Chapter 4

Memory Management

4.1 Basic memory management

4.2 Swapping

4.3 Virtual memory

4.4 Page replacement algorithms

4.5 Modeling page replacement algorithms
4.6 Design issues for paging systems

4.7 Implementation issues

4.8 Segmentation

Memory Management

o Ideally programmers want memory that is
— large
— fast
— non volatile

e Memory hierarchy
— small amount of fast, expensive memory — cache
— some medium-speed, medium price main memory
— gigabytes of slow, cheap disk storage

* Memory manager handles the memory hierarchy

Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ...

Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0

(@) (b) (©

Three simple ways of organizing memory
- an operating system with one user process

Multiprogramming with Fixed Partitions

Multiple

input queues 800K

[H3— Partition 4 Partition 4
TOOK

Partition 3 ~ Single Partition 3

input queue

400K

D— Partition 2 Partition 2
200K

[HH 1} Partition 1 Partition 1
100K

Operating Operating

system 0 system
(a) (b)

» Fixed memory partitions
— separate input queues for each partition
— single input queue

Modeling Multiprogramming

20% 1/O wait

£ 100 |- * -
8

(=4 = i

5 go |- 50% I/0 wait

£

s 60 80% /O wait
S

S 40

5

7 20

o

| | | | | I | |
0 1 2 3 4 5 6 7 8 9 10

Degree of multiprogramming

CPU utilization as a function of number of processes in memory

Analysis of Multiprogramming System

CPU
Amival minutes # Processes
Job time neaded 1 2 3 4
1 10:00 4 CPU idle B0 | B4 | 51| .41
2 10:10 3 CPU busy 20| 36| 49| 59
3 10:15 2 CPUiprocess | .20 | 18 [.16 | .15
4 10:20 2
(a) (b}
2.0 | 5] 1 8 131 Job 1 finishes
1 T 5 T 8 T 1 / 1
| .] . 1.3 X:] 111 [
2 Job 2 starts — ; ' ; — h
[[} 8 131 k-] [I
3 | | [
| 1 131 9 il 7 1
4l | I ; : —
|]] | 1 [
0 1 1 1 | 11 1
0 10 15 20 22 276 282 3.7

Time (relative to job 1's arrival)
(<)

 Arrival and work requirements of 4 jobs
e CPU utilization for 1 — 4 jobs with 80% 1/O wait

» Sequence of events as jobs arrive and finish
— note numbers show amout of CPU time jobs get in each interval

Relocation and Protection

» Cannot be sure where program will be loaded in memory
— address locations of variables, code routines cannot be absolute
— must keep a program out of other processes’ partitions

* Use base and limit values
— address locations added to base value to map to physical addr
— address locations larger than limit value is an error

Swapping (1)

Time —=

%

/ c c c c c
/ B B B B
/ i
A A A

D D D

Operating Operating Operating Operating O Op ing Op
system system system systam system system system

(a) (b) (c) [C] (e) (4] (9)

Memory allocation changes as
— processes come into memory
— leave memory

Shaded regions are unused memory

Swapping (2)

| B-Stack
+ Room for growth f----- .
t J I]’ Room for growth
1 B-Data
B r Actually in use
] B-Program
7
77 77
] A-Stack
r Room for growth ~ p----- o
t] i } Room for growth
] A-Data
A b Actually in use
] A-Program
Operating Operating
system system
(a) (b)

 Allocating space for growing data segment
 Allocating space for growing stack & data segment

Memory Management with Bit Maps

|..A..3..?..1.9...9..|.E.%:§]

.

11111000 |P|o]5|—|—-||-|[5]a|—|——|P[a|a|—|——|P|14|a[—b
11111111
11001111

o (- R - FEE - FEER
FAEIR +

] Hole Starts Length Process
at 18 2
(b) (e)

 Part of memory with 5 processes, 3 holes
— tick marks show allocation units
— shaded regions are free

 Corresponding bit map
e Same information as a list

10

Memory Management with Linked Lists

Before X terminates After X terminates

@| A | x| B becomes IWH/IE
0| A | x 7] vecomes | A 17777
@] x | B | vecomes 177/ B
O VA x W74 veomes 17777

Four neighbor combinations for the terminating process X

11

Virtual Memory
Paging (1)

The CPU sends virtual
CPU addresses to the MMU

package

_— /
/ Memory M Disk
_ -+ Management emory controller
unit

N

The MMU sends physical
addresses to the memory

Bus

The position and function of the MMU

12

Paging (2)

