Rel-type / -> Entity type

- to transform an entity typeinto arel-type:
Transform / Entity-type / -> Rel-type

- totransform arel-type into reference attributes (foreign key):
Transform / Rel-type / -> Attributes

- to transform reference attributes (foreign key) into arel-type:
Transform / Group / -> Rel-type

- to add atechnical identifier to an entity type:
Transform / Entity type / Add Tech ID

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-41

9.1

9.2

Exercises for Lesson 9

To represent the concepts underlying the sentence "each order referen-
ces one or several products, each in a given quantity ...", adesigner has
chosen to propose the following schema:

Later on, he hasto augment this schema by including the fact that " s/i-

pments are made of one or several referenced products ... ".

First, he proposes the solution below, obtained by adding athird role to
therel-type:

Mgy o PRovuCT]
ORDERI—1-N— 0-N—{ PRODUCT

I
O0-N

SHIPMENT

But finally, he does not feel quite satisfied and rejectsit. He s right.
Why? What correct solution could you propose?

Propose an SQL-compliant schema for the following conceptual sche-
ma according to three procedures:

1. Enter thislogical schema manually (a bit tedious but very instructi-
vel)

2. Build it by applying selected transformations to the conceptual sche-
ma.

3. Ask thetool to do thisjob for you by Transform / Relational model.
Compare the three solutions. Can you explain the differences?

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-42 Lesson 9: Logical Design (1)

COMPANY
Com-1D
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
Loca
- MARKET
id: Com-ID
id":Com-Name Larne
Com-Address Sze
T id: Name
o i
epleced Slbstitte
i o1 o
L id: PRODUCT
BRANCH _oN BRANCH o-N. |PRODUCT
Country Pro-ID
Name Pro-Name
id: belongs. COMPANY id: Pro-1D
Country

9.3 Propose an SQL logical database structure for the following conceptual
schema.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 9: Logical Design (1) 9-43

CUSTOMER
C-Num
Name
N Address N~

id: C-Num

O0-N

1-1 1-1
| 1
VEHICLE CONTRACT
Rea-Num Ctr-Num
| 4 . |Type
e G
4 Reo-Num id: signed. CUSTOMER
) Ctr-Num
ACCIDENT
Acc-Num
on———imvaved >—oN—Date
Amount[0-1]
id: Acc-Num

9.4 Retrievein asystematic way the conceptual schemaof this SQL logica
schema (this problem is related to Reverse engineering).

DEPARTMEN II

SERVICE
Dep-Name S-Name
Manager[0-1] Function
id: Dep-Name Dep-Name
id": Manager id: S-Name
r ref equ: Dep-Name
EMPLOYEE WORKS-IN PROJECT
Emp-Num P-Code P-Code
Name Emp-Num P-Name
S-Name id: P-Code S-Name
t>{id: Emp-Num Emp-Num id: P-Code
ref: S-Name ref: Emp-Num ref: S-Name
ref: P-Code

9.5 Retrievein asystematic way the most concise conceptual schemaof this
SQL logical schema.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

9-44 Lesson 9: Logical Design (1)

CUSTOMER ORDER DETAIL PRODUCT
C-Num O-Num Det-ID P-Num
Name Date Qty Description
id: C-Num id: O-Num id: Det-1D id: P-Num
PLACE HAS-DET REFERENCE

O-Num Det-1D Det-1D

C-Num O-Num P-Num

id: O-Num id: Det-1D id: Det-1D

equ equ equ
ref: C-Num equ: O-Num ref: P-Num

9.6 Inthe Addendum of Lesson 8, we met the schemabelow (left). A desi-
gner proposes the schema on the right, claiming that it is equivalent to
the former. What do you think of this.

PRODUCT MANUFACTURE
Product-ID Product-1D
id: Product-1D Market-Name
I Company
1-N @ Ratio
id: Product-ID
Market-Name

Company
Ratio
1-N
I
MARKET

Market-Name
id: Market-Name

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10

Logical Design (2)

Objective
We will complete the logical design of the LIBRARY database

by processing compound and multivalued attributes. Then, we
will discuss these transformations in greater detail.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-2 Lesson 10: Logical Modeling (2)

10.1 Starting Lesson 10

We start DB-MAIN and we open the project logical-9.lun which now
includes the conceptual schemaof the databasein project, aswell asafirst ver-
sion of the logical schema, called LIBRARY/Logical. Wesaveitaslo-
gical-10, theversion on which we will work in this lesson.

10.2 What to do next?

We opentheschemaLIBRARY/Logical, and weexamineit very carefully.
Doesit look like an SQL-compliant logical schema? Let usrecall the main ru-
les defining such schemas:

An SQL-compliant schema comprises only:

- entity types

- single-valued and atomic attributes
- identifiers

- reference attributes

Thanks to the processing of Lesson 9, it has no relationship types any longer.
All of them have been replaced by new entity types and by reference attributes
(foreign keys). However, it still includesinvalid attributes:

- Keyword (from BOOK) is multivalued,

- Location (from COPY) is compound,

- Address (from BORROWER) iS compound,
- Phone (from BORROWER) is multivalued.

We will first tackle the compound attributes, then process the multivalued at-
tributes.

10.3 Transforming the compound attributes

In lesson 6, when discussing the coexistence constraint, we examined a trans-
formation (Group / Aggregation) which makes a compound attribute from a

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-3

group of individual attributes. We a so mentioned another transformation, cal-
led Disaggregation, whose aim was precisely to undo the effect of the former,
i.e., to replace a compound attribute with its components. We got it by the
command Transform / Attribute / Disaggregation. That is just what we
need here.

We select the attribute Locat ion of COPY, and we execute this command.
We then are asked what prefix we want to give to the names of the compo-
nents. Thetool proposesthe prefix Loc , which isthe short name of the com-
pound attribute, if any, or thefirst three characters of the name of this attribute.
We can changeit, or even deleteit. We choose to accept the proposed prefix,
and we click on button OK. The entity type CcOPY istransformed asin Figure

10.1.

COPY COPY
Book-id Book-id
Serial-Number Serial-Number
Date-Acquired Date-Acquired
Location Loc_Store

Store Loc_Shelf

Shelf = Loc_Row

Row Nbr-of-Volumes
Nbr-of-Volumes State
State State-Comment[0-1]
State-Comment[0-1] id Bookad
id: Book-id Serial-Number

Serial-Number . .

ref- Book-id ref: Book-id

Figure 10.1 - Disaggregating the compound attribute Location.

Carefully choosing the prefix allows reminding the origin of these attributes.
It is not aformal way to do so, but can be useful in many situations’.

Processing the attribute Address of BORROWER follows the same procedure
(Figure 10.2).

1. We will study in another volume how DB-MAIN can remember all the operations it has
been asked to execute. The journaling functions, available through the Log menu, allows
the recording and the replaying of selected operations.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-4

Lesson 10: Logical Modeling (2)

BORROWER BORROWER
Pid Pid
Name Name
First-Name First-Name
Address Add_Company
Company Add_Street
Street Add_Zip-code
Zip-code Add_City
City Phone[1-5]
Phone[1-5] Responsiblef0-1]
Responsiblef0-1] id: Pid
E id: Pid ref: Responsible
ref: Responsible

Figure 10.2 - Disaggregating the compound attribute Address.

10.4 Transforming the multivalued attributes

We have aready processed multivalued attributes by replacing them with
equivalent entity types. Remember: when we analyzed the concept of copy of
book inlesson 7, wefirst represented it by the multivalued attribute Serial -

Number of BOOK. Then, when we learned more about copies, we decided to
represent them by a specific entity type. This entity type was derived from the
attribute Serial -Number by transforming it into the entity type COPY. For
this purpose, we used the transformation Transform / Attribute / -> Entity
type.

This transformation produces a new entity type, which is quite SQL-com-
pliant, but also a rel-type, which is not at all SQL-compliant! However, rel-
types are no longer a problem for us, since we can get rid of any kind of rel-
type, aswe exercised it in lesson 9.

So, let us proceed as suggested: we select Keyword in BOOK, and we execute
Transform / Attribute / -> Entity type. Now we are facing a puzzling ques-
tion: do we prefer the Instance representation or the Value representation ver-
sions? We have discussed the differences between them, but you sure have
forgottenit. Don’t worry, this agood opportunity to have adeeper look at this
important question.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-5

First we choose the Instance representation procedure. Theresultisshownin

Figure 10.3.
BOOK BOOK
Book-id Book-id
Title Title
Publisher PN Publisher fO-lO
Date-Published Date-Published
Egywor?%o-ﬁol Abstract[0-1] 1"1
stract| O- id i
id: Book-id 'd: Book-id Keyword
Keyword
id: BOO_Key.BOOK
Keyword

Figure 10.3 - Extracting the attribute Keyword as a new entity type through
the Instance representation technique.

Wethen transform therel-type BOO_Key into aforeign key asin Figure 10.4.

BOOK BOOK

Book-id Book-id

Title Title

Publisher fO-lO & | Publisher

Date-Published Date-Published

Abstract[0-1] 11 Abstract[0-1] Keyword

- - \ — . Book-id

id: Book-id Keyword id: Book-id Keyword
Keyword id: Book-id
id: BOO_Key.BOOK Keyword

Keyword ref: Book-id

Figure 10.4 - Reducing the rel-type BOO Key into a foreign key.

We must however be aware of a semantic loss which isinduced by thistrans-
formation. Indeed, as discussed in the addenda of Lesson 9, this transforma-
tion does not trandate completely non standard cardindities. As a
conseguence, the cardinality [0-10] of BOOK has been trandlated as if it were
[O-N]. If thislimit is essential, then we can use the advanced SQL generator

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-6 Lesson 10: Logical Modeling (2)

of DB-MAIN that can generate triggers or check predicates to validate this
kind of constraint in real timeif needed. To keep the discussion as simple as
possible, we will ignore this processor in this volume.

It isinteresting to observe what would happen should we have chosen the other
variant of the transformation, i.e., value representation. Let ustry itin Figure

10.5.
BOOK BOOK
Book-id Book-id
Title & |Title Keyword
Publisher Publisher Keyword
Date-Published Date-Published id: Keyword
Keyword[0-10] Abstract[0-1]
Abstract[0-1] id: Book-id
id: Book-id ‘

Figure 10.5 - Extracting the attribute Keyword as a new entity type through
the Value representation technique.

Now, therel-type BOO Key iSmany-to-many. AsinLesson 9, we transform
it into an entity type (Figure 10.6).

BOOK BOOK
Book-id Book-id
Title Keyword Title Keyword
Publisher Keyword & Publisher Keyword
Date-Published id: Keyword Date-Published id: Keyword
Abstract[0-1] Abstract[0-1] ‘
id: Book-id id: Book-id 1-N
‘ O-iO
BOO_Key
1-1id: b.BOOK —1-1
k.Keyword

Figure 10.6 - Transforming the rel-type BOO_Key into an entity type.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-7

Then we reduce each resulting one-to-many rel-typeinto aforeign key (Figure
10.7).

BOOK BOOK
Book-id Book-id
Title Keyword Title Keyword
Publisher Keyword Publisher Keyword
Date-Published id: Keyword Date-Published| |id: Keyword
Abstract[0-1] ‘ o Abstract[0-1]
id: Book-id 1-N id: Book-id

T
0-10 BOO_Key

@ Book-id
Keyword

_ BOO_Key id: Book-id

1-1—id:b.BOOK 1-1 Keyword

k-Keyword equ: Keyword
ref: Book-id

Figure 10.7 - Net result of extracting the attribute Keyword through the Value
representation technique.

Now, how can we compare these solutions? Let us call them respectively the
Instance solution (Figure 10.4) and Value solution (Figure 10.7).

A first observation isthat the Value solution proposes two additional entity ty-
peswhilethe Instance solution proposesoneonly. Thereforethelatter will ge-
nerate fewer SQL tables.

A second observation is that they are equivalent, i.e., they convey exactly the
same semantics. Any situation in the application domain (the library) which
can be represented by one of them can be represented by the other aswell. In-
deed, both solution derives from the same source schema, through semantics-
preserving transformati ons?. In the Addendum, we will prove this equivalen-
cein another way. To allow an easier comparison, we will present both solu-
tion side by side and change the namesin such away that aname has the same
meaning in both schemas:

2.

It is not quite true of course, because we have lost cardinality 10. However, since this pro-
perty has been lost in both solutions, they still are equivalent.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-8

Lesson 10: Logical Modeling (2)

BOOK BOOK
Book-id Book-id
Title Title KEYWORD
Publisher Publisher Keyword
Date-Published Date-Published | |id: Keyword
Abstract[0-1] Abstract[0-1]
id: Book-id id: Book-id
KW-of-BOOK KW-0of-BOOK
Book-id Book-id
Keyword Keyword
id: Book-id id: Book-id
Keyword Keyword
ref: Book-id equ: Keyword
ref: Book-id

Figure 10.8 - Comparing both Instance (left) and Value (right) solutions.

Now, it is clear that the entity type KEYWORD represents the dictionary of all
thedistinct values of keywordsinthelibrary. Thisexplicit representation was
not required in the conceptual schema, and we will not give it a particular in-
terest. Therefore, sincewe have no other criteria, wewill choose the most eco-
nomical proposdl, i.e., the Instance solution.

The procedure to use to express the second multivalued attribute, Phone of
BORROWER, will be exactly the same. To avoid confusing the new entity type
with the representation of distinct phone numbers, werenameit Phone-of -
Bor (Figure 10.9).

Heretoo, we lost the exact cardinality of Phone [1-5], replaced by [1-N].

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2)

10-9

BORROWER BORROWER

Pid Pid

Name Name

First-Name First-Name

Add_Company Add_Company

Add_Street Add_Street PHONE-of-BORR

Add_Zip-code Add_Zip-code Pid

Add_City Add_City Phone

Phone[1-5] Responsible]0-1] id: Pid

Responsible[0-1] id: Pid ﬂ\ Phone
E id: Pid ref: Responsible equ: Pid

ref: Responsible

Figure 10.9 - Extracting the multivalued attribute Phone as a new entity type.

10.5 An (almost) SQL-compliant schema

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Now we have completed the transformation of the conceptual schemainto an
SQL-compliant schema. The latter comprises only entity types, single-valued
and atomic attributes, identifiers and foreign keys, and therefore can be ex-
pressed into SQL statements very easily, as will be shown in lesson 12. Itis
shown in Figure 10.10.

There is just a little point which deserves a comment. We have retained a
constraint which does not seem to be SQL-compliant, namely the equ cons-
traint, which is a special form of referentia constraint that can be found in
AUTHOR and in BORROWER. SQL can take care of the referentia constraint,
but will ignore the inverseinclusion constraint. So, itisable to implement the
ref part of this constraint.

As anote for database programmers, we can suggest to express the full cons-
traint as follows:

- theref constraint will be expressed by a foreign key,

- theinverse inclusion constraint will be expressed asa check or trig-
ger clause.

- the whole package will be encapsulated into ransactions with deferred
constraint checking.

