Chapter 6
File Systems

6.1 Files

6.2 Directories

6.3 File system implementation
6.4 Example file systems

Long-term Information Storage

1. Must store large amounts of data

Information stored must survive the

termination of the process using it

Multiple processes must be able to access

the information concurrently

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hip Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

=

1 Byte -

(b)

File Structure

[Ant]| Fox | o |

"Cat "Caw"Dog“ "Goal" Lion" Owll] HPony" Rat "Wcrmﬂ

[Hen [tis Jlame]

(e)

Three kinds of files
— byte sequence

— record sequence

— tree

File Types

. / Module
Magic number nama
Headar
Text size
Data size \
4 Date
_g BS5 size "."
- Object \
2 Symbcl table size module "'. Ownc.r
Entry poirt \ Pratection
Size
N Flags .
Teort
Object
module
Data Haader
Relocation
bits
Cbject
Symbol o
table

(&)

(@) An executable file (b) An archive

File Access

» Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape
» Random access
— bytes/records read in any order
— essential for data base systems

— read can be ...
* move file marker (seek), then read or ...
* read and then move file marker

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up |

ASClI/binary flag
Random access flag

0 for ASCII file; 1 for binary file
0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time
Time of last access

Date and time the file was created
Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

File Operations

1. Create 7. Append

2. Delete 8. Seek

3. Open 9. Get attributes
4. Close 10.Set Attributes

5. Read 11.Rename
6. Write

An Example Program Using File System Calls (1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h>
#include <fentl.h>
#include <stdlib.h>
#include <unistd.h>

/* include necessary header files */

int main(int arge, char *argv(]); /* ANSI prototype */

#define BUF _SIZE 4096
#define OUTPUT _MODE 0700

/* use a buffer size of 4096 bytes */
/* protection bits for output file */

int main(int arge, char *argv(])

{
intin_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

An Example Program Using File System Calls (2/2)

/* Open the input file and create the output file */

in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_ count); /* write data */
if (wt_count <= 0) exit(4); /*wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0)
exit(0);
else
exit(5); /* error on last read */

/* no error on last read */

10

Memory-Mapped Files

Program Program
text text

I Data | Data xyz

(a) (b)

abec

(a) Segmented process before mapping files
into its address space
(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

11

Directories
Single-Level Directory Systems

—~—Root directory

010010

» A single level directory system
— contains 4 files
— owned by 3 different people, A, B, and C

12

Two-level Directory Systems

—<—Root directory

User
. -directory

A B C

A% ©

Letters indicate owners of the directories and files

Files

13

Hierarchical Directory Systems

-n—Hoot directory

A hierarchical directory system

14

Path Names

{=— Root directory
ib
usr
tmp AR

tmp
jm_ ustfim
[et] -
|
L
|
L]

A UNIX directory tree

2

LT LI

H E

5
F|5|k|&

15

Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

16

File System Implementation

-+ Entire disk >

Partition\table Disk Trtiticn
/ \\
[wer] | | [

| Boot block | Super blnckl Free space mgmt | I-nodes I Root dir [Files and directories

A possible file system layout

17

Implementing Files (1)

File A File C File E File G
(4 blocks) (B blocks) (12 blocks) (3 blocks)
—_— —_— PR -
O T T T O T T T T T T T T T T T e 117

— - —
File B File D File F
(3 blocks) {5 blocks) (B blocks)
(a)

(File A) (File C) (File E) (File G)

EEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEEEENEEEE N
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

18

Implementing Files (2)

File A
- - - - 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
> > > 0
File File File File
block block block block
0 1 2 3
Physical B 3 1 14
block

Storing a file as a linked list of disk blocks

19

Implementing Files (3)

Physical
block
0
1
2 10
3 11
4 7 —— File A starts here
5
[3 —— File B starts here
7 2
8
9
10 12
11 14
12 1
13
14 1
15 —— Unused block

Linked list allocation using a file allocation table in RAM

20

Implementing Files (4)

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

RNRERRR

Address of disk block 7

Address of block of pointers

Disk block

containing

additional
disk addresses

An example i-node

Implementing Directories (1)

games E attributes games E il
mail | attributes mail - ..--""'l:’
I . I
news :1 attributes news ,: ‘-._______.__|:|
work ! attributes work ' ..,,\
(a) (b} 1 Data structure
containing the
attributes