The relation between
virtual addresses
and physical
memory addres-
ses given by
page table

Virtual
address
space

BOK-84K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
OK-4K

} Virtual page

Physical
memory

address

28K-32K

24K-28K

20K-24K

16K-20K

12K-16K

8K-12K

4K-8K

MNl=|lo|o|&|w]|X|X]X]|o|>x]|~]X]X]|X]|x

XK

OK-4K

Page frame
13

Page Tables (1)

A

15| 000

14| 000

13| 000

12| 000

1 1m

10| 000

al 101

000

000

000

100

000

== f=|=l=|e]e|a|=|a]|=|o|e|e]e

8
7
[
50 o
4
3
2
1

110

b= 110 |

001

o o010

| o Present/
absent bit

Virtual page = 2 is used
as an index into the

page table

[1f1]o]afofofo]o]o]o]ofo[1]o]a]
—_———————

12-bit offset
copied directly
from input

to output

lefof1]ofo]o]ofofo[ofa]e[o]1]o]o]

4

Outgoing
physical
address
(24580)

Incoming
wirtual
address
(8196)

Internal operation of MMU with 16 4 KB pages .

Page Tables (2)

Second-level page tables

Top-level
page table

T

Bts 10 0 12

PT1 | P12 Cttsmt

CemEaBs

EEaEER

—

EERREEE

Page
tabie for
tha top
aMal
mamary

32 bit address with 2 page table fields

» Two-level page tables

15

Page Tables (3)

Caching
disabled Modified

r—

Present/absent

/

Page frame number

N\

Referenced Protection

Typical page table entry

16

TLBs — Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging

17

Inverted Page Tables

Traditional page
table with an entry
for each of the 252
pages

252 1

= =
2= A

256-MB physical
memory has 218

4-KB page frames Hash table
216 216 9 ——T
— 1]
0 T 0 0 l —1 I]
Indexed Indexed / \
by virtual by hash on Virtual Page
page virtual page page frame

Comparison of a traditional page table with an inverted page table

18

Page Replacement Algorithms

 Page fault forces choice
— which page must be removed
— make room for incoming page

* Modified page must first be saved
— unmodified just overwritten

 Better not to choose an often used page
— will probably need to be brought back in soon

19

Optimal Page Replacement Algorithm

» Replace page needed at the farthest point in future
— Optimal but unrealizable

 Estimate by ...
— logging page use on previous runs of process
— although this is impractical

20

Not Recently Used Page Replacement Algorithm

» Each page has Reference bit, Modified bit
— bits are set when page is referenced, modified
o Pages are classified
1 not referenced, not modified
2. not referenced, modified
2. referenced, not modified
+. referenced, modified
* NRU removes page at random
— from lowest numbered non empty class

21

FIFO Page Replacement Algorithm

» Maintain a linked list of all pages
— in order they came into memory

» Page at beginning of list replaced

» Disadvantage
— page in memory the longest may be often used

22

Second Chance Page Replacement Algorithm

Page loaded first
Most recently

0 3 7 8 12 14 1
e loaded page

) 18
(@

Alis freated like a

3 8 12 14 15 18 EU/newlylcadedpage

7
B H e P HEHFHS A

(b)

» Operation of a second chance
— pages sorted in FIFO order

— Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)
23

The Clock Page Replacement Algorithm

4]
-
When a page fault occurs,
the page the hand is
/ pointing to is inspected.
El The action taken depends
on the R bit:
R = 0: Evict the page
|I| E| R = 1:Clear R and advance hand