20/03/2002

10-10

Lesson 10: Logical Modeling (2)

reference
reference
origin
id: origin
reference
ref: origin
ref: reference

BOOK
Book-id

Title

Publisher
Date-Published
Abstract[0-1]
id: Book-id

KW-of-BOOK

Book-id

Keyword

id: Book-id
Keyword

ref: Book-id

written
ID_Aut
Book-id
id: ID_Aut
Book-id
ref: Book-id
equ: ID_Aut

borrowing

COPY

Book-id
Serial-Number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
Nbr-of-Volumes
State

State-Comment[0-1]

Book-id
Serial-Number
Borrow-Date

id: Book-id
Serial-Number|
ref

ref: Pid

ref: Pcode

closed-borrowing

id: Book-id
Serial-Number
ref: Book-id

Book-id
Serial-Number
Borrow-Date
End-Date

Pid

Pcode

id: Book-id
Serial-Number
Borrow-Date

ref: Book-id

Serial-Number|
ref: Pid
ref: Pcode

AUTHOR

ID_Aut

Name
First-Name[0-1]
Origin[0-1]

id: ID_Aut

BORROWER

Pid

Name
First-Name
Add_Company
Add_Street
Add_Zip-code
Add_City
Responsible[0-1]
id: Pid

ref: Responsible

PHONE-of-BORR

Pid
Phone

id: Pid
Phone
equ: Pid

PROJECT
Pcode
Title

id: Pcode
id':Title

Figure 10.10 - This schema does not include non-relational constructs any-

more.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2)

10-11

REFERENCE
REFERENCE
ORIGIN
id: ORIGIN

REFERENCE
ref: ORIGIN
ref: REFERENCE

BOOK
BOOK_ID

TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
id: BOOK_ID

COPY

BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF

LOC_ROW

NBR_OF VOLUMES
STATE
STATE_COMMENT[0-1]

KW_OF BOOK

BOOK_ID

KEYWORD

id: BOOK_ID
KEYWORD

ref: BOOK_ID

WRITTEN
ID_AUT
BOOK_ID
id: ID_AUT

BOOK_ID
ref: BOOK_ID
equ: ID_AUT

BORROWING
BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER

ref
ref: PID
ref: PCODE

CLOSED_BORROWING

LIBRARY/Logica

AUTHOR
ID_AUT
NAME
FIRST_NAME[0-1]
ORIGIN[0-1]
id: 1D_AUT

BORROWER

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]

id: PID
ref: RESPONSIBLE

PHONE_OF_BORR

id: BOOK_ID
SERIAL_NUMBER
ref: BOOK_ID

BOOK_ID
SERIAL_NUMBER

PID

PHONE

BORROW_DATE i PID
END_DATE PHONE
PID u: PID
PCODE =
id: BOOK_ID

SERIAL_NUMBER

BORROW_DATE PROJECT
ref: BOOK_ID PCODE

SERIAL_NUMBER TITLE
ref: PID id: PCODE
ref: PCODE id:TITLE

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Figure 10.11 - The final relational logical schema, now fully SQL-compliant.

20/03/2002

10-12 Lesson 10: Logical Modeling (2)

10.6 The names

The names of the entity types and of the columns directly derive from concep-
tual names. They do not necessarily satisfy the naming conventions of the
DBMS. For instance, some characters may beinvalid, or reserved words must
be avoided.

The current logical schema includes an invaid symbol, namely "-" (dash),
which is prohibited in most SQL DBMS. The most elegant solution isto re-
place al its occurrences by the symbol *_" (underscore). Though it is not the
case in our schema, such names as TABLE, INDEX, DATE should be replaced
with any other words which do not appear in the reserved word list of the

DBMS.

To complete the process, we must change the names as required by the SQL
syntax. We proceed as suggested in Section 5.9 (Figure 10.11).

10.7 Quitting the lesson

We save the current project under the name 1logical-10. lun and we quit
DB-MAIN.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-13

Technical addenda

10.8 On the equivalence of Instance and Value representa-
tions

We have considered two distinct techniquesfor transforming amultivalued at-
tribute. Though other techniques exist, these ones are the most important.
Therefore, it is essential that we analyze them in order to get a better unders-
tanding of their properties. The array of Figure 10.12 summarizes all the va-
riants of multivalued attribute transformation into entity type, so that the
equivalence of Instance and Value representations can be perceived more

clearly.
BOOK AUTHOR
ISBNBOOK ISBN AuthorName
) Title id: AuthorName
Title
AuthorName[0-5] | |
BOOK BOOK AUTHOR
ISBN ISBN AuthorName
Title Title id: AuthorName
05 05 1N
1-1 1-1 1-1
WRITTEN BY WRITTEN BY
AuthorName id: what.BOOK
id: what.BOOK who.AUTHOR
AuthorName

Figure 10.12 - The equivalence array of four versions of a multivalued attribu-
te. It has been obtained by applying the two version of attribute/entity type
transformation and the rel-type/entity type transformation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-14 Lesson 10: Logical Modeling (2)

10.9 On transforming compound attributes

The processing of compound attributes Locat ion and Address was based
onthedisaggregation transformation. Thisisasimpleand intuitive technique.
However, it has amajor drawback, it hides the initial grouping of the compo-
nents, despite the pathetic use of prefix which suggests the lost aggregate.

In fact, other techniques exist. Two of them consistsin transforming the com-
pound attribute into an entity type, either by Instance representation, or by Va-
lue representation. Let ustry both techniques on Locat ion of COPY, inthe
abbreged version of Figure 10.13 (left).

First, Locat ion isextracted by representation of itsinstances: each instance
of Location (i.e.,, onefor each COPY instance) is represented by a LOCA-
TION entity. Therel-typeisone-to-one, and makes COPY theimplicit identi-
fier of LOCATION (Figure 10.13).

COPY COPY
Serial-Number Serial-Number
Book-ID Book-ID
Location id: Serial-Number
Store & Book-ID
Shelf T
id: ‘;’i’éi'_'l'\t‘)”mber e LOCATION
’ 1-1— Store
Shelf

Figure 10.13 - Extracting a compound attribute as an entity type (Instance re-
presentation).

Then, thisrel-type is reduced to aforeign key, which in addition becomes the
explicit identifier of LOCATION (Figure 10.14).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-15

COPY LOCATION
Serial-Number Serial-Number
Book-I1D Book-ID
id: Serial-Number Store

Book-ID Shelf
id: Serial-Number
Book-1D
equ

Figure 10.14 - Another relational expression of a compound attribute.

Let ustry the Value representation technique on Location (Figure 10.15).
Now, there is one LOCATION entity for each distinct value of Location,
wherever it appearsin COPY entities. There can be several COPY entities for
one LOCATION entity. In other words, the entity type LOCATION isadictio-
nary of book locations, henceitsidentifier: (Store, Shelf).

COPY LOCATION
Serial-Number Store
Book-1D 1-N— Shelf
Location et id: Store

Store 1'|l Shelf
_Shelf COPY
id: Serial-Number Serial-Number
Book-ID Book-1D
id: Serial-Number
Book-1D

Figure 10.15 - Extracting a compound attribute as an entity type (Value repre-
sentation).

However, transforming the rel-type where into a foreign key is not so ob-
vious. Do try to transform it: DB-MAIN includes into copY a foreign key
made of theidentifier of LOCATION, i.e., al itsattributes (Figure 10.16). Not
aparticularly elegant and concise result, when compared with the source sche-
mal

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-16 Lesson 10: Logical Modeling (2)

COoPY LOCATION
Serial-Number Store
Book-1D Shelf
Store id: Store
Shelf Shelf
id: Serial-Number

Book-1D
equ: Store

Shelf

Figure 10.16 - This relational schema appears useless.

We must proceed differently. Theidentifier of LOCATION islong and com-
plex. The situation would be better if this entity type had a short and simple
identifier. Let usgiveit such an identifier through the command Transform
/ Entity type / Add Tech ID (Figure 10.17).

LOCATION
ID_Loc
Store
1—N— Shelf
id: ID_Loc
1'|1 id’: Store
COPY Shelf
Serial-Number
Book-ID
id: Serial-Number
Book-ID

Figure 10.17 - Adding a technical ID to LOCATION.

Now, transforming the rel-type into aforeign key is straighforward and gives
amore elegant result (Figure 10.18). One problem is that the new technical
attribute must be correctly managed through a value constructor which deli-
vers anew value for ID_Loc each timeit is called. Most relational DBMS
offers data types with that property?®.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-17

COPY LOCATION
Serial-Number ID Loc
Book-ID Store
ID_Loc Shelf

id: Serial-Number id: ID_Loc
Book-1D f id':Store
equ: ID_Loc Shelf

Figure 10.18 - A third relational expression of a compound attribute.

3. Such asthe SEQUENCE feature of Oracle.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-18 Lesson 10: Logical Modeling (2)

Summary of Lesson 10

¢ |nthislesson, we have discussed

- the various ways to process a multivalued attribute, and we have proved
the equivalence of these techniques

- the various ways to process a compound atribute, and we have proved
the equivalence of these techniques.

Exercises for Lesson 10

10.1 Propose arelational logical version for the following entity type.

COMPANY
Com-ID
Com-Name
Com-Address

Number[0-1]
Street
City
Postal-Code[0-1]
City-Name
Com-Revenue[0-1]
Phone[1-4]
Country[0-1]
Area
Loca

10.2 Modify the result of question 10.1 in such away that the schema does
not include any optional columns. Hint: use the attribute/entity type
transformation to get rid of optional attributes.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2) 10-19

10.3 Find aconceptual expression for the following schema (thisisareverse
engineering exercise).

PRODUCT
PNUM
DESCRIPTION
COMPOSITION[1-100]
SUBSTITUTE[0-1]

id: PNUM
E ref: COMPOSITION[*]
ref: SUBSTITUTE

10.4 Transform the following schema into relational structures.

ACCIDENT

A-Code

Driver[0-1]
Name
Address

Date

Location

id: A-Code

10.5 Transform the following schemainto relational structures.

CLIENT
CNum
Name
Addresg[0-5]
Number
Street
City
Postal-Code
City-Name
Account
id: CNum

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

10-20

Lesson 10: Logical Modeling (2)

10.6 Consider the following schema.

A
Al
A2[0-1]
A3
id: Al

Which of the SQL-compliant schemas proposed below can be conside-
red strictly equivaent to the former?

A EA2 A EA2
Al Al Al Al
A3 A2[0-1] A3 A2
id ALk~ [id quu EATfe~_ 1@ AT
A EA2 A EA2
Al A2 Al Al
A3 Al A3 A2
id: Al id: A2 id: Al id: Al
et A \ A2
ref: Al

10.7 Propose a SQL-compliant schema in which the following coexistence
constraint has been transformed

20/03/2002

DELIVERY

DelNum

Date
Customer[0-1]
Address[0-1]

id: DelNum
coex: Customer
Address

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 10: Logical Modeling (2)

10-21

10.8 Prove that the following entity types are (or are not) equivalent.

BOOK
Book-1D
Author-ID[1-N]
id: Book-1D

COMPANY
C-Num
C-Name

id: C-Num

10.9 Consider the following conceptual schema.

—OoN M ON— |\Dlle-glctlirgtion

WRITES

Author-ID
Book-I1D

id: Author-1D

Book-1D

MACHINE

id: M-Num

A database designer thinks he has found twelve equivalent schemas.
Can you help him in choosing those which are really equivalent to the

former? Proveyour choice.

1-N PRODUCES 1-N

Oll Oll
COMPANY MACHINE
C-Num M-Num
C-Name Description
id: C-Num id: M-Num

COMPANY MACHINE
C-Num M-Num
C-Name Description
id: C-Num id: M-Num
I I
O-N O-N
PRODUCES
1-1—id: c.COMPANY [—1-1
M.MACHINE

COMPANY
C-Num
C-Name
Machine[0-N]

N-Num
Description
id: C-Num

o>

COMPANY

C-Num
C-Name

id: C-Num

I I
0-1- produced by 0-N

MACHINE

M-Num
Description

id: M-Num

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

10-22

20/03/2002

Lesson 10: Logical Modeling (2)

PRODUCTION PRODUCTION
M-Num Company
C-Num C-Num
C-Name C-Name
Description M&alcmne
id: C-Num Desarin
M-Num _ Description
id: Company.C-Num
Machine.N-Num
COMPANY MACHINE COMPANY MACHINE
C-Num M-Num C-Num M-Num
C-Name Description C-Name Description
id: C-Num id: M-Num id: C-Num id: M-Num
T
O-N
PRODUCTION
1-1 M-Num
] C-Num
PRODUCTION id: C-Num
C-Num M-Num
id: C-Num ref: C-Num
of MACHINE ref:M-Num
ref: C-Num
COMPANY MACHINE KID
C-Num M-Num Name
C-Name Description Skill
id: C-Num id: M-Num id: Name
I [T
0-1 O-N 0-N
1-1 1-N OIN
PRODUCES GAME
Name
Model
id: Name
PRODUCTION COMPANY MACHINE
Company[0-N] C-Num M-Num
C-Num C-Name Description
C-Name M-Num[0-N] id: M-Num
Machine[0-N] U /‘>
N-Num ref: M-Num[*]
Description

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11

Logical Design (3)

Objective

This lesson describes a systematic transformation plan which ga-
rantees the production of fully SQL-compliant schemas from
most conceptual schemas. |t completes and organizes the opera-
tions described in Lessons 9 and 10. The LIBRARY conceptual
schemais processed according to this plan.

This lesson also describes three assistants that can help analyze
and transform schemas. In particular, they provide developers
with an easy way to write reusabl e scripts that automate the anal-
ysis and the production of schemas.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-2 Lesson 11: Logical Design (3)

11.1 Starting Lesson 11

We start DB-MAIN and we open the project 1ogical-10 which now inclu-
des the conceptual schema and the logical schema of the database in project.
Wesaveitaslogical-11. 1lun, theversion on which wewill work in this
lesson, then we delete the schema LIBRARY /Logical, so that only the con-
ceptual schemaremains

We build a new schema, called LIBRARY/Logical (once again), by co-
pying the conceptual schema. We open this (future) logical schema.

11.2 Working more systematically

In the previous two lessons, we have produced a SQL-compliant schema by
applying a series of transformations. In this lesson, we will revisit in deeper
detail the way in which we obtained this schema, we will improve this proce-
dure, and finally automate it.

We can ask two questions about this procedure:
- wasit the best way to proceed?
- does this procedure work with any conceptual schema?

Unfortunately, the answer to both questionsis NO. Let us examine some pro-
blems which escaped our attention:
- reducing one-to-many rel-types into foreign keys occurs in severa pla-
ces; wasn't it possible to do it only once?
- processing a multivalued attribute may push a compound attribute at le-
vel 1%
- conversely, processing acompound attribute may push a multivalued at-

tribute at level 1; the schemaof Figure 11.1 illustrates the last two points:
transforming Address makes City and Phone level 1 attributes.

1. Wecdl level 1 the level of the attributes directly attached to the entity type (or the rel-
type). In aSQL-compliant schema, al attributes are at the level 1. The direct components
of alevel 1 attribute are at level 2, and so on.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-3

PERSON
PID
Name
Address[0-5]
Street
City
Postal-Code
City-Name
Phone[0-3]
Area
Loca
Birth-Date

Figure 11.1 - Multi-level attributes.

- transforming a one-to-many rel-type may beimpossible due to a still un-
resolved identifier, i.e., an identifier that includes a role of a rel-type
which has not been transformed yet. In the example of Figure 11.2,
works -1in cannot be processed until the rel-type £ rom has been trans-
formed into aforeign key, making the identifier of BRANCH all-attribute.

COMPANY
Name
id: Name

T
O-N

1-1
1

BRANCH EMPLOYEE
Country Emp-1D
Address —0-N1-1— Name
id: from.COMPANY id: works-in.BRANCH
Country Emp-ID

Figure 11.2 - Rel-type works-in cannot be transformed before £ rom.

- what about |S-A relations? Sincethey are not SQL-compliant, they must
be transformed into equivalent relational structures.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-4 Lesson 11: Logical Design (3)

Obvioudly, we need to complete our initial intuitive procedure, and to organize
its steps in a more systematic way. Since processing |S-A relationsis a quite
new problem, we will tackle it first.

11.3 Transforming the IS-A relations

Supertype/subtype hierarchies (through |S-A relations) are very powerful se-
mantic constructs, but they have no direct representation in standard DMS,
such as SQL2. In addition, mastering them poses some interesting, but rather
complex problems that would lead us far beyond the objectives of thisintro-
ductory volume.

There are several ways to replace I1S-A relations into equivalent plain data
structures. Each of them comes with its drawbacks and its advantages, and
none can be claimed to be superior to the others on all the possible criteria. We
will present alimited, but intuitive technique which can be easily carried out.
It appliesto IS-A structures on which no constraints D (digjoint) and T (total)
are defined, or, more precisely, whose constraints D and T will not be transla-
ted. In other words, the subtypes may overlap, and the supertype is partially
covered by its subtypes. More complex situations require advanced techni-
ques which will be ignored in this lesson (though a short discussion will be
proposed in the Addenda.

The proposed technique consists in representing each concerned entity type,
be it supertype or subtype, by an independent entity type, and in connecting
each former subtype to its supertype by a one-to-one rel-type asillustrated in
Figure 11.3.

2. Atleast in SQL2. The next standard (SQL3 or SQL-1999) includes the concept of type
hierarchy, inducing a sort of IS-A relation on the tables of a database. We will ignore this
featurein thisvolume.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-5

EMPLOYEE EMPLOYEE

Emp-1D Emp-1D

Name Name

id: Emp-1D id: Emp-1D

— 0-1 0-1
1-1 1-1
CLERK ENGINEER
Function Qualification CLERK ENGINEER
Function Qualification

Figure 11.3 - Representation of IS-A hierarchy through one-fo-one rel-types.