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry
(b) Directory in which each entry just refers to an i-node

21 22
Implementing Directories (2) Shared Files (1)
I L [Jotsrecn
: l: ; : - Poi r:: 120 Ti:: ::j\:ms
FleZ omyy longh File 3 attributes
5 O A
File 3 entry length : : :1 E"
File 3 attributes . T = P | Heap
o b P S
H E f o o
(a) (b)
. . . . Shared file
e Two ways of handling long file names in directory
— (a) In-line File system containing a shared file
— (b) In a heap 23 24

Shared Files (2)

C's directory B's directory C's directory B's directory
LY L}
{: \\ /; \\
Owner=C Owner =C Owner=C
Count = 1 Count=2 Count = 1

¢ 1 1
O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

Disk Space Management (1)

1000 — B = = ——— — 1000
Disk space utilization ‘\
c
o = | 5]
2 800 80 £
@ S
X 600 - 60 5§
o] g9
@ s 2
w400 —40 2=
T =
o]
200 |- 20 °
Data rate e
0 4 .] ! L 0
0 128 256 512 1K 2K 4K 8K 16K 0

Block size

» Dark line (left hand scale) gives data rate of a disk
» Dotted line (right hand scale) gives disk space efficiency
» All files 2KB

25 26
Disk Space Management (2) Disk Space Management (3)
BF .Y .31 :zddold Azib as1d
QOFrOFrOFrOrFOOr a8 [, (17 Y ok R Disk
FEFOFFFFFOFFOMTO bET car acr mzﬂ:gry {
orrorrorrorroror Tes <ra ors
FFOFFFOrFOrrOrrD oghk SkE e - - -
FEFFQEFFQEFFOEEE Okl e I
FEEFQOOFOrOrTOrT £gg oar &3
FFFOFQFFOFEF0000 £CC a3 re
FEFFOFTOTOFETOL oar are 8h - - -
FFEFOFFFOOOrOONE agr (154 cat
(a) (b} (c)
FEFQFFFOEEIGEETD Skl \\ oar ore
FEFQFEFQEFFFFOEE Fel S8k S~ are . - -
— e Mol T TR o 1 A (@) Almost-full block of pointers to free disk blocks in RAM
© R - three blocks of pointers on disk
- the free I linked i (b) Result of freeing a 3-block file
(@) Stor_lngt € free list on a finked list (c) Alternative strategy for handling 3 free blocks
(b) A bit map ” - shaded entries are pointers to free disk blocks »8

Disk Space Management (4)

Open file table Quota table

Attributes Soft block limit

disk addresses Hard block limit

User=8

ser Current # of blocks
Quota pointer — # Block warnings left s
record

Soft file limit for user 8
Hard file limit

Current # of files

[|' # File warnings left

Quotas for keeping track of each user’s disk use

29

File System Reliability (1)

File that

has chan 24 o8 File that has
ged 2 not changed

A file system to be dumped
— squares are directories, circles are files
— shaded items, modified since last dump
— each directory & file labeled by i-node number 20

File System Reliability (2)

@ [1]2]3]4|s]|6]|7]8]9]ioft1]12[13}14]15|16|17]18]19]eol21|22|23]24]25]26|27|28[2s[30[31|32]

) [1]2]3]4[5]6]7]8]9]io]t1]12]13[14]15|16]17]18]1o]eol21|22|23]24]25|26|27]28[20|30[3152]

© |1]2]|3]|4]|s|e|7|s|s|iof11]12[r3[14]15]16]17]18]19]20]21]22]23|24|25]26 27 |28]29[30[31|32]

@ [1]2]3]4]s]|6]7]8]a]iof11]12]13|14]15]1617]18|19]20[21]22|23[24]25]26|27[28[20]30]31|52]

Bit maps used by the logical dumping algorithm

31

File System Reliability (3)

DU nurmoen DK T
34567 8 9101112131415 34567 8 9101112131415
|1|1| [1]o[1]1]1]1]o]o]1]1]1]0]o] Blocks in use |1|1|o|1| [1]1]1]1]o]o[1]1]1]o]o] Blocks in use
[o]o]1[o]1]olo]o]o]1]|1]o]o|o[1]1]| Free blocks [o]o]o|o[1]o]o]o]o]1]1]o]o[o]1]1]Free blocks
(a) (b)