24

Least Recently Used (LRU) Simulating LRU in Software (1)
. . Page Page Page Page Page
» Assume pages used recently will used again soon T T T T BT
— throw out page that has been unused for longest time 1fofololo] [*Tolt[1] [F]o]o]7] [*]o]o]o]| [1]o]o]o0
2lolofo|o0O ojojoj)o 111|011 11|00 111101
. . 3lojojoj|o ojojojo ojojo|o 111]1]0 1]1jo0|o0
» Must keep a linked list of pages @ ® © @ @
— most recently used at front, least at rear
. . ofojo)|0 o111 oj1|1]0 of1j0])0 oj1]0]0
— update this list every memory reference !! ol 7| [ofolt|7]| [olol7lo] [olo]o]o]| [o]o]o]o
1]0]0(1 o|jojo|1 gjljojojoy| [(1]1]0]|1 1]11]0(0
. . 1]0|0|0 o|jlojojo| |1|1|1|o| |1|1|OojoOo] ([1]1]1]0
 Alternatively keep counter in each page table entry . o " . .
— choose page with lowest value counter
— periodically zero the counter LRU using a matrix — pages referenced in order
25 0,1,2,3,2,1,0,3,2,3 26
Simulating LRU in Software (2) The Working Set Page Replacement Algorithm (1)
R bits for i R bits for :‘ R bits for E R bits for i R bits fer
ot S o S Lo S B . A S Rl by
(Tl ol) | T Telel o] | [Tel+ o] | [Te[o[o[e] | [o[Te[o]o]
Page E " ; E W(k,‘t)
0| 10000000 |§| 11000000 | i [11100000 |§| 11110000 |§| 01111000 |
1| ooooo000 ll 10000000 | ¢ [11000000 |] 01100000][10110000 |
2| 10000000 |§| 01000000]E| 00100000 |§| 00100000 |E| 10001000 |
3| oooooooo |§| 00000000]E| 10000000 |§| 01000000]E| 00100000 |
4[10000000 |;| 11000000] I 01100000 |;| 10110000];[01011000 |
5| 10000000 |§| 01000000]| 10100000 |§| 01010000 |§| 00101000 | v
(a) (b) (c) (d) (e)
. : : : » The working set is the set of pages used by the k
e The aging algorithm 5|mu!ates LRU in software most recent memory references
» Note 6 pages for 5 clock ticks, (a) - (€) o w(k,t) is the size of the working set at time, t
27 28

The Working Set Page Replacement Algorithm (2)

Current virtual time

Information about {

R (Referenced) bit

one page 2084 |14

2003 |1
Time of last use ———>-1980 | 1 Scan all pages examining R bit:

if (R==1)

Page referenced __| 1213_10 set time of last use to current virtual time
during this tick

g014 11 if (R == 0 and age > 7)

5020 |1 remove this page

2032 |1 if (R ==0and age < 1)

539,9 "1“':, relflel'r‘encad — — remember the smallest time
uring this ticl 620 0
Page table

The working set algorithm

29

The WSClock Page Replacement Algorithm

it Dty 2
[I
EEEED Lojosa
] —] I —
[TEz0s DS [Tezos [
[C—1 I I
DS BEGR BEER / 0 EEE
=
G [z [ED
I / L1
EEEl I N i
Yo wniT
o feet
e
—]
EEED EEE

&
2]

A

=] =]
d g E
!

8

i

Operation of the WSClock algorithm -

Review of Page Replacement Algorithms

Algorithm

Comment

Optimal

Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

Aging

Efficient algorithm that approximates LRU well

Working set

Somewhat expensive to implement

WSClock

Good efficient algorithm

31

Modeling Page Replacement Algorithms
Belady's Anomaly

All pages frames initially empty

01 2 3 01 401 2 3 4
Youngest page ofj1|2|3]|o|1]4|a]la|2]|3]|3
oj1fa213joj1j1j1114]2]2
Oldest page oj1]|2|3|o|ofjo|1]|4]4
PPPPPPP P P 9 Page faults
(a)
01 2 3 01 401 2 3 4
Youngest page ofj1)2|3]3|3|4|0]1]|2]|3]4
oj1f2)12|2]|3|4j0|1]2]3
Oldest page oj1]1|1]2|3]4|0]1]2
ojojo|1]2|3]4|0]1
PP PP P P P P P P 10Page faults
(b)

FIFO with 3 page frames
FIFO with 4 page frames
P's show which page references show page faults 32

Stack Algorithms

Referencesting 0 2 1 3 5 4 6 3 7 4 7 3 355 311171341
0|2(1|3[5[4]|6[3[7]4]|7[3[3|5]|5[3|1|1|1]7]1]3][4 1
0|2|1]|3|5(/4]|6|3]|7|4]|7]7|3]3]|5][3]|3[3]|1]|7[1]3]4
0]12|1|3|5(4(6]3]|3]|4|4|7|7[7]5]5]5]|3]|3]|7]|1]3
0l2|1]3|5]|4]|6|6|6|6]4|4|4|7]|7|7]5]|5]|5]|7]|7
0f2]1]1[5|5|5|5|5|6|6[|6]4[4]4]4[4]4]5]5
of2f{2|1)1|1|1|1|1[1|1]|6]|6]|6]|6]|B|B|B]|6
ogjoja2jz2jz2fz2jz2j2j2j2j2j2j2j2|j2(2j2|2
0ojojojojojojojofofojojofofojO]O
Page faults PPPPPPP P P P P
Distancestring = = © = = © = 4 « 4 2 3151 26114 ., , o%