Trangdating this schema into pure SQL-compliant structures is now easy (Fi-
gure 11.4). Itisimportant to note that each foreign key is an identifier aswell.
From the user point of view, the supertype entities are stored in the table EM -
PLOYEE, while the subtype entities must be rebuilt by joining the subtype ta-
ble with the supertype table: data about clerks are obtained by the natural join
between CLERK and EMPLOYEE.

EMPLOYEE
Emp-1D
CLERK Name ENGINEER
Emp-1D '!D id: Emp-1D Emp-1D flp .
Function Qualification
id: Emp-1D id: Emp-1D
ref ref

Figure 11.4 - SQL-compliant structure translation an IS-A hierarchy.

This implementation does not enforce any disjunction constraint between the
contents of CLERK and ENGINEER, nor any fotality constraint on EM-
PLOYEE. Indeed, agiven employee entity can also appear inthetable CLERK,
in the table ENGINEER, in both or evenin none.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-6 Lesson 11: Logical Design (3)

11.4 A transformation plan

With these considerations in mind, we can propose a general procedure to
translate conceptual schemasin SQL-compliant structures.

Transformation plan for relational schemas

Step 1. Transform the IS-A relations into one-to-one rel-types

Step 2. Transform complex and many-to-many rel-types into one-to-many
(or one-to-one) rel-types

Step 3. Transform level-1 single-valued compound attributes by disaggrega-
tion

Step 4. Transform level-1 multivalued attributes into entity types (instance
representation)

Step 5. Repeat steps 3 and 4 until there are no more compound or multivalued
attributes

Step 6. Transform one-to-many (and one-to-one) rel-types into reference
attributes

Step 7. Repeat step 6 until no more rel-types can be transformed

Step 8. For every rel-type which could not be transformed in step 7 due to
the absence of entity type identifier, add a technical identifier to
the concerned entity type

Step 9. Repeat steps 6 and 7 until no rel-types remain.

Step 10. Translate the names according to the SQL syntax.

Figure 11.5 - A detailed procedure to translate conceptual schemas into SQL-
compliant schemas.

In this plan, the transformation of one-to-many (and one-to-one) rel-typesinto
reference attributes is delayed until all the transformations that may produced
such rel-types (Steps 1, 2 and 4) have been carried out.

In addition, processing the compound and multivalued attributesis repeated to
cope with nested attributes.

Finally, the blocking structures preventing the transformation of one-to-many
(and one-to-one) rel-types are processed in two ways: by iterating on this
transformation (hybrid identifier problem), and by adding technical identifiers
when necessary (missing id problem).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-7

Now let us apply this transformation plan to the conceptual schema we deve-
loped in Lesson 8.

Step 1: the IS-A relations
The schemahas no |S-A structures.

reference
id: reference.BOOK|
| origin.BOOK
1-1 1-1
@ reference
AUTHOR
0-N BOOK 0-N Name
Book-id First-Name[0-1]
Tite Origin[0-1]
Publisher 7

Date Published | 0N Wi_BOO > Wil AUT >—1.N responsible-for
Keyword[0-10] 1-1 1-1 Esponsible

Abstract[0-1] 0-1 N
id: Book-id written BORROWER
0-N id: wri_BOO.BOOK Pid
wri_AUT.AUTHOR Name
First-Name
11 ON—__ |Address
v Company
COPY Street
Serial-Number Zip-code
Date-Acquired 0-1<_bor_COP bor_BOR bor_PRO City
Location T T T 0-N / Phone[1-5]
Store .t id Pid
Shelf b -
Row orrowing
Nbr-of-Volumes Borrow-Date] oN
State
State-Comment[0-1]| ™ PROJECT
id: of BOOK clo_COP clo_BOR do_PRO » gy | Poode
i M Title
Serial-Number T T T _
1-1 1-1 1-1 id: Pcode
| id': Title
closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY
Borrow-Date

Figure 11.6 - Complex rel-types transformed.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-8 Lesson 11: Logical Design (3)

Step 2: complex and many-to-many rel-types

All the rel-types with a degree (number of roles) greater than 2, or with attri-
butes, are caled complex. The complex rel-types borrowing and
closed-borrowing aretransformed into entity types.

We process the many-to-many rel-typesin the sameway. Now, reference
and written are replaced with equivalent entity types. The result is shown
in Figure 11.6.

Step 3: compound attributes

The compound attributes Location and Address are disaggregated, i.e.,
replaced by their respective components. Hence the schema of Figure 11.7.

Step 4: multivalued attributes

The multivalued attributes Keyword and Phone are transformed into entity
types (Figure 11.8).

Step 5: repeating steps 3 and 4

There are no more compound or multivalued attributes. Therefore, this step
does not apply.

Step 6: one-to-many rel-types

Let us suppose that we process the rel-types in the alphabetica order of their
names. bh, BOO key, bor BOR, bor COP, bor PRO, clo_ BOR,
clo COP, clo PRO, of, origin, reference, responsible-for,
wri AUT,wri_ BOO.

We observe that somerel-types have not been reduced. For instance, thetrans-
formation of BOR_COP and CLO_COP failed because the referenced entity

type, COPY, still had ahybrid identifier comprising therole of . BOOK. Hence
the following step.

Step 7: repeat step 6

In fact, the rel-type of have been reduced at the end of Step 6, but too late to
alow BOR_COP and CLO_CORP to be transformed. Now it does not block
the transformation of these rel-types any longer. So we apply once again the
transformation of step 6, which correctly transforms the rel-types BOR_COP
and CLO_COP (Figure 11.10).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3)

11-9

reference
id: reference.BOOK|
| origin.BOOK
1-T 1-1
@ reference
AUTHOR
O-N BOOK o-N Name
Book-id First-Name[0-1]
Title Origin[0-1]
Publisher : . 1
Date-Published —0-N—< wri_BOO wri_AUT 1-N responsiblefor
Keyword[0-10] 11 11 tésponsible
Abstract[0-1] 0-1 espo_N
id: Book-id written
o id: wri_BOO.BOOK BORROWER
wri_AUT.AUTHOR z—d
ame
First-Name
1-1 Add_Company
] O-N Add_Street
COPY Add_Zip-code
Serial-Number 0-1< bor_COP > bor_BOR >< bor PROZ Add_City
Date-Acquired < = >< = >< — o-N | Phone[1-5]
Loc_Store 1- 1-1 1-1 id: Pid
Loc_Shelf l _
Loc_Row borrowing o-N
Nbr-of-Volumes L Borrow-Date
State O-N PROJECT
.St'ateComment[O—l] clo_CcopP clo BOR clo_PRO > ¢\ Pr_:cl)de
id: of.BOOK | . | Tlt e
Serial-Number 1-1 1-1 1-1 id: Pcode
| id': Title
closed-borrowing
Borrow-Date
End-Date
id: clo_COP.COPY
Borrow-Date
Figure 11.7 - Compound attributes disaggregated.
DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-10 Lesson 11: Logical Design (3)
reference
id: reference.BOOK
| origin.BOOK
1-T 1-1
0-N— wri_B0OO > wri_AUT >1-N Name
O-N BOOK O-N First-Name{0-1]
Book-id 11 1-1 Origin[0-1]
Title - :
Publisher written responsible-for
Date-Published id: wri_BOO.BOOK 0-1 esponsible
Abstract[0-1] wri_AUT.AUTHOR O-N
id: Book-id 0-10
T KW-of-BOOK BORROWER
0-N Keyword Pid
BOO_Key >-1-1—id: BOO_Key.BOOK Name
o Keyword First-Name
Add_Company
lil O-N— |Add Street
o o
Serial-Number 1 91" bor_COP > < bor_BOR > < bor_PRO T Pd
Date-Acquired T I I : .
Loc_Store 1- 1-1 1-1 1- @
Loc_Shelf J\ L
Loc_Row borrowing 1-1
_of- - O-N
g‘;;e"f Volumes LN BorowDalel 4N PHONE-of-BORR
Phone
State-Comment[0-1]
T of BOOK (01 clo_COP clo_BOR clo_PRO id: ph.BORROWER
Serial-Number 11 1}1 [, ON\[_ Phone
closed-borrowing PROJECT
Borrow-Date Pr_:ode
End-Date Title
id: clo_COP.COPY ?d: Pcpde
Borrow-Date id’: Title

Figure 11.8 - Multivalued attributes extracted as entity types.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-11

reference AUTHOR
Reference 1-) Name
Origin First-Name{0-1]
id: Referencs 1/-1 Origin[0-1]
Origin ;
rg: o;if gin e written R%ORROWER
ref: Reference
id: Book-id Name
BOOK wri_AUT.AUTHOR Eirst-Name
Book-id ref: Book-id Add_Company
Title Add_Street
Publisher KW-of-BOOK Add_Zip-code
Date-Published Book-id Add_City
Abstract[0-1] Keyword Responsible]0-1]
id: Book-id id: Book-id id: Pid
r> Keyword ref: Responsible
COPY ref: Book-id
; PHONE-of-BORR
Book-id
o bor_COP q
Serial-Number (H borrowing %’
Date-Acquired 11 Borrow-Date| —one
Loc_Store ~—pig id: Pid
Loc_shelf Pcode Phone
Loc_Row ref-Pid equ: Pid —
Nbr-of-Volumes [~0-N ref- Peode
Nbr- o_c0P>
State-C t10-1 PROJECT
State Comment(0-1] 1-1 ; Pcode
id: Book-id closed-borrowing DAk
S B Dat Title
Serial-Number orrow-Date T Poode
ref: Book-id End-Date T
Pcode id: Title
Pid
id: clo_COP.COPY
Borrow-Date
ref: Pid
ref: Pcode

Figure 11.9 - Simple rel-types transformed into foreign keys. Three rel-types
fail to be transformed.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-12 Lesson 11: Logical Design (3)

reference AUTHOR
s T
Origin First-Name[0-1]
id: Reference le.-l Origin[0-1]
Origin -
ref: Origin __written BORROWER
ref: Reference B9ok-|d i Pid
id: Bopk-ld Name
BOOK wri_AUT.AUTHOR Eirst-Name
Book-id ref: Book-id Add_Company
Title Add_Street
Publisher KW-of-BOOK Add_Zip-code
Date-Published Book-id Add_City
Abstract{0-1] Keyword Responsible[0-1]
id: Book-id id: Book-id id: Pid j
r> Keywc_)rd ref: Responsible
CcoPY ref: Book-id
Bookad borrowing PHONE-of-BORR
Seria-Number Book-id Pid
. BOOoK-1d Phone
Date-Acquired Serial-Number m
Loc_Store Borrow-Date a:
Loc_Shelf Pid Phone
Loc_Row Pcode equ: Pid —
Apr-of-Volumes id: Book-id
e Serial-Number
State-Comment[0-1] o PROJECT
id: Book-d e Pcode
1d 200w ref: Pid Title
Serial-Number ref: Pcode 0 Poode
ref: Book-id i Title
closed-borrowing .
Book-id
Serial-Number
Borrow-Date
End-Date
Pcode
Pid
id: Book-id
Serial-Number
Borrow-Date
ref: Pid
ref: Pcode
ref: Book-id
Serial-Number

Figure 11.10 - Remaining simple rel-types transformed into foreign keys. One
rel-type remains however.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3)

REFERENCE
REFERENCE
ORIGIN
id: REFERENCE

ORIGIN
ref: ORIGIN
ref: REFERENCE

BOOK
BOOK_ID
TITLE
PUBLISHER
DATE_PUBLISHED
ABSTRACT[0-1]
P]id: BOOK 1D

COPY
BOOK_ID
SERIAL_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW
NBR_OF VOLUMES
STATE
STATE_COMMENT[0-1]
id: BOOK_ID

SERIAL_NUMBER

KW_OF_BOOK

BOOK_ID

KEYWORD

id: BOOK_ID
KEYWORD

ref: BOOK_ID

BORROWING
BOOK_ID
SERIAL_NUMBER
BORROW_DATE
PID
PCODE
id: BOOK_ID

SERIAL_NUMBER

ref
ref: PID
ref: PCODE

WRITTEN AUTHOR

ID_AUT ID_AUT

BOOK_ID NAME

id: BOOK_ID FIRST_NAME[0-1]
ID_AUT ORIGIN[O-1]

ref: BOOK_ID _/l> id: ID_AUT

equ: ID_AUT

CLOSED_BORROWING

ref: BOOK_ID

BOOK_ID

SERIAL_NUMBER
BORROW_DATE
END_DATE
PCODE

PID

id: BOOK_ID
SERIAL_NUMBER
BORROW_DATE

ref: PID

ref: PCODE

ref: BOOK_ID
SERIAL_NUMBER

BORROWER

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY
RESPONSIBLE[0-1]

id: PID
ref: RESPONSIBLE

PHONE_OF BORR

PROJECT
PCODE
TITLE

id: PCODE
id: TITLE

Figure 11.11 - The SQL-compliant logical schema.

11-13

WRI_AUT till remains, but for another reason. 1t isnot blocked dueto hybrid
identifiers, but because of the lack of identifier in AUTHOR.

Step 8: missing identifiers
We add atechnical identifier to AUTHOR (Figure 11.12).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

11-14

Lesson 11: Logical Design (3)

AUTHOR
ID_Aut
Name
First-Name[0-1]
Origin[0-1]
id: ID_Aut

Figure 11.12 - Adding a technical ID to AUTHOR.

Step 9: repeat step 6
... and we try again to reduce WRI_AUT. The structures are now fully SQL-
compliant.

Step 10: Translate the names

We transform the names. uppercase, replace spaces and dashes, replace reser-
ved words, etc. (Figure 11.11).

11.5 The Global transformation Assistant

Thistransformation plan seemsto work correctly, but the way we applied it is
rather tedious when processing large and complex schemas. DB-MAIN offers
avery powerful processor to help us apply transformation plans, and even to
write, save and reuse such plans.

To practice this assistant, we can delete the current logical schemaand ask for
another copy of the conceptual schemathat we open. We call the assistant by
the command Assist / Global transformation.

The assistant is made of three main parts, the |eft-side areais the problem sol-
ver, while the right-side area comprises script management functions and the
control panel (Figure 11.13). For the present time, we will use the problem
solver and the control panel.

The problem solver is structured in two columns.

Thefirst column proposes acollection of potential problems, classified by ob-
ject type (Entity type, Rel-types, Is-a, Attributes, Groups, Miscellaneous, etc.).
When we select an object type, alist of typical situationsis proposed (the pro-
blems), from which we can select one.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-15

4 Problem solver Sert N
cript manager
Problems Solutions
Global ransformations
— Scrpt
- Add |
Inzert |
I Comples I Entity tupes -
Hemoyve
llsa 4'
I - Elif |
 Attributes i
Clear |
~ Groups i F'redehnedl
I I - Load |
£~ Miscellaneous i Save |
I Copy |
" Generate I hd ™ Cont
arfirm
€ Mame processing Ok I Cancel | Help |
Ik
_ j Control panel)

Figure 11.13 - The structure of the Global transformation assistant.

The second column, the into list, proposes a list of possible actions (mainly
transformations) to solve the selected problem (the solutions), from which we
select one.

By clicking on button OK in the control panel, we execute the selected action
on all the objects of the schema that correspond to the selected problem. The
confirm button alows us to control the process object by object.

However, the best way to learn how all thisworksisto useit for solving rea
problems. Thisisthe objective of the next section.

The Problem solver

We will use this assistant to produce a SQL-compliant schema from the cur-
rent conceptual schema. Wewill still proceed step by step, as suggested in the
transformation plan of Figure 11.5.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-16

Lesson 11: Logical Design (3)

Step 1: the IS-A relations

Should the schema comprised such structures, we could have used the assis-
tant to help us (through the Is-a object type).

- We select theitem All in the Is-a object typelist (thisisour current pro-
blem).

- We sdlect the item Rel-type in the Into list (this is the proposed solu-
tion).

- We unchecked the Confirm button (automatic mode).

- Weclick on OK.

Step 2: complex and many-to-many rel-types
We proceed as follows (this operation isillustrated in Figure 11.13):

- Weselect theitem Complex in the Rel-type object typelist (our current
problem).

- We select the item Entity type in the Into list (the proposed solution).
- Weclick on OK.