234567 89101112131415 2345678 9101112131415

|||||||||||||||||B'°=k5'nuss |||||||||||||||||3'°=k5"wss
[o]o]1]o]2]o[o]o]o[1]1]o|ofo]1]1]Free blocks [o]o]1]o]1]o[o]o]o]1]1]o]o[o]1]1]Free blocks

* File system states
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block

32

File System Performance (1)

Rear (MRU)

Hash table Front (LRU)
—— —— —— —— — — — — i
— | g ——— —— jj

1

The block cache data structures

33

File System Performance (2)

Disk is divided into
cylinder groups, each

I-nodes are
with its own i-nodes

located near
the start
of the disk

Cylinder group

N

\
.;}\\
%

\
R
< -"’
50

-
)
SIS

‘.
iy,
=
vy

U

"
&,
N

S
%=
o
pas

\ A7

%%
R

™
LA

* |-nodes placed at the start of the disk

 Disk divided into cylinder groups
— each with its own blocks and i-nodes
34

Log-Structured File Systems

» With CPUs faster, memory larger
— disk caches can also be larger

— thus, most disk accesses will be writes

o LFS Strategy structures entire disk as a log
— have all writes initially buffered in memory

— periodically write these to the end of the disk log
— when file opened, locate i-node, then find blocks

— increasing number of read requests can come from cache

35

Example File Systems
CD-ROM File Systems

Padding

1 4-15

es 11 8 8 7 12 4

| | | tocationoffie | Filesize |Dateandtime| | | co# || Fiename | isys
Flags ~” f

Interleave [Baseinams |[Ext l:

T_L Extended attribute record length

Directory entry length

The 1SO 9660 directory entry

36

The CP/M File System (1)

Address

OXFFFF BI0S

User program

0x100 Zero page

Memory layout of CP/M

37

The CP/M File System (2)

Bytes 1 8 3 1 2 16
/
File name %
4 ra i A 4
T / / T Disk blocﬁ numbers
User code File type Extent Block count

(extension)

The CP/M directory entry format

38

The MS-DOS File System (1)

Bytes 8 3 1 10 2 2 2 4

Flename | \/////(//% R

/ AR

Extension Attributes Reserved Time Date First

block
number

The MS-DOS directory entry

39

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 2TB
16 KB 1024 MB 27TB
32 KB 2048 MB 21TB

e Maximum partition for different block sizes
» The empty boxes represent forbidden combinations

40

The Windows 98 File System (1)

Bytes 8 3 11 1 4 2 2 4 2 4
N Creation Last Last write P
A N Ed T date/time |access date/time Glmistze
vl 1 f f
ribties: Sec Upper 16 bits Lower 16 bits
of starting of starting
block block

The extended MOS-DOS directory entry used in Windows 98

41

The Windows 98 File System (2)

Bytes 1 10 111 12 2 4
I | 5 characters | l0| l 6 characters l 0 |2 characters
Sequence Attributes

Checksum

An entry for (part of) a long file name in Windows 98

42

The Windows 98 File System (3)

E c
8| d o 9 AlO0(k 0
c
3| o v e Alofk] t h e | a 0 z y
c
2| w n f o |A[O|k| x i u m p 0 s
c
| DR e q |A|O|k| v i c k b | O r o
N Creation |Last Last i
THEQU I ™ 1 AlTlS time ace | UpP write Low Size
Bytes RN P ML L AL YTLRAL T T LI T TILAAL)

An example of how a long name is stored in Windows 98

43

The UNIX V7 File System (1)

Bytes 2 14

File name

T

[-node
number

A UNIX V7 directory entry

44

Disk addresses

The UNIX V7 File System (2)

I-node

Attributes ;
| > Single

1 » indirect

I, block

:j Double

indirect

block

G

=
N

Triple

Addresses of
data blocks

L

indirect
block

I\/#’

A UNIX i-node

AN

45

The UNIX V7 File System (3)

Block 132 |-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory lusr/ast directory
] e 6 |- 26 | -
Mode Mode
U S size 1] e size 6| e
ti ti
4 [bin i 19 | dick A 64 | grants
dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | efc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 |-node 26
Looking up says that /usr/ast says that Jusr/ast/mbox
usr yields fusris in is i-node lusr/ast is in is i-node
i-node 6 block 132 26 block 406 60

The steps in looking up /usr/ast/mbox

46