That's dl: the complex rel-types borrowing and closed-borrowing
have been transformed.

We now process the many-to-many rel-typesin the same way:
- We sdlect the item Binary N-N in the Rel-type object type list.
- We sdlect the item Entity type in the Into list.
- Weclick on OK.

Now, reference and written are replaced with equivalent entity types.
The resulting schema inludes one-to-many and one-to-one rel-types only.

Step 3: compound attributes

There isan operation for them:
- We sdlect the item Compound in the Attribute object typelist.
- We select the item Disaggregation (or Entity type) in the Into list.
- Weclick on OK.

Location and Address are replaced with their components.

Step 4: multivalued attributes

The multivalued attributes Keyword and Phone are transformed into entity
types:

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-17

- We sdlect the item Multivalued in the Attribute object typelist.
- We select the item Entity type in the Into list.
- Weclick on OK.

Step 5: repeating steps 3 and 4
This step does not apply here.

Step 6: one-to-many rel-types
The one-to-many and one-to-one rel-types are transformed into entity types:

- Wesdlect theitem Binary 1-N inthe Rel-type object typelist (it includes
one-to-one rel-types aswell).

- We select the item Referential attributes in the Into list.
- Weclick on OK.

Wherever possible, the one-to-many and one-to-one rel-types are transformed
into reference attributes. This operator automatically repeats this transforma:
tion until no rel-types can be transformed in this way anymore.

Step 7: repeat step 6

This has been done by the problem solver.

Step 8: missing identifiers

We add a technical identifier to al the entity typeswhich need onein order to

make the transformation of rel-types into reference attributes possible (here
AUTHOR).

- We select the item Where needed 2 in the Entity type object type list.
- We select theitem Add technical id in the Into list.
- Weclick on OK.

Step 9: repeat step 6

That is:
- We select the item Binary 1-N in the Rel-type object type list.
- We sdlect the item Referential attributes in the Into list.
- Weclick on OK.

3. Thislabel tellsthat technical ids will be associated only with entity typesthat will become
referenced tables.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-18 Lesson 11: Logical Design (3)

This exercise is a good illustration of the concept of problem solving in DB-
MAIN.

A problem isafamily of structureswhichisperceived asaproblem in the cur-
rent context. For instance, acompound attribute is not a problem initself, but
it definitely is one when we try to build a SQL-compliant schema. In short, a
problem is a construct considered invalid in agiven context.

A solution to a problem is an action (generally a transformation) which ope-
rates on the invalid construct, and which replaces it by another construct. In
general, there can be more than one solution. It is up to the analyst to choose
the action which best fits his/her objectives.

In the next lesson, we will use other functions of the Problem solver.

The Script manager

The best way to understand what ascript is, consistsin writing one by ourself.
More precisely, we will automate the transformation plan used so far by wri-
ting the successive operations specified in the plan. Each operation can be spe-
cified in the Problem solver of the assistant by a problem/solution statement.
However, these statements are not executed (as when we clicked on button
OK), but they are stored in the script area of the assistant.

Let us consider the first step: ranslating IS-A relations into one-to-one rel-
types. Inthe sameway aswedid in the previous section, we open the Is-a list
in the Problem solver, and we select the All item (not really difficult since this
isasingle-item list!). Then we open the Into list, and we select the Rel-types
item. We add this statement to the (currently empty) script areaby clicking on
the Add button. The script area now looks like the screen below.

A |ls-a inta reltypes

[nzert |

To specify the second step, we select Complex in the Rel-type list, and the
Entity type in the Into list, and we add this statement in the script area. We
address the many-to-many rel-types in the same way. The script now includes
three statements:

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-19

Script

|z-a inta rel-types
Complex rel-types into entity tppes

|hzert | Binany M-M reltypes into entity types

Froee |

The steps related to attributes require a more subtile approach. Indeed, the
scripting language does not offer loop structures, nor any standard control
structures that are common in most programming languages®. So, to process
complex attribute structures, we have to add as many statements as there can
exist attribute levels. We suppose that three levels of nesting isrealistic, the-
refore, we add three blocks of attribute processing statements as follows:

— Script

lz-a inta rel-types

Complex rel-tppes into entity types
|hizert Binam M-MN reltupes inta entity pes
Dizaggregation of compound attributes
Multivalued attributes into entity types
Dizaggregation of compound attributes
Multivalued attributes into entity ypes
e Disa_ggregatin:-n _n:nf n::n:nn'_lpn:nund _attril:nutes
Multivalued attributes inta entity tpes

Eemaye

[
[

The other transformation are introduced easily (Figure 11.14).

All that remainsto be doneisto transform the names. For that, we click on the
button Name processing in the Problems part, and we click on Add. Then, the
Name processing panel opens (Figure 5.17 and Figure 5.18), so that we can set
the parameters. Later on, we can change these parameters by selecting the last
statement in the script areaand by clicking on Edit.

This completesthe script (Figure 11.15) which can be saved (button Save) for
further reuse (button Load).

4. As we will seein the Technical addenda, the Advanced global transformation Assistant
will give us an elegant way to write more sophisticated scripts.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-20

Lesson 11

: Logical Design (3)

— Scrpt

[nzert

Eemaye

Edit

Clear

[
BET
[e=]

lz-a inta rel-types

Complex rel-tppes into entity types
Binam M-MN reltupes inta entity pes
Dizaggregation of compound attributes
Multivalued attributes into entity types
Dizaggregation of compound attributes
Multivalied attributes inta entity types
Dizaggregation of compound attibutes
kultivalued attributes inta entity twpes
Rel-tppes into referential attributes
Add a technical id. to entity types
Rel-tupes into referential attributes

Figure 11.14 - Completing the transformations.

— Script
Add

[nzert

H ErmEye

Edit

Clear

e | [f

|z-a inta rel-types

Complex rel-ypes into entity types
Binary M- reltypes into entity types
Digaggregation of compound attributes
Fultivalued attributes into entity wpes
Dizaggregation of compound attnbutes
Fultivalied attributes into entity pes
Dizaggregation of compound attributes
Multivalued attributes inta entity pes
Reltupes into referential attributes

Add a techrical id. to enfity tupes
Reltupes into referential attibutes
Mame processing

Figure 11.15 - The Conceptual/Relational transformation script.

To execute this script, we click on the button OK. Note that the effect of clic-
king on this button depends on the contents of the script area:

- if the script area is empty, the assistant executes the current problem/so-
lution statement of the Problem solver,

- if the script area contains a script, the assistant executes this script ins-

tead.

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3)

11-21

The script manager offers the following script manipulations:

* button Add

button Insert
* button Remove
« button Edit

¢ button Clear
¢ button Predefined

¢ button Load

* button Save
¢ button Copy

adds the current problem/solution statement to the end
of the current script

inserts the current problem/solution statement before
the selected statement of the script (click on the state-
ment to select it)

removes the current problem/solution statement

allows the modification of the parameters of the selec-
ted statement (e.g., Name processing)

empties the script area

the assistant proposes predefined scripts to produce
schemas for some standard models; clicking on this
button includes the selected script in the script area; a
good way to examine other examples of scripts;

loads in the script area a script that has been saved on
disk;

saves on disk the contents of the script area.

saves the text of the script on the clipboard.

11.6 Quitting the lesson

We save the current project under the name logical-11. Wecan now quit

DB-MAIN.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-22 Lesson 11: Logical Design (3)

Technical addenda

11.7 I1S-A transformation revisited

About the subtype constraints

In this lesson, we have proposed a genera technique to get rid of IS-A rela
tions without loss of information. As we carefully mentioned it, we ignored
the subtype constraints D and T. What would have happened if we had pro-
cessed IS-A complemented with such constraints?

Lesson 6 identified four patterns, illustrated in Figure 6.9, among which we
can implement the last one only (=D and —T). Let us experiment the transla-
tion of the D constraint (Figure 11.16). We observe that this constraint has
been expressed as an exclusive constraint holding between the one-to-one
rel-types. Indeed, it states that any CUSTOMER entity can be linked with one
PERSON entity or with one COMPANY entity, but not both.

CUSTOMER CUSTOMER
Cust-1D Cust-1D
id: Cust-ID id: Cust-ID
& excl: c_isaCOMPANY
A p_isaPERSON
01 01
PERSON| [company
Name VAT
1-1 1-1
/ \
PERSON COMPANY
Name VAT

Figure 11.16 - Expression of an IS-A hierarchy with a D constraint.

Similarly, aT constraint would have been translated intoanat - least -one
constraint and aP constraint into an exactly-one constraint.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-23

These tranglation rules preserve the subtype constraints. In particular, you can
try the inverse transformation by yourself: select CUSTOMER, then execute
Transform / Entity type / Rel-types -> is-a.

However, things get disappointing when wetry to trandate these rel-typesinto
foreign keys. Indeed, the new constraints disappear, since the standard SQL -
DDL does not offer any declarative clause to enforce them.

The DB-MAIN transformation tries to compensate this loss by introducing a
new optional attribute in the supertype for each subtype, and applying the ex-
clusive constraint to these attributes (Figure 11.17). The idea is that when a
customer isaperson, the PERSON attribute of its entity is set to anon-null va-
lue, while this attribute is void if the customer is not a person. This technique
is better than nothing, but the correct management of these type attributes re-

lies entirely on the user/programmers.

Other subtype constraints are trandated similarly.

CUSTOMER CUSTOMER
Cust-ID Cust-1D
id: Cust-ID PERSON[0-1]
excl: c_isaCOMPANY = COMPANY([0-1]
p_isa PERSON id: Cust-ID
o1 o1 excl: COMPANY
PERSON PERSON COMPANY
Cust-ID Cus-ID
Name VAT
1,'1 1'\1 id: Cust-1D id: Cust-1D
PERSON COMPANY ref ref
Name VAT

Figure 11.17 - An awkward artifact to simulate the exclusive constraint.

The upward inheritance technique

Several other techniques exist to trandlate IS-A hierarchies in standard struc-
tures. One of them can be derived from the basi ¢ technique we devel oped abo-
ve, provided each subtype has arather simple structure.

5. They can be managed by procedura fragmentsin Triggers for instance. However, writing
correct triggers for such patterns requires specia care.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-24 Lesson 11: Logical Design (3)

According to this second technique, called upward inheritance, each subtype
is integrated into its supertype, generally by transformation into an attribute.
Considering the schema of Figure 11.16 (right), we apply the transformation
Transform / Entity type / -> Attribute to each subtype. Theresultispresen-
ted in Figure 11.18 as the transformation of an IS-A hierarchy. It enjoystwo
qualities that the first technique lacks:

» therelational structure includes a correct trang ation of the D constraint,

« thisconstraint is easily encoded into arow-level check predicate.

CUSTOMER CUSTOMER
Cust-1D Cust-1D
id: Cust-ID Name[0-1]
& VATI[0-1]
A id: Cust-ID
excl: VAT
Name

PERSON COMPANY
Name VAT

Figure 11.18 - Integrating the subtypes into the supertype. The subtype cons-
traints are correctly translated.

Though further comparing these techniques would prove too technical for the
scope of this tutorial, we will draw attention on the complexity of the transla-
tion of richer subtypes.

Let us consider that each subtype includes several attributes. The transforma
tion of the subtypesinto supertype attributesleads to optional compound attri-
butes (Figure 11.19). Disaggregating these attributes to make them SQL-
compliant yields complex integrity constraints (Figure 11.20).

Of coursg, it is possible to simplify the schema by observing that the exc1
constraint need not hold among the two group of attributes, because expres-
sing this constraint among one attribute per group is quite equival ent® (Figure
11.21).

Neverthel ess, thefinal schema, though correct and not too complicated to code
in SQL, remains fairly complex, even for smple conceptual schemas.

6. Canyou provethat thissimplification is vaid?

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3)

11-25

CUSTOMER CUSTOMER
Cust-ID Cust-ID
id: Cust-1D PERSON[0-1]
Name
A Address
COMPANY[0-1]
VAT
PERSON COMPANY Account
Name VAT id: Cust-ID
Address Account excl: COMPANY
PERSON

Figure 11.19 - Transforming an IS-A hierarchy with more complex subtypes.

CUSTOMER CUSTOMER
Cust-1D Cust-1D
PERSON[0-1] PER_Name[0-1]

Name PER_Address[0-1]

Address COM_VAT[0-1]
COMPANY[0-1] COM_Account[0-1]
VAT id: Cust-ID
Account coex: PER_Name
id: Cust-ID PER_Address
excl: COMPANY coex: COM_VAT
PERSON COM_Account
excl: {COM_VAT
COM_Account}
{PER_Name
PER_Address}

Figure 11.20 - Disaggregating the compound attributes leads to a complex IS-
A hierarchy translation.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-26 Lesson 11: Logical Design (3)

CUSTOMER
Cust-ID
PER_Name[0-1]
PER_Address[0-1]
COM_VATI[0-1]
COM_Account[0-1]
id: Cust-ID
coex: PER_Name

PER_Address
coex: COM_VAT

COM_Account
excl: PER_Name

COM_VAT

Figure 11.21 - Simplifying the exc1 constraint.

The downward inheritance technique

This third technigue consists in copying the attributes (as well as roles and
constraints) of the supertype into each of its subtype, then in discarding this
supertype. In Figure 11.22 we process a dlightly different source schema to
better illustrate the technique.

CUSTOMER PERSON Other CUSTOMER COMPANY
Cust-1D Cust-1D Cust-1D Cust-1D
Name (:) Name Name Name

id: Cust-1D Address id: Cust-1D VAT

A id: Cust-ID id: Cust-ID
D

PERSON COMPANY
Address VAT

Figure 11.22 - Representing the subtypes only + the customers that fall in no
subtypes (Other CUSTOMER).

In the right-side schema, we keep the subtypes PERSON and COMPANY, enri-
ched with the attributes, the roles and the constraints of the supertype. Howe-

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-27

ver, since the hierarchy is not Total, some entities may be of type CUSTOMER
without being of any subtype. Hence the complementary entity type Other
CUSTOMER which collects these entities. Quite naturally, Cust-1ID is the
primary identifier of each resulting entity type.

Thistechniqueis nice when the users are mainly interested in querying subty-
pe entities rather than the supertype entities.

Unfortunately, the problem isabit more complex. Indeed, the constraintsthat
hold in the population of the supertype may not be preserved when distributed
among the subtypes. This is the case for the primary id Cust-ID. Indeed,
merely stating that this attribute is the primary id of each subtype is not suffi-
cient. It must beanidentifier of the union of their population aswell. For ins-
tance, we cannot create a PERSON entity with a value of Cust-1ID that
aready exists in COMPANY or in Other CUSTOMER. This constraint is not
easy to define. InFigure 11.23, we expressit as akind of non-inclusion cons-
traint, which states that each value of Cust - ID of PERSON is not in the set
of values of Cust - ID of Other CUSTOMER, nor in that of COMPANY’. In
thisway, we can guarantee that the sets of Cust - ID from all the entity types
are digoint.

This constraint can be implemented as triggers8 associated with each table re-
sulting from these subtypes.

PERSON Other CUSTOMER COMPANY
Cust-ID Cust-1D Cust-ID
Name Name Name

Address id: Cust-1ID VAT

id: Cust-1D M id: Cust-1D
not-in: Cust-1D not-in: Cust-1D
not-in; Cust-ID

Figure 11.23 - The correct translation of Cust - ID being a primary identifier
of the supertype CUSTOMER.

7. The congtraint not-in isnot built-ininthe DB-MAIN tool. Instead, it has been defined asa
generic constraint. More of thisin the Tutorid Computer-assisted Database Engineering -
Volume 1: Database Models.

8. Note that each trigger must check the not-in constraint with the N-1 other tables, where N
is the number of subtypes.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-28

Lesson 11: Logical Design (3)

If the subtypes are not disjoint, the situation is even more complex, since the
same value of Cust - ID may appear in more than one subtype. Insuch acase,
the associated values of Name (and of all the other supertype attributes and ro-
les) must be the same. This patternisillustrated in Figure 11.24. The subty-
pes have been declared Total (to get rid of the Other CUSTOMER entity type)
and not Disjoint. The additional constraint states that, when considering the
union of the population of PERSON and COMPANY, any value of Cust-1ID
determines a unique value of Name®.

CUSTOMER PERSON COMPANY
Cust-1D Cust-ID Cust-1ID
Name = Name Name

id: Cust-1D Address VAT

A id: Cust-ID id: Cust-ID
T

PERSON U COMPANY: Cust-ID — Name

PERSON COMPANY
Address VAT

Figure 11.24 - Expressing the fact that if a PERSON entity and a COMPANY
entity share the same value of Cust - ID, they also have the same value of
Name.

Obvioudly, thistechnique should be avoided in —D IS-A hierarchies.

11.8 Elementary schema analysis

Identifying specific kinds constructs in a schema is a common task in many
steps of database engineering, from conceptual analysisto logical and physical
design and to reverse engineering. For instance, we can be interested in fin-
ding all the entity types without identifiers in alarge schema. Thistedious job
can be automated with the help of the Global transformation assistant. To ex-
preriment this, we open the schema LIBRARY/Conceptual, then we call

This property can be considered a special kind of fonctional dependency. Further detail on
functional dependencies can be found in any textbook on databases, such as[Date 1999] or
[Elmasri 2000] for instance.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-29

the assistant. We select the problem Entity type - Missing id, then we choose
the action Mark and we click on OK. We observethat the entity type AUTHOR,
and only it, is marked™©.

To proceed to adeeper analysis of aschemawe can build scripts. For instance,
the script of Figure 11.25 mark the constructs of the current schema that are
not SQL-compliant, i.e., the IS-A relations, the relationship types, the com-
pound attributes and the multivalued attributes.

— Seript

Add M ark. all iz-a relations
t ark comples rel-types
|nsert Mark binary 1-M reltypes
k ark. binan MN-M rel-tupes

Femove ||Mark compound attributes
4' Mark. mulbi-valued attibutes

Figure 11.25 - A simple script that detects the most important non-relational
constructs in an arbitrary schema.

Executing this script on the Conceptual schema results in the marked objects
of Figure 11.22.

11.9 Advanced schema analysis

If we need to search a schema for more complex patterns, or if we want to
check that alarge schemais compliant with adefinite model, the Global trans-
Jformation assistant Will quickly proveinsufficient. In such situations, we will
use the more powerful Schema analysis assistant.

We make the conceptual schema current, and we call the assistant by Assist /
Schema analysis.

10. Marking objects consists in highlighting them as follows: we select the objects then we
click on the button Mark in the Standard tool bar. Marking is akind of permanent selec-
tion. To unmark objects, just click on the button Mark again.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-30 Lesson 11: Logical Design (3)

origin reference

O-N O-N
AUTHOR
BOOK Name
BooKid ON* N1 First-Namef0-1]
Title Origin[0-1]
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id responsible
| 0-1 O-N
O-N
BORROWER
m
Name
First-Name
11 Address
| oN Company
COPY Street
Serial-Number borrowing Zp-code
Date-Acquired 0-1 Borrow-Daie / City
Location ON Phone[1-5]
Store id: Pid
Shelf
Row
Nbr-of-Volumes
State PROJECT
State-Comment[0-1] Pcode
id: of. BOOK Title
Serial-Number id: Pcode
id': Title

Figure 11.26 - Applying the validation script of the Global transformation as-
sistant to highlight the non-relational constructs of the example schema.

The control panel of thisassistant comprisesfive main sections (Figure 11.27):

Engine mode: defines the way rules are evaluated; in the Search mode, the
engine searches the schemafor structures that obey the constraints; in the Va-
lidate mode, the engine searchesthe schemafor structuresthat do not obey the
constraints.

Object: select the object type which the current constraint applies on.
Constraint: defines the constraint and its parameters.
Library: to build and use user-defined constraints.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-31

Script manager: to build, update, save and |oad sets of constraints of arbitrary

complexity.
Engine mode
Schema analysis [|
|
I Search Walidate | I Search [report verified miles] J

/ Objects Rules N

s Schem_a - Add

< Eolllectlons

:g i’_‘;‘w tupes [Fsert |

Rel-types
_ Rales LI ml -
i N

/‘5 Canstraints D Edi | %o

B =

s | S

‘E Clear S

N i -

6 Predefined | %
o | Laoad S
Ve ibrary N\ —l e

S, Save |

S _ G|

~ —
_ Edit library |)

Cancel | Help |

Figure 11.27 - The control panel of the Schema analysis assistant.

The Search mode

Now, let usdefine afirst rule, describing the entity types without identifiers, as
in the previous section. In the Object list, we select the item Entity type (Fi-
gure 11.27), and in the Constraint list we select the rule ID_per_ET, i.e., a
constraint about the number of identifiers per entity type. We add thisruleto
the script area by clicking on the button Add. A new box opens, asking us the
parameters of the rule. The latter defines the range (min max) of the number
of identifiers. Since there must be none, we type the numbers "0 0" (Figure
11.28). Any consistent range can be typed, such as,

e 01 amostli,

e« 13 fromlto3,

* 1IN aleastl,

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-32

e ON any number, i.e., no constraint.

Lesson 11: Logical Design (3)

The definition of the rule can be obtained by clicking on the Help button.

Add/Inzert constraint E
||D_per_ET

Enter constraint parameter :

foo

‘r Mot | QK I Cancell Help |

Figure 11.28 - Parameters of the rule ID_per_ET: describing entity types who-
se number of identifiers is between 0 and 0, i.e., with no identifiers.

Clicking on OK closes the definition of the constraint, which appears in the
Script area (Figure 11.29).

Schema analyzis

I Search Y alidate | I Search [report verified nles]

[T

GROUF per ET
|P|D_|:IEI_ET
ALL ATT ID per ET LI Predefined

Ohbjects Rulez
Reltypes _I
Folos [Freert |
Attributes
rount =i || 2FEEE
Constraints i
el

MaND_ROLE_per ET ;l 4'
OPT_ROLE ET

iL CET - Clear |

ID_per_ET(OO)

Figure 11.29 - The rule defining the entity types with no identifiers appears in

the script area.

Now, clicking on the button OK in the control panel starts the search engine,
which identifies all the instances of the pattern defined by the rule. The dia-

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-33

gnostic appears in a specia box (Figure 11.30), which gives the rule and the
constructs that satisfy thisrule, here AUTHOR.

= LIBRARY /Conceptual analysiz at 19:43:9

The rule

iz verified by
AUTHOR

F'leviousl =0 | Goto | Selectalll tark, all | Report |

Figure 11.30 - The rule ID-per-ET(0 0) is satisfied by entity type AUTHOR.

Several rules can be inserted in the Script area, asin Figure 11.31, which or-
ders the engine to search the schemafor non SQL-compliant constructs: 1S-A
relations (ALL_ISA), rel-types (ALL_RT), multivalued attributes (with max
cardinality from 2 to N) and compound attributes (with at least 1 sub-attribu-
te). Thislist form ascript which can be saved for further reuse.

Rules

add ALL_ISA
ALL_RT

Irsert | Mas_CARD_of ATT(ZN)
SUB_ATT per ATT[NJ

HEmEVE

Figure 11.31 - Script defining four patterns that are not SQL-compliant (same
effect as that of Figure 11.25).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-34 Lesson 11: Logical Design (3)

Starting the search engine yields all the constructs that satisfy one of the rule
of the script. The diagnostic box of Figure 11.32 shows the compound attri-
butes of the schema. Through its control buttons we decide what to do with

these constructs:

e button Previous display the diagnostic for the previous rule,

* button Next display the diagnostic for the next rule,

¢ button Go to when an itemis selected in the list, display the corres-

ponding object in the schema,
« button Select all select all the objects mentioned in the list,
* button Mark all mark all the objects mentioned in the list,

¢ button Report print a report describing the objects mentioned in the
list (Figure 11.33).

= LIBRARY /Conceptual analysis at 20:13:38

The e
SUB_ATT_per ATT[1 N]

iz werified by

BORROWER. Address
COPY Location

Previous | [d[Ewk I Efulin] | Selectalll kark. all | Repart |

Figure 11.32 - The diagnostic box resulting from the analysis of the concep-
tual schema. It reports on the constructs that satisfy the rule
SUB_ATT per ATT (1 N), that describes compound attributes.

The Validate mode

In the Validate mode, the engine searches the schema for constructs that vio-
late at least onerule. Therules now are interpreted as the properties that must
hold in the current schema. in other words, the script defines a model.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-35

The rule: The rule:
ALL RT SUB_ATT per ATT (1 N)
is verified by: is verified by:
borrowing BORROWER.Address
closed-borrowing COPY.Location
of
reference
responsible-for
written

The rule:
MAX CARD of ATT(2 N)
is verified by:
BOOK . Keyword
BORROWER . Phone

Figure 11.33 - Diagnostic report of the script of Figure 11.31 applied on the
conceptual schema.

To illustrate the concept of model defined as alist of rules, we will examine
the script defining the relational model. Before going into further detail, let us
observe that, when defining the parameters of arule, we can modify its value
by using logical connectors, therefore writing complex rules from simpler
ones:

e not negates therule,

 and formsalogical disjunction with the previousrule,

« or formsalogica conjunction with the previous rule.

For example, the rule

ID per ET (1 N)
and PID per ET(1 1)
or ID per ET(0 0)

can be paraphrazed as

any entity type:
(has at least 1 id and has 1 primary id)
or (has no id)
In other words, any entity type, either has identifiers, and in this case, one of
them must be primary, or it has no identifiers at all, or, in better English, if an
entity type has some identifiers, one of them must be primary.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-36 Lesson 11: Logical Design (3)

Schema analysis E3
Search |G ‘Yalidate >| ‘Walidate [report violated rules)

Ohjects Rules

Fiel-type identifiers =] Add | ET_per SCHEMA[T N)
Abtribute identifiers RT_per SCHEMA[D O]
Arccess keys [Frers | SUB_TYPES_per_ISA[0 0]

Fieferential constraints ol ATT_per_ETI1 N]

Processing units 1D_per ET[1 M)
ire— | || P o

OPT_ATT_per_ERID(OO)

Caonstraints Eall | DEPTH_of _ATT(1 1]

NOME_in_LIST_CI_MAME <] and MAX_CARD_af_ATT(1 1)

AL i LIGT NAMES ALL_CHARS_in_LIST _NAMES[ABCDEFGHKLMNOF
ALl in LIST 0l NAMES Clear || 20 NONE in LIS T NAMES($.53]

and LENGTH_of_MAMES([1 31)
and MOME_in_FILE_CI_NAMES[SGL2MAM]

NONE i FICE_HAMES

HIENE i FILE LI NAME
ALL in FILE RAMES | | Predefined|

Figure 11.34 - A script that defines what rules all SQL-compliant schemas
must satisfy. Note that the engine is in the Validate mode.

The script of Figure 11.34 defines what we could consider a good relational
schema. Itsinterpretation isasfollows:

* ET per SCHEMA(1l N)
the schema must include at least one entity type;
* RT per SCHEMA(O 0)
the schema must not include any rel-types;
e SUB_TYPES per ISA(0 0)
no subtypes;
e ATT per ET(1 N)
each entity type must include at least one attribute,
* ID per ET(1 N)
each entity type must have at least one identifier
* PID per ET(0 1)
no more than one primary id per entity type;
* OPT ATT per EPID(0 0)
no optional attributes on primary id of entity types;
* DEPTH of ATT(1 1)

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-37

all the attributes are at level 1;
. and MAX CARD of ATT(1 1)
... and their maximum cardinality is 1 (single-valued),
* ALL CHARS in LIST NAMES (ABCDEF...xyz012...895)

the names are made up of characters (upper or lowercase), digits, 'S’
and '’ (note that '..." stands for the actual characters);

. and NONE in LIST NAMES($,$$)
... but their last character cannot be *$ " nor °_;
. and LENGTH of NAMES (1 31)

... and they must be 1 to 31 character long;
. and NONE_in FILE CI_NAMES (SQL2.NAM)
... and they cannot appear in the list stored in the file SOL2 . nam.

11.10Advanced schema transformation

The Global transformation assistant described in this lesson is quite intuitive
and more than adequate for developing simple scripts. However, it cannot
cope with complex problems, which require more sophisticated tools. The 4d-
vanced global transformation assistant isaimed at addressing thiskind of pro-
blems. Compared withitslittle brother, this assistant does not provide alist of
problems, but rather offersaproblem description facility which isnothing else
than the Schema analysis assistant! The action part isthelist of schematrans-
formation of DB-MAIN, plus some additional operations. In addition, it pro-
vides several control structures such as two kinds of loops and a library
manager through which macro-rules and macro-actions can be devel oped.

Before discussing the scripting facility, we will experiment the building of a
single action. Let us assume that we want to transform the complex rel-types
into entity types.

First, we call the assistant by Assist / Advanced global transformation (Fi-
gure 11.35). Then, we proceed as follows.

1. inthe Primitive transformation list, we select RT _to_ET;

2. weclick on Add (or Insert) asin the first transformation assistant; a new
box opens, asking us the definition the set of objects the transformation
must apply on (Figure 11.36);

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-38

Lesson 11: Logical Design (3)

Advanced global transformation E

Priritive transformations Seript
ET_inta_RT - Add
ET_into ATT
ADD_TECH_ID
SMART_ADD_TECH_ID ﬂl
1S4 into AT

Eemoye |
RT inta 1S4 LI -
Contral structures il
OM -
ENDOM j Clear |
LOOP
EMDLOOP F'redefinedl
ON...ENDON |
Library Load |

Save |
Copy |

Edit librany |

||_ Canfirmation | | Ok I Cancel | Help |

Figure 11.35 - The transformation rel-type/entity type is selected.

Global transformation parameter edit E3

Edit parameters of function ; IF!T_intc-_ET

Ohjects
Reltypes

Constraints

&TT_LENGTH_per AT
ROLE_per AT
OME_ROLE_per AT
N ROLE per AT =l

20/03/2002

Rules

A

(=8
(=]

[reer

Femoye

it

Clear

| | [

Figure 11.36 - The set of rel-type on which we want the transformation being
applied is defined as a rule. We will build a rule by combining the elementary
rule Att_per_RT and ROLE_per_RT.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-39

3. wedefinetheterm complex as. that has attributes or at least 3 roles; the-
refore, we build the rule "ATT_per_RT(1 N) or ROLE_per_RT(3 N)" by
selecting the corresponding constraints asin the Schema analysis assistant
(Figure 11.36 and Figure 11.37);

4. we close the rule box (OK); the expression of the transformation is now
complete (Figure 11.38);

5. we execute the transformation by clicking on the button OK.

Global transformation parameter edit E3
Edit parameters of function ; IF!T_intc-_ET
Ohjects Rules
Reltypes ATT_per RT[1 M]

of ROLE_per_RT[3H]

[reer |
Femoye

Figure 11.37 - The rule that defines complex rel-types.

Advanced global ransformation E
Primitive transfarmations Script
ET_inta RT - Add RT_into ETATT _per_RT[1 M) or ROLE_per RT[3I M]]
ET_into ATT

ADD_TECH_ID
SMART_aDD_TECH_ID sz |
IS4 inta AT

J Hemtye |

Figure 11.38 - The expression of the transformation is completed. It can be
executed by clicking on OK.

Writing a script consists in building a series of such operations, as we did in
the Global transformation assistant. The main addition is the loop control
structure, the body of which comprises an arbitrary sequence of operations. At
run time, the body is executed until the last execution did not change anything
in the schema.

For instance, the fragment,

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-40 Lesson 11: Logical Design (3)

LOOP
DISAGGREGATE
ENDLOOP

processes the current schema iteratively until no compound single-valued at-
tributes can be disaggregated anymore, asin the example of Figure 11.39.

PERSON PERSON
PersNum PersNum
Name Name
Address & Add_Street
Street Add_Cit_PostalCode
City Add_Cit_CityName
Postal Code Add_Pho_Country
CityName Add_Pho_Area
Phone Add_Pho_L ocal
Country
Area
Local

Figure 11.39 - Iterative decomposition of compound attributes.

To understand how all this works, we will develop a small script that trans-
forms conceptual schemas into SQL -compliant schemas.

Scnpt

Add 1S4 _inke_RT
RT_ into ET(ATT_per RT{1 M) or ROLE_per_ RT3 N])
RT_into ET(M_ROLE_per_ RT[Z 2])
| Fsert LOOP
ATT_imbo_ET_INST[MaA_CARD_of _ATT[Z N])
Hemove || DISAGGREGATE
ENDLOOP
Loor

RT_into_REF

SMHART_ADD_TECH_ID
Clear EMDLOOP

MNaME_PROCESSING [ALL_ETL)

MNAME_PROCESSING [ALL_ATT()

it

Predefined

R

Figure 11.40 - A transformation script that can produce a SQL-compliant
schema from (almost) any entity relationship schema.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-41

We follow the transformation plan of Figure 11.5 and Figure 11.15, which
translates into the script of Figure 11.40.

Here follows a short description of the statements the script is made up of.

e ISA into RT
transform all IS-A relations into one-to-one rel-types;

e RT into ET(ATT per RT(1 N) or ROLE per RT(3 N))
transform complex rel-types (with attributes or at least 3 roles) into en-
tity types,

e RT into ET (N ROLE per RT(2 2))
transform many-to-many rel-types (with 2 roles of type many) into entity
types;

e T.OOP
start aloop that processes complex attributes;

e ATT into ET INST(MAX CARD of ATT(2 N))
transform level 1 multivalued attributes (with max-card at least 2) into
entity types through instance representation,

° DISAGGREGATE
disaggregate level 1 single-valued attributes;

e ENDLOOP
close the loop; the loop body is run until no attributes can be transfor-
med;

e T.OOP
start a new loop that process simple rel-types;

. RT into REF
transform all rel-types into reference attributes (foreign keys), the ope-
ration is rerun until no rel-type can be transformed;

e SMART ADD TECH ID

add a technical id to all the entity type that need one in order to allow
rel-types to be transformed (= smart)

ENDLOOP

close the loop and rerun the body until no object can be transformed;
e NAME PROCESSING (ALL ET())

translate the names of the entity types,

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-42 Lesson 11: Logical Design (3)

e NAME PROCESSING (ALL_ATT())

translate the names of the attributes.

This script can be saved for further reuse. The Predefined button provides a
list of built-in scripts that can be used off-the-shelves, or as the basis for deve-
loping new scripts. Worth being examined carefully.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-43

Summary of Lesson 11

¢ |n thislesson, we have studied new notions:
- transformation plan;

- assistants, and particularly the Global transformation and Schema analy-
sis assistants,

- problem/solution statements and scripts;

e We have also learnt how
- to transform an IS-A relation into one-to-one rel-types:
Transform / Entity type / Is-a -> rel-type
- to derive other equivalent structures for IS-A relations
- to usethe Problem solver of the Global transformation assistant
- to usethe Schema analysis assistant
- to usethe Advanced global transformation assistant
- to build and manage scripts

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

part
0-1

11-44

Lesson 11: Logical Design (3)

Exercises for Lesson 11

11.1 Transform the following conceptual schema into a SQL-compliant
schema. Try severa trandations of the IS-A relation.

Another LIBRARY/Conceptual

DOCUMENT

Title
Date

Doc-1D

id: Doc-ID

REPORT

BOOK

Rep-Code
Project

ISBN
Publisher

id':Rep-Code|

id":1SBN

id: REPORT
Seq Nbr

20/03/2002

0-N

COPY

Serial-Number
Date
Localisation

id: de.BOOK
Serial-Number|

Rank AUTHOR
id: g;)nium ENT 1-N——Name
id :DOCUMENT 1s-Namef0-1]
AUTHOR
responsible
01 responsible
3\ ON
/
0-N BORROWER
Pers-ID
Name
Address
Street
City
Phone-Number
id: Pers-1ID
O-N O-Il
/ borrow ;
_/ Date borrowed X O'IN
N Pate returned[0-1] PROJECT
id: COPY -
Date borrowed O-NJ ProjetCode
Name
ContratNumber[0-1]
Company
id: ProjetCode
id’:ContratNumber

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3)

DOCUMENT

DoclD

Title

Author[0-5]

id: DoclD

BOOK

ISBN

DatePub

Publisher

lished

id: ISBN

o\

11-45

11.2 Transform the following schemainto SQL-compliant structures.

REPORT

ReportID
Department

id: ReportID

A

TECHNICAL-BOOK

SCIENTIFIC-BOOK

PROJECT-REPORT

INTERNAL-REPORT

11.3

Domain Theme ProjectlD SecurityLevel
System Level ProjectStatus
DateWritten
To help solve the difficulties of managing the IS-A representation

through the downward inheritance technique, we could propose an im-
plementation based on the following pattern. Try to justify to what ex-
tend thisimprove the management of the D constraint. Develop a set of
triggers to automatically manage this constraint.

CUSTOMER CUSTOMER)
Cust-ID Cust-ID
Name id: Cust-ID
id: Cust-ID
<:> PERSON COMPANY
A Cust-1D Cust-1D
Name Name
Address VAT
PERSON COMPANY id: Cust-1D id: Cust-1D
Address VAT ref ref
DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-46 Lesson 11: Logical Design (3)

11.4 Apply the transformation plan we have built in this lesson to the fol-
lowing conceptual schema. Analyze the result carefully.

PERSON
PID
Name
Address[0-5]
Street
City
Postal-Code
City-Name
Phone[0-3]
Area
Local
Birth-Date

11.5 Same exercise with this schema:

COMPANY
Com-1D
Com-Name
Com-Address

Number
Street
City
Zip-Code
City-Name
Com-Revenue[0-1]
Phone-Number[0-4]

Country
Area
- Locd MARKET
id: Com-1D
id':Com-Name m
Com-Address Size
id: Name

T

replaced substitute
1 o1 o
BRAINCH id: PRODUCT PRODUCT
| _ON BRANCH 0-N
Country Pro-ID
Name Pro-Name
id: belongs. COMPANY id: Pro-1ID
Country

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 11: Logical Design (3) 11-47

11.6 ... and with thisone:

BOOK READER
Book-ID R-Num
Title Name
Y ear Address
Author[0-N] id: R-Num
id: Book-ID
o-N O-N
1-1
'
COPY Nb
NUTber
Date-Acq
id: of BOOK
Number

11.7 Define atransformation plan to express ORM schemasinto Entity-rela-
tionship schemas (see Exercises of Lesson 8). Write, check and save a
script that implements this transformation plan.

11.8 Choose arecord structure you are acquainted with, such as Pascal, C or
COBOL. Design and implement in the Schema analysis assistant a set
of rulesthat can be used to validate any schema against this structure.

119 Design and implement a transformation plan that produces a record
structure (Pascal, C or COBOL) from any conceptual schema.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

11-48 Lesson 11: Logical Design (3)

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12

Physical design

Objective

Thisisthe last lesson dedicated to the LIBRARY case study. It
will introduce to the derivation of the physical schema, i.e, the
schema which specifies not only the logica structures, but also
technical characteristics of the database such as the indexes and
the files in which table rows are stored. In addition, it examines
the tranglation rules into the DBM S data description language.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-2 Lesson 12: Physical Design

12.1 Starting Lesson 12

We start DB-MAIN and we open the project logical-10 (not logical-
11!) which includes the conceptual schema of the database in project, as well
asthefina version of the logical schema. We saveit as LIBRARY.

12.2 What is a physical schema?

There are severa interpretations of the concept of physical schema of a data-
base. Historically speaking, the physical schema was first understood as the
collection of the technical characteristics of the implemented data structures:
index structures, buffer size, page size, free space at loading time, clustering,
pointers, and the like.

We will give this concept a more recent interpretation: the physical schemais
the whole collection of specifications one have to give the DBMS in order to
get an operationa database. The physical schemaisthus made up of thelogi-
cal schema + the technical characteristics and parameters. From the practical
point of view, a physical schema must be expressed into the specific data de-
finition language (or DDL) of the target DBMS.

The logical schema depends on the model of afamily of DBMS: for instance,
alogical model isrelational (what we called SQL-compliant), but a physica
schema is compliant with a specific DBMS of this family, such as ORACLE
V7orV8, DB2, Informix, SQL Server or SYBASE. Inthe sameway, from a
CODASYL logical schema one can derive an IDS-2 (Bull) physical schema,
or an UDS (Siemens) schemaor an IDMS (CA) schema. Thisorganizationis
summarized in the following project structure, in which a conceptual schema
has been translated into an SQL logical model and into a CODASYL logica
schema, and each of them has in turn been translated in a series of physical
schemas. In addition, each physical schema has been expressed into the DDL
of its DBMS. This hypothetical project covers six physical versions of the
same conceptual schema.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-3

LIBRARY /conceptual

LIBRARY/SQL

A 4 4
LIBRARY/ORACLE-7 LIBRARY/DB2 LIBRARY/SYBASE
V V V
oracle7.sql/1 db2.sgl/1 sybase.sql/1

Figure 12.1 - A multi-target project: the same conceptual schema has been
transformed into a relational schema and into a CODASYL schema, then each
of them has been implemented into several DBMS and translated into DDL
programs.

12.3 And what about physical design?

Physical design is a complex and highly knowledge-based activity. Indeed,
developing a schema which satisfies such conflicting criteria as time perfor-
mance, space minimization (core memory and disk), smooth evolution, ease
of maintenance, portability, modularity, ease of exploitation, requires much
technical expertise, and obviously is not ajob for the novice analyst.

Of course, in the limited scope of an introduction to database design, we can-
not go into too detailed a development. So, we will propose avery simplified
approach, quite sufficient to grasp the concept, but a bit too superficia to get
the real taste.

We will consider two phases in physical design. The first one consistsin de-
veloping an abstract physical schema by augmenting the logical schema with
technical specifications. Through the second phase, this physical schemais
translated into the DDL of the DBMS.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-4 Lesson 12: Physical Design

12.4 Building the physical schema of a database

Wewill proposed asimplified procedure which would provide acceptable per-
formances in not-too-demanding applications. The specific features which
will transform alogical schemainto aphysical schemaare: the access keys (in-
dex) and the entity collections (files). A little touch of optimization will also
be discussed: discarding redundant access keys.

The access keys (indexes)

The concept of access key has been presented in Lesson 5 (Section 5.7). An
access key represents any technical data structure that provides quick and se-
lective access to data, therefore avoiding time-consuming sequential access.
In the relational database technology, access keys are implemented as index,
bit-map or hash organization.

Deciding which columns, or column combinations, should be accesskeysisa
complex task based on a careful analysis of the application programs require-
ments. Since we have no information on these requirements (not even on the
programs themselves), we can only make reasonabl e assumptions on them.

For instance, it is not completely unrealistic to suppose that each identifier
should be an access key aswell. Indeed, an identifier often is a preferred se-
lection criterion, for instance to designate a specific object, or to carry out
joins. In addition, inserting a new entity (i.e., arow in atable) requires chec-
king the non-existence of the identifier valuein the entity set (i.e., the table).

Another reasonable hypothesis concerns the foreign keys. Indeed, each of
them derives from arel-type, which represent an outstanding semantic struc-
ture. Most probably, many application programs should use this structure to
retrieve data. We thus make each foreign key an access key.

Other access keys can be added if we think they will be strongly useful to get
better access time. However, such decision cannot be fully justified without
knowledge on the data applications.

Aninteresting feature of relational DBM Sisthat they allow dynamically crea-
ting and dropping an index during the life of the database, and not only at the
definition stage. Therefore, if, later on, we observe that the usage of an index
is lower than expected, we can discard it without restructuring the database.
Similarly, if we think than a formerly unplanned index would have been use-
ful, we can add it dynamicaly. So, an initial error in index definition is har-
mless.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design

REFERENCE KW_OF_BOOK
REFERENCE BOOK_ID
ORIGIN KEYWORD
id: ORIGIN id: BOOK_ID

REFERENCE KEYWORD AUTHOR
acc acc ID_AUT
ref: ORIGIN ref: BOOK_ID NAME
acc ace FIRST_NAME[0-1]
ref: REFERENCE ORIGIN[O-1]
acc WRITTEN id: ID_AUT
ID_AUT acc
500K BOK I
BOOK_ID Id: 'B%é\; T|D BORROWER
TITLE e FID
PUBLISHER ref: BOOK_ID NAME
DATE_PUBLISHED FIRST_NAME
ABSTRACTI[0-1] &c ADD_COMPANY
—- equ: ID_AUT
id: BOOK_lD 2 ace ADD_STREET
acc ADD_ZIP_CODE
COPY BORROWING ADD_CITY
BOOK 1D BOOK 1D RESPONSIBLE[&l]
SERIAL NUMBER SERIAL_NUMBER |id PID
DATE_ACQUIRED BORROW_DATE ac ﬂ
= PID ref: RESPONSIBLE
LOC_STORE -
LOC_SHELF PCODE ad
LOC_ROW . ggg/fil?\lUMBER
E‘EART—SF—VOLUMES rof ace PHONE_OF BORR
. PID
STATE_COMMENT[0-1] ref: PID PHONE
id: BOOK_ID o ‘;:CODE PO
- ref: .
SERIAL_NUMBER Ki o PHONE
acc acc
ref: BOOK_ID CLOSED_BORROWING\ equ: PID
acc BOOK_ID acc B
SERIAL_NUMBER
BORROW DATE
END_DATE
PID
PCODE PROJECT
id: BOOK_ID PCODE
SERIAL_NUMBER TITLE
BORROW_DATE id: PCODE
acc acc
ref: BOOK_ID id: TITLE
L{ SERIAL_NUMBER acc
acc
ref: PID
acc B
ref: PCODE
acc

12-5

Figure 12.2 - Assigning access keys (indexes) to identifiers and foreign keys.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-6 Lesson 12: Physical Design

The schema of Figure 12.2 is the first version of the physical schema. It has
been obtained as follows:

- we select the LIBRARY/L.ogical schema,

- wecopy it under the name/version: LIBRARY/Physical, and weopen
it,

- weopen al theidentifiers and reference groups of this schema, and click
the access key button.

Each id, id’, ref and equ group has been complemented with the specification
acc (for access key).

12.5 Redundant access keys

Though optimizing schemas and physical tuning are not addressed in this vo-
lume, we can apply the popular rule about the indexes of atable or file shortly
mentioned in Section 5.7. The rule is well-known by COBOL programmers,
and comes as follows:

Rule: if X1 isasorted index, if X2 isanother index, and if the fields of
x2 form a prefix of thefields of X1, then X2 can be dropped.

Example: therecordsof afilecomprisesfieldsAl, A2, A3, A4; thefile has
three indexes, based on <aA1,A2,A3>, <A1,A2> and <A1>; the
indexes are implemented by any sort of tree-based techniques
(ISAM, B-treg, etc); in such asituation, theindexes<a1,a2>and
<a1> can be discarded because the DBM S can use the full index
to simulate the other two.

Comments: anindex based on <A2,A3>, <A3>, or even on <A2,A1>must be
kept; in addition, if the implementation of the index is based on
hashing techniques, then the rule does not applies.

We can adapt thisrule to the logical model used in DB-MAIN:

Rule: if accesskey x2 isaprefix of accesskey X1, then X2 can bedis-
carded (Figure 12.3).

In this case study, we will suppose that the index implementation techniques
satisfy the sorted hypothesis.

The current version of the physical schema includes severa patterns of this
kind. Let us examine asingle example (Figure 12.4).

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-7

A A
Al Al
A2 A2
A3 A3
A4 = A4
acc: Al acc. Al
A2 A2
A3 A3
acc. Al acc. A2
A2 Al
acc. Al
acc. A2
Al

Figure 12.3 - Removing prefix access keys.

WRITTEN WRITTEN

ID_AUT ID_AUT

BOOK_ID BOOK_ID

id ID_AUT = id ID_AUT
BOOK_ID BOOK_ID
acc acc

ref: BOOK_ID ref: BOOK_ID
acc acc

equ: ID_AUT equ: ID_AUT
acc

Figure 12.4 - Minimizing the number of access keys of WRITTEN.

Some situations do not comply with this pattern, though shuffling the compo-
nent of the access keys can make prefix access key appear. Let us assume that
the table PHONE OF BORR has been given the identifier and the foreign key
of Figure 12.5/left. Obviously, no access key is a prefix of the other. Howe-
ver, swapping the components of the identifier makes such a pattern appear
(Figure 12.5/right). Now we can minimize the access keys.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-8

Lesson 12: Physical Design

PHONE_OF_BORR PHONE_OF_BORR
PID PID
PHONE PHONE
id: PHONE id: PID

PID PHONE

acc acc
equ: PID equ: PID

acc acc

Figure 12.5 - Shuffling the components of access keys can make prefix ac-
cess keys appear.

Other entity types can berestructured in thisway, in order to drop unnecessary
accesskeys. Be careful however, when you swap the components of an access
key whichisalso aforeign key, or areferenced id, you must preserve the order
of the components at the other side.

Thefinal physical schemais presented in Figure 12.6.

The entity collections (files)

Entity collection is a general name for such things as files, datasets, areas,
realms, table spaces, DBspaces, and any other physical stores (see Lesson 5,
Section 5.8). In arelational DBMS, afileis often caled space, DBspace or
table Spacel.

The designer must specify which files (collections) are available, and in which
file(s) the rows of each table will be stored. There are many reasonsfor which
this assignation can induce good or bad database behaviour, but reasoning on
thisis beyond the scope of thisvolume. Wewill only definethefiles (i.e., the
collections), and specify which tables (i.e., the entity types) will be stored in
thesefiles.

We decide to split the database into two logical subparts:

- the book part, including the tables BOOK, COPY, REFERENCE, WRIT-
TEN, AUTHOR and KW_OF BOOK,

- the borrowing part, which includes the other tables. BORROWER, PRO-
JECT, BORROWING, CLOSED BORROWING and PHONE OF BORR.

1. In some systems, the organization can even be more complex: logical files are mapped to
physical files.

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-9

REFERENCE KW_OF_BOOK
REFERENCE BOOK_ID
ORIGIN KEYWORD AUTHOR
id: ORIGIN id: BOOK_ID D AUT
REFERENCE KEYWORD NAME
acc acc FIRST_NAME[0-1]
ref: ORIGIN ref: BOOK_ID ORIGIN[0-1]
ref: REFERENCE —
acc WRITTEN id- ID_AUT
acc
ID_AUT
BOOK BOOK_ID
BOOK_ID id: ID_AUT BORROWER
TITLE BOOK_ID PID
PUBLISHER acc NAME
DATE_PUBLISHED ref: BOOK_ID FIRST_NAME
ABSTRACTI[0-1] acc ADD_COMPANY
id: BOOK_ID equ: ID_AUT ADD_STREET
acc ADD_ZIP_CODE
BORROWING ADD_CITY
COPY BOOK_ID RESPONSIBLE[0-1]
BOOK_ID SERIAL_NUMBER id: PID
SERIAL_NUMBER BORROW_DATE Al ac ﬁ
DATE_ACQUIRED PID ref: RESPONSIBLE
LOC_STORE PCODE] acc
LOC SHELF id: BOOK_ID
LOC ROW SERIAL_NUMBER
NBR:OF_VOLUM ES ref acc PHONE_OF_BORR
STATE ref: PID PID
STATE_COMMENTI[0-1] acc PHONE
id: BOOK_ID ref: PCODE id: PID
SERIAL_NUMBER K] acc \ PHONE
acc acc
ref: BOOK_ID CLOSED_BORROWING equ: PID
BOOK_ID acc —
SERIAL_NUMBER
BORROW_DATE
END_DATE
PID
PCODE PROJECT
id: BOOK_ID PCODE
SERIAL_NUMBER TITLE
BORROW_DATE "4 PCODE
acc acc
ref: BOOK_|D id: TITLE
SERIAL_NUMBER acc
ref: PID
oo ||
ref: PCODE
acc

Figure 12.6 - Removing the prefix access keys.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-10

REFERENCE KW_OF_BOOK
REFERENCE BOOK_ID
ORIGIN KEYWORD
id: ORIGIN id: BOOK_ID

REFERENCE KEYWORD
acc acc
ref: ORIGIN ref:BOOK_ID
ref: REFERENCE
acc WRITTEN
ID_AUT
BOOK BOOK_ID
BOOK 1D id: ID_AUT
TITLE BOOK_ID
PUBLISHER acc
DATE_PUBLISHED ref:BOOK_ID
ABSTRACT[0-1] acc
id: BOOK_ID equ: ID_AUT
F acc
BORROWING
COPY BOOK_ID
BOOK_ID SERIAL_NUMBER
SERIAL_NUMBER BORROW_DATE
DATE_ACQUIRED PID
LOC_STORE PCODE
LOC_SHELF id: BOOK_ID
LOC_ROW SERIAL_NUMBER
NBR_OF_VOLUMES ref acc
STATE ref:PID
STATE_COMMENT[0-1] acc
id: BOOK_ID ref: PCODE
SERIAL_NUMBER acc
acc e
L ref:BOOK_ID CLOSED_BORROWING|
BOOK_ID

BOOK .dat

AUTHOR
BOOK
KW_OF BOOK
REFERENCE
WRITTEN
COPY

SERIAL_NUMBER
BORROW_DATE
END_DATE

PID

PCODE

id: BOOK_ID
SERIAL_NUMBER
BORROW_DATE
acc

ref: BOOK_ID
SERIAL_NUMBER

ref: PID
acc

ref: PCODE
acc

Lesson 12: Physical Design

TIBRARY/Physical

AUTHOR

ID_AUT
NAME

ORIGIN[0-1]

FIRST_NAME[0-1]

id: ID_AUT
acc

BORROWER

PID
NAME
FIRST_NAME
ADD_COMPANY
ADD_STREET
ADD_ZIP_CODE
ADD_CITY

RESPONSIBLE[0-1]

id: PID
acc

| |ref:RESPONSIBLE

acc

PHONE_OF_BORR]

PID
PHONE

id: PID
PHONE
acc

equ: PID

acc

PROJECT

PCODE

TITLE

id: PCODE
acc

id:TITLE
acc

BORROW.dat

BORROWER
PHONE_OF_BORR
PROJECT
BORROWING
CLOSED_BORROWING

Figure 12.7 - The final physical schema. The tables have been assigned to
collections (storage spaces).

20/03/2002

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-11

We also decide to assign the data of each subpart to a specific entity collection,
namely BOOK . dat and BORROW.dat. So, we create two collections (com-
mand New / Collection, or through the button), and we assign to each of
them the corresponding tables. The schemais shown in Figure 12.7.

12.6 The TECH descriptions

Thetechnical description (the one which is available from the button TECH in
each object property box) isthe perfect place to write the recommandationswe
find useful to transmit to, say, the programmer, or the database manager. For
instance, we can specify DBM S-dependent physical parameters.

12.7 Generating the DDL schema

This coding activity consists in writing the DDL expression of each construct
of the physical schema. In general, a set of coding rules must be defined for
each DBMS. Moreover, each company, each methodology, and even each
analyst can haveitsown coding style. For instance, in relational databases, an
identifier can be coded as a primary key, as a unique constraint, as a unique
index, as acheck predicate or asatrigger. Declaring constraints in the table
declaration or as an alter table, as well as naming, or not, constraints, also are
amatter of style.

Generating the DDL text of a database structure is thus highly context-depen-
dent. Therefore, we can only propose simple and intuitive coding rules that
should be adequate in most Ci rcumstances?.

Instead of giving a comprehensive, and therefore tedious, list of coding rules,
we propose the following translation of the physical schema.

2. Specific coding styles can be defined thanks to customized generators which can be deve-
loped by the analyst (or the methodologist) in the Voyager 2 language, the external develo-
pment language of DB-MAIN, or through the SQL generator of DB-MAIN, which alows
the analyst to select the coding style of each type of constaint, or even of each constraint.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-12

20/03/2002

————————— DB and DBSPACES ---------
create database LIBRARY;

create dbspace BORROW_dat;
create dbspace BOOK dat;

——————————————— TABILES ===============
create table AUTHOR (

ID AUT char(10) not null,

NAME char (30) not null,

FIRST NAME char(30),

ORIGIN char(30),

primary key (ID_AUT))

in BOOK dat;

create table BOOK (
BOOK_ID numeric(6) not null,
TITLE char(30) not null,
PUBLISHER char(40) not null,
DATE_PUBLISHED date not null,
ABSTRACT char (80),
primary key (BOOK ID))
in BOOK dat;

create table BORROWER (
PID char(6) not null,
NAME char (30) not null,
FIRST_NAME char (30) not null,
ADD COMPANY char (40) not null,
ADD_STREET char(40) not null,
ADD ZIP CODE numeric(4) not null,
ADD_CITY char(40) not null,
RESPONSIBLE char(6),
primary key (PID))
in BORROW_dat;

create table BORROWING (
BOOK_ID numeric(6) not null,
SERIAL NUMBER numeric(6) not null,
BORROW_DATE date not null,
PID char(6) not null,
PCODE char (6) not null,
primary key (BOOK ID, SERIAL NUMBER))
in BORROW dat;

Lesson 12

. Physical Design

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-13

create table CLOSED BORROWING (
BOOK_ID numeric(6) not null,
SERIAL NUMBER numeric(6) not null,
BORROW_DATE date not null,
END_DATE date not null,
PID char(6) not null,
PCODE char(6) not null,
primary key (BOOK_ID, SERIAL NUMBER, BORROW_DATE))
in BORROW_dat;

create table COPY (
BOOK_ID numeric(6) not null,
SERIAL NUMBER numeric(6) not null,
DATE_ACQUIRED date not null,
LOC_STORE numeric(2) not null,
LOC_SHELF numeric(2) not null,
LOC_ROW numeric(2) not null,
NBR_OF_VOLUMES numeric(3) not null,
STATE char (10) not null,
STATE_COMMENT char (80) ,
primary key (BOOK ID, SERIAL NUMBER))
in BOOK dat;

create table KW_OF_BOOK (
BOOK_ID numeric(6) not null,
KEYWORD char (30) not null,
primary key (BOOK ID, KEYWORD))
in BOOK dat;

create table PHONE OF_ BORR (
PID char(6) not null,
PHONE numeric(10) not null,
primary key (PID, PHONE))
in BORROW_dat;

create table PROJECT (
PCODE char (6) not null,
TITLE char(30) not null,
primary key (PCODE),
unique (TITLE))
in BORROW dat;

create table REFERENCE (
REFERENCE numeric(6) not null,
ORIGIN numeric(6) not null,
primary key (ORIGIN, REFERENCE))
in BOOK dat;

create table WRITTEN (
ID_AUT char(10) not null,
BOOK_ID numeric(6) not null,
primary key (ID_AUT, BOOK_ID))
in BOOK dat;

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-14 Lesson 12: Physical Design

————————————— Checks for EQU reference attributes ----------
alter table AUTHOR add constraint
check (exists (select * from WRITTEN
where WRITTEN.ID AUT = ID_AUT));
alter table BORROWER add constraint
check (exists (select * from PHONE OF BORR
where PHONE_OF_BOR.PID = PID)) ;

———————————————— foreign keys ----------------

alter table BORROWER add constraint FKRESPONSIBLE_FOR|
foreign key (RESPONSIBLE) references BORROWER;

alter table BORROWING add constraint FKBOR COP
foreign key (BOOK ID, SERIAL NUMBER) references COPY;

alter table BORROWING add constraint FKBOR_BOR
foreign key (PID) references BORROWER;

alter table BORROWING add constraint FKBOR_PRO
foreign key (PCODE) references PROJECT;

alter table CLOSED_BORROWING add constraint FKCLO_COP
foreign key (BOOK ID, SERIAL NUMBER) references COPY;

alter table CLOSED_BORROWING add constraint FKCLO_BOR
foreign key (PID) references BORROWER;

alter table CLOSED_BORROWING add constraint FKCLO_PRO
foreign key (PCODE) references PROJECT;

alter table COPY add constraint FKOF
foreign key (BOOK ID) references BOOK;

alter table KW_OF BOOK add constraint FKBOO_ KW_
foreign key (BOOK ID) references BOOK;

alter table PHONE_OF BORR add constraint FKBOR_PHO
foreign key (PID) references BORROWER;

alter table REFERENCE add constraint FKORIGIN
foreign key (ORIGIN) references BOOK;

alter table REFERENCE add constraint FKREFERENCE
foreign key (REFERENCE) references BOOK;

alter table WRITTEN add constraint FKWRI_BOO
foreign key (BOOK ID) references BOOK;

alter table WRITTEN add constraint FKWRI_AUT
foreign key (ID _AUT) references AUTHOR;

————————————— INDEXES -------------
create unique index ID on AUTHOR (ID_AUT) ;
create unique index ID BOOK on BOOK (BOOK 1ID) ;
create unique index ID_BORROWER on BORROWER (PID) ;
create index FKRESPONSIBLE FOR on BORROWER (RESPONSIBLE) ;
create unique index FKBOR_COP on BORROWING (BOOK_ ID, SERIAL NUMBER) ;
create index FKBOR_BOR on BORROWING (PID) ;
create index FKBOR_PRO on BORROWING (PCODE) ;
create unique index ID CLOSED BORROWING
on CLOSED_BORROWING (BOOK_ID, SERIAL_NUMBER, BORROW_DATE) ;
create index FKCLO BOR on CLOSED BORROWING (PID) ;
create index FKCLO_PRO on CLOSED BORROWING (PCODE) ;

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-15

create
create
create
create
create
create
create
create
create
create

unique index ID COPY on COPY (BOOK ID, SERIAL NUMBER) ;
unique index IDKW_OF BOOK on KW _OF BOO (BOOK_ID, KEYWORD) ;
unique index IDPHONE on PHONE OF BOR (PID, PHONE) ;

index FKBOR_PHO on PHONE OF BOR (PID) ;

unique index ID PROJECT on PROJECT (PCODE) ;

unique index ID PROJECT 2 on PROJECT (TITLE) ;

unique index IDREFERENCE on REFERENCE (ORIGIN, REFERENCE) ;
index FKREFERENCE on REFERENCE (REFERENCE) ;

unique index IDWRITTEN on WRITTEN (ID AUT, BOOK ID) ;

index FKWRI_BOO on WRITTEN (BOOK ID) ;

The complete project that we are developing since Lesson 6 includes four pro-
ducts, asillustrated in 12.8.

Logical-12
LIBRARY /Conceptual

Vi
LIBRARY/Logical
V
LIBRARY/Physical
V
library.ddi/vl

Figure 12.8 - The product hierarchy of the project.

12.8 Getting help from DB-MAIN

DB-MAIN includes specific functions to help building physical schemas and
generating DDL texts. The first function is the relational model transforma-
tion, already used in Leson 3, whilethe others are avail able through the Global
transformation assistants, and can be included into scripts.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-16 Lesson 12: Physical Design

The Relational model transformation

This operator comprises a built-in transformation plan which translates the
current (conceptual or logical) schemainto a physical schema. Thistool fol-
lows aset of rules similar to those which has been described in lessons 11 and
12. It can be called by the command Transform / Relational model.

The Global transformation assistant

Besidesthe Problem/solution statements presented in Lesson 11, this assistant
includes other functions to process a schema more quickly than through indi-
vidua transformations. In addition, these statements can be included into a
script, in order to automatically build physical schemas.

We mention the main statements useful in physical design. They are specified
by their expression in the script area:
¢ Make access key from id. or ref.
All the identifiers and foreign keys are made access keys.
e Add tech. id. when id. > 1 component
* Add tech. id. when id. >2 components
¢ Add tech. id. when id. > 3 components

If the primary identifier ismade up of morethan 1 (or 2 or 3) component(s),
replaceit by atechnical identifier. This optimization technique can simpli-
fy a schema by including simple and short primary identifiers and foreign
keysinstead of complex ones.

* Remove prefix access keys
Remove any access key which is the prefix of another one.
* Rename all groups

Replace the group names with systematic names. Group nameswill be as-
signed to indexes and constraints for instance.
* Generate X

Generate the DDL text for the current schema according to style X (to be
selected).

The predefined script called Pseudo-relational is an example of such logical-
physical script. Other scripts exist, such as Pseudo-CODASYL and Pseudo-
COBOL, for instance, that can produce acceptable CODASYL and COBOL

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design 12-17

file structures. These scripts are not quite comprehensive, and may fail for
some complex schemas, hence the qualifier pseudo.

12.9 Quitting the lesson

We can now quit DB-MAIN. The modified project can be saved with the name
Library.lun.

DB-MAIN Mini-tutorial - © J-L Hainaut 2002 20/03/2002

12-18 Lesson 12: Physical Design

Summary of Lesson 12

¢ |n thislesson, we have studied new notions:
- physical design
- prefix access key

¢ \We have dso have learnt to

- choose and define access keys
- to write scripts for physical design

20/03/2002 DB-MAIN Mini-tutorial - © J-L Hainaut 2002

Lesson 12: Physical Design

12-19

Exercises for Lesson 12

12.1 Propose arelational physical version for this conceptual schema:

COMPANY
COM-ID
COM-NAME
COM-ADDRESS
NUMBER
STREET
cITyY
ZIP-CODE
CITY-NAME
COM-REVENUE[0-1]
PHONE-NUMBER[1-4]
COUNTRY
AREA
LOCAL
id: COM-ID
id :COM-NAME
COM-ADDRESS

BRANCH

COUNTRY

NAME

id: BELONGS.COMPANY
COUNTRY

MARKET
NAME
SIZE
id: NAME
\
0-N
MANUFACTURES
RATIO
id: MARKET
PRODUCT
0-N 0-1
O-N replaces replaced
PRODUCT
PRO-ID
PRO-NAME
id: PRO-ID

12.2 Reverse Engineering. Design atransformation plan to recover the con-
ceptual schemafrom any relationa physical schema. Write the corres-
ponding script in one of the Global transformation assistant. Test it on
the schema LIBRARY /Physica we developed in thislesson. Compare
your solution with the predefined scripts of the assistants (this operation
is called reverse engineering).

12.3 Reverse Engineering. Open anew project and import the SQL text we
have generated in thislesson. To do so, just drag and drop thefile 11 -
brary.ddl fromthe Explorer window to the Project window (another

way: Product / Add text).

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

20/03/2002

12-20

20/03/2002

Lesson 12: Physical Design

Select this product and execute the command File / Extract/ SQL. The
DB-MAIN extractor parses the SQL text and produces a physical sche-
ma. Apply the reverse engineering script you have developed in Exer-
cise12.2.

Examine carefully the resulting conceptual schema. Compare it with
the original schema (LIBRARY/Conceptual). Can you explain the
differences?

DB-MAIN Mini-tutorial - © J-L Hainaut 2002

References

[Batini 1992] Batini C., Ceri S. et Navathe S,, B. - Conceptual Database Design -
An Entity-Relationship Approach, Benjamin/Cummings, 1992.

[Blaha1998] BlahaM. et Permerlani W. - Object-Oriented Modeling and Design
for Database Applications, Prentice Hall, 1998.

[Date 1999] Date C. J. - An Introduction to Database Systems, Addison-Wesley,
1999.

[DBM 1999] Computer-aided Database Engineering - Volume 1: Database Mo-
dels, DB-MAIN Tutoria Series, University of Namur, 1999

[DBM 2002] DB-MAIN Reference Manual, University of Namur, 2002

[Elmasri 2000] Elmasri R. et Navathe S. - Fundamentals of Database Systems, 3rd
Edition, Addison-Wesley, 2000.

[Hainaut 1993] Hainaut, J-L., Chandelon M., Tonneau C., JorisM. 1993a. Contribu-
tion to a Theory of Database Reverse Engineering, in Proc. of the
IEEE Working Conf. on Reverse Engineering, Batimore, May 1993,
|EEE Computer Society Press.

[Hainaut 1994] Hainaut, J-L, Englebert, V., Henrard, J., Hick JM., Roland, D. 1994.
Evolution of database Applications: the DB-MAIN Approach, in
Proc. of the 13th Int. Conf- on ER Approach, Manchester, Springer-
Verlag

[Hainaut 1996] Hainaut, J-L, Roland, D., Hick M., Henrard, J., Englebert, V. 1996.
Database Reverse Engineering: from Requirements to CARE tools,
Journal of Automated Software Engineering, Vol. 3, No. 1 (1996).

[Halpin 1995] Halpin,T., Conceptual Schema and Relational Database Design,
Prentice-Hall, 1995, ISBN 0-13-355702-2 . Consult also http:/
Www.inconcept.com

[Teorey 1999] Teorey, T., Database Modeling and Design, Morgan Kaufman, 1999

Other references from the LIBD on www.info.fundp.ac.be/libd

0-2

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

Index

A

access key 3-5, 5-3, 5-10, 12-4
advanced global transformation 11-37
aligning objects 2-11
analysis of
AUTHOR 7-14
BOOK 7-5
BORROWER 8-2
borrowing 8-7
closed-borrowing 8-9
COPY 7-9
PROJECT 8-7
analysis script 11-28, 11-32
Assist
Advanced global transformation 11-37
Global transformation 11-14, 12-16
Schema analysis 11-29
at least one constraint 6-19
attribute 4-3
atomic 4-5
cardinality 4-4
compound 4-5
inherited 6-9
mandatory 4-5
multivalued 4-5
optiona 4-5
proper 6-9
single-valued 4-5
attribute aggregation 6-15

Cc

cardinality
of attribute 4-4
of group 9-35

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

index-1

20/03/2002

index-2

of role 1-10, 3-3, 4-3
coexistence constraint 6-11
column 5-3
conceptual analysis 7-2
conceptual schema 1-2, 3-2, 4-2, 8-13
copying objects 2-20

D

DBMS 9-2
defining
access key 5-10
attribute 1-8
constraint 4-11, 6-13
entity collection 5-13
entity type 1-7
entity type identifier 1-12
foreign key 5-9
group 4-11, 6-13
project 1-3
rel-type 1-10
rel-typeidentifier 4-11
schema 1-5
semantic description 1-13
technical description 12-11
disoint subtypes 6-5
DMS 9-2
downward inheritance 11-26

E
Edit
Copy 2-20
Copy graphic 2-2
Delete 3-2, 3-10
Mark selected 8-21, 11-29
Paste 2-20
entity collection 5-13, 12-8
entity type 4-3

20/03/2002

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

index-3

equ 5-8, 9-34, 10-9
equality constraint 5-8, 9-34, 10-9
exactly one constraint 6-19
exclusive constraint 6-17
existence constraint

at least one 6-19

coexistence 6-11

exactly one 6-19

exclusive 6-17

File
Close project 2-15
Exit 1-17
Generate / Standard SQL 3-6, 5-18, 12-11
New project 1-3
Open project 2-2
Print 2-20
Printer setup 2-20
Project properties 1-4, 3-2, 4-2
Report / Textual view 2-18, 3-8
Save project 1-16
Save project as 1-16

file 12-8

foreign key 5-3, 5-6, 9-8
multivalued 9-37

G

generating reports 2-18
global transformation assistant 11-14, 12-16
graphical tool bar 2-2

group
cardinality 9-35

identifier 1-12, 4-3
hybrid 4-7

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002 20/03/2002

index-4

multiple 4-6
of rel-type 4-11
primary 4-6
secondary 4-6
index 3-5, 5-3
inheritance 6-2
inverse transformation 6-16
|S-A relation 6-2
IS-A transformation 6-23

L

LIBRARY project
conceptual schema 8-13
logical schema 10-11
physical schema 12-10
SQL code 12-11
logica design 9-1
logical schema 1-14, 3-2, 5-2, 10-11

marking objects 8-21, 11-29
move mode 2-10
multiple inheritance 6-5

N

name processing 5-15, 10-12
New
Attribute 1-8
Attribute / First att. 7-15
Collection 5-13, 12-11
Entity type 1-7
Group 4-11, 5-12
Rel-type 1-10
NIAM model 8-20
Note 2-21

20/03/2002

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

0
ORM model 8-20

P

partial subtypes 6-5
partitioned subtypes 6-5
physical design 9-3, 12-1
physical schema5-17, 12-2, 12-16
predefined script 12-16
prefix access key 5-13, 12-6
primary key 3-5, 5-3
Product

Copy product 3-4

New product 1-5
property box

attribute 1-9

entity collection 5-14

entity type 1-7, 6-3

foreign key 5-11

group 4-11, 5-10

identifier 4-11

project 1-3

rel-type 1-11

schema 1-5

Q
quitting DB-MAIN 1-17

R

reference attribute 5-6
reference group 5-6
relational schema 3-5, 5-2, 9-3
rel-type 4-3

complex 9-13, 9-21

cyclic 4-13, 8-6

identifier 4-11

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

index-5

20/03/2002

index-6

N-ary 4-9, 9-21

with attributes 4-9
reordering attributes and roles 2-16
reverse engineering 5-24, 9-43, 10-19, 12-19
role 1-10, 4-3

inherited 6-9

name 4-13

proper 6-9

S

schemaanalysis 11-28, 11-29

schema analysis assistant 11-29
schematransformation 6-14, 9-7

script 11-18, 11-28, 11-32

secondary key 5-3

semantic description 1-13

semanti cs-preserving transformation 6-16, 7-19
shading objects 3-4

SQL code 1-14, 1-15, 3-6, 5-18, 12-11
SQL-compliant 9-3, 11-36

storage space 5-13, 12-8

subtype 6-2

subtype constraint 6-5, 11-4, 11-22
subtype inheritance 6-8

supertype 6-2

T

table 5-3
table identifier 3-5
technical description 12-11
total subtypes 6-5
Transform
Attribute / -> Entity type 7-10, 7-11, 7-15, 7-19, 8-2, 8-16, 10-4, 10-13, 10-14
Attribute / Disaggregation 6-16, 10-3
Entity type / -> Attribute 7-11, 8-18, 11-24
Entity type / -> Rel-type 9-31
Entity type / Add Tech ID 9-18, 9-38, 10-16

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

index-7

Entity type / Rel-types -> is-a 11-23
Group / -> Rel-type 9-11, 9-36
Group / Aggregation 6-15
Name processing 5-15, 10-12
Quick SQL 1-14
Relational model 3-4, 5-3, 12-16
Rel-type / -> Attribute 9-9, 9-31, 10-14
Rel-type / -> Entity type 9-12, 9-27, 10-6
transformation plan 11-6
transformation script 11-18, 11-37
transforming
attributes 6-15, 7-10, 7-19, 8-2, 8-7, 8-16, 10-13
complex rel-types 9-13, 9-21
components of an identifier 7-25
compound attributes 7-23, 10-2, 10-14
cyclic many-to-many rel-types 9-17
cyclic one-to-many rel-types 9-17
entity types 7-11, 8-18, 9-30, 9-38
foreign keys 9-36
identifier attributes 7-23
IS-A relations 11-4, 11-22
many-to-many rel-types 9-11, 9-16, 10-21
multivalued attributes 7-22, 10-4
names 5-15, 10-12
one-to-many rel-types 9-8, 9-15
one-to-one rel-types 9-10
rel-types 9-27, 9-31
single-valued optional attributes 7-20
through scripts 11-18, 11-37

U
upward inheritance 11-23

Vv

View
Alignment 2-11
Graph. compact 2-4

DB-MAIN Mini-Tutorial - © J-L Hainaut 2002 20/03/2002

index-8

Graph. standard 2-4
Graphical settings 2-4, 2-5
Text Compact 2-7

Text extended 2-8

Text sorted 2-9

Text Standard 2-7

W

Windows
Graphical tools 2-2

Z
Zoom 2-14

20/03/2002 DB-MAIN Mini-Tutorial - © J-L Hainaut 2002

	Table of contents
	Introduction
	Building our first database
	1.1 Introduction
	1.3 Creating a new project
	1.4 Defining a new schema
	1.5 Defining entity types COMPANY and PRODUCT
	1.6 Entering entity type attributes
	1.7 Entering relationship type MANUFACTURES
	1.8 Defining entity type identifiers
	1.9 Documenting the schema
	1.10 Producing a SQL database
	1.11 Saving the project
	1.12 Quitting DB-MAIN
	Summary of Lesson 1
	Exercises for Lesson 1

	A closer look at schemas
	2.1 Starting Lesson 2
	2.2 On including database schemas into a document
	2.3 Graphical views of a schema
	2.4 Textual views of a schema
	2.5 Manipulating the graphical components of a schema
	2.6 Navigation through textual views
	2.7 Reordering attributes and roles
	2.8 Generating reports
	2.9 Copying objects
	2.10 Pasting notes
	2.11 Quitting the lesson
	Summary of Lesson 2
	Exercises for Lesson 2

	Multi-product projects
	3.1 Starting Lesson 3
	3.2 Conceptual and logical schemas
	3.3 SQL code generation
	3.4 Generating reports
	3.5 Multi-product project
	3.6 Deleting objects
	3.7 Quitting the lesson
	Summary of Lesson 3
	Exercises for Lesson 3

	Conceptual Modeling
	4.1 Starting Lesson 4
	4.2 Updating an object
	4.3 What is a conceptual schema?
	4.4 Cardinality of an attribute
	4.5 Mandatory and optional attributes
	4.6 Single- and multivalued attributes
	4.7 Atomic and compound attributes
	4.8 Multiple identifiers
	4.9 Hybrid identifiers
	4.10 N-ary relationship types
	4.11 Relationship types with attributes
	4.12 Relationship types with identifier(s)
	4.13 Cyclic relationship types
	4.14 The complete schema
	4.15 Quitting the lesson
	Summary of Lesson 4
	Exercises for Lesson 4

	Logical and Physical Modeling
	5.1 Starting Lesson 5
	5.2 What is a logical schema?
	5.3 Transformation into a logical schema
	5.4 Reference attributes (foreign keys)
	5.5 Equality reference
	5.6 Defining a foreign key
	5.7 Access keys
	5.8 Defining entity collections
	5.9 Name processing
	5.10 SQL code generation
	5.11 Quitting the lesson
	Summary of Lesson 5
	Exercises for Lesson 5

	Advanced Conceptual Modeling
	6.1 Starting Lesson 6
	6.2 Subtypes and supertypes (is-a relations)
	6.3 Properties of the subtypes of an entity type
	6.4 Supertype / subtype inheritance
	6.5 Coexistent components of an entity type
	6.6 Schema transformations : a first glance
	6.7 Exclusive components of an entity type
	6.8 Groups with at least one, or exactly one, existing component
	6.9 Quitting the lesson
	Summary of Lesson 6
	Exercises for Lesson 6

	Conceptual Analysis (1)
	7.1 Objective of these lessons
	7.2 Conceptual analysis and design
	7.3 The case study
	7.4 The analysis
	7.5 Starting Lesson 7
	7.6 Starting the analysis
	7.7 The books
	7.8 The copies
	7.9 The authors
	7.10 The current schema
	7.11 Quitting the lesson
	Technical addendum
	7.12 The attribute/entity type transformation
	Summary of Lesson 7
	Exercises for Lesson 7

	Conceptual Analysis (2)
	8.1 Starting Lesson 8
	8.2 The analysis
	8.3 The borrowers
	8.4 Borrowings and projects
	8.5 Borrowing history
	8.6 The final schema
	8.7 Quitting the lesson
	Technical addendum
	8.8 Discussion on the attribute/entity type transformation (continued)
	Summary of Lesson 8
	Exercises for Lesson 8

	Logical Design
	9.1 Starting Lesson 9
	9.2 Logical design
	9.3 The concept of Relational Logical Schema
	9.4 Transformational approach to Logical design
	9.5 Dealing with one-to-many relationship types
	9.6 Processing many-to-many relationship types
	9.7 Transforming complex relationship types
	9.8 Logical design, at last!
	9.9 Quitting the lesson
	Technical addenda
	9.10 On the rel-type/entity type transformation
	9.11 On the rel-type/reference attribute transformation
	9.12 On the technical ID transformation
	Summary of Lesson 9
	Exercises for Lesson 9

	Logical Design (2)
	10.1 Starting Lesson 10
	10.2 What to do next?
	10.3 Transforming the compound attributes
	10.4 Transforming the multivalued attributes
	10.5 An (almost) SQL-compliant schema
	10.6 The names
	10.7 Quitting the lesson
	Technical addenda
	10.8 On the equivalence of Instance and Value representations
	10.9 On transforming compound attributes
	Summary of Lesson 10
	Exercises for Lesson 10

	Logical Design (3)
	11.1 Starting Lesson 11
	11.2 Working more systematically
	11.3 Transforming the IS-A relations
	11.4 A transformation plan
	11.5 The Global transformation Assistant
	11.6 Quitting the lesson
	Technical addenda
	11.7 IS-A transformation revisited
	11.8 Elementary schema analysis
	11.9 Advanced schema analysis
	11.10 Advanced schema transformation
	Summary of Lesson 11
	Exercises for Lesson 11

	Physical design
	12.1 Starting Lesson 12
	12.2 What is a physical schema?
	12.3 And what about physical design?
	12.4 Building the physical schema of a database
	12.5 Redundant access keys
	12.6 The TECH descriptions
	12.7 Generating the DDL schema
	12.8 Getting help from DB-MAIN
	12.9 Quitting the lesson
	Summary of Lesson 12
	Exercises for Lesson 12

	References
	Index