State of memory array, M, after each item in
reference string is processed

P(d)

The Distance String

-

P(d)

\—-—

1 d n 1 d

Probability density functions for two
hypothetical distance strings

33 34
The Distance String Design Issues for Paging Systems
- Local versus Global Allocation Policies (1)
1 occurs in
C,- 4 / distance string F,= 19 ~—Cp4Cyu Gyt 4 C, — ?ge 5 .
C,= 2 Fp= 17 |[«—C,+C,+Cg+ ... +C_ a—1 = o
Cy= 1 Fy= 16 |«—C,+C +Cy+ ... +C_ . - &
C4= 4 _ F.1= 12 AS 3 5552 A5
#times BO 9 BO BO
Cs=2 B occurs in Fg= 10 |=—— # of page faults with 5 frames B1 4 B1 B1
c.- 2 / distance string Fm 10 gg g gg B2
Tk]]
C =8 F-g B6 12 B6 B6
- - C1 3 Ci (]
. ® = = =
(a) (b) (c)
» Computation of page fault rate from distance string .. : :
_ the C vector * Original configuration
_ the E vector * Local page replacement
N » Global page replacement .

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Page fault rate as a function of the number of
page frames assigned

Load Control

» Despite good designs, system may still thrash

* When PFF algorithm indicates
— some processes need more memory
— but no processes need less

e Solution :

— swap one or more to disk, divide up pages they held
— reconsider degree of multiprogramming

38

Page Size (1)

Small page size

» Advantages
— less internal fragmentation
— better fit for various data structures, code sections

— less unused program in memory

» Disadvantages
— programs need many pages, larger page tables

39

Page Size (2)

» Overhead due to page table and internal
fragmentation page table space |

overhead internal
« | fragmentation
e Where

— S =average process size in bytes
— p = page size in bytes
— e =page entry

Optimized when

p=+/2se

40

Separate Instruction and Data Spaces

Single address

o space o | space D space

} Unused page

Data

Data

Program { Program {
0 0

» One address space
» Separate | and D spaces

41

Shared Pages

N ——

[

Process
table

Program Data 1 Data 2

~~
Page tables

Two processes sharing same program sharing its page table

42

Cleaning Policy

» Need for a background process, paging daemon
— periodically inspects state of memory

e When too few frames are free
— selects pages to evict using a replacement algorithm

« It can use same circular list (clock)
— as regular page replacement algorithmbut with diff ptr

43

Implementation Issues

Operating System Involvement with Paging

Four times when OS involved with paging
1. Process creation
- determine program size
- create page table
2. Process execution
- MMU reset for new process
- TLB flushed
3. Page fault time
- determine virtual address causing fault
- swap target page out, needed page in
4. Process termination time

- release page table, pages
44

Page Fault Handling (1)

Hardware traps to kernel

General registers saved

OS determines which virtual page needed

OS checks validity of address, seeks page frame
If selected frame is dirty, write it to disk

45

Page Fault Handling (2)

. OS brings schedules new page in from disk

7. Page tables updated

o Faulting instruction backed up to when it began
. Faulting process scheduled

. Registers restored

« Program continues

46

Instruction Backup

MOVE.L #6(A1), 2(A0)

| ———16 Bits ——|
1000 MOVE } Opcode
1002 6 } First operand
1004 2 } Second operand

An instruction causing a page fault

47

Locking Pages in Memory

* Virtual memory and 1/O occasionally interact

 Proc issues call for read from device into buffer

— while waiting for 1/0O, another processes starts up

— has a page fault

— buffer for the first proc may be chosen to be paged out
* Need to specify some pages locked

— exempted from being target pages

48

Main memory

Backing Store

Disk

Pages

I IEA

(a)

Swap area

Main memory Disk
AT oY
Pages el L L A

(b)

(a) Paging to static swap area
(b) Backing up pages dynamically

49

Separation of Policy and Mechanism

User
space

Kernel
space

Main memory

3. Request page

User
process

2. Needed
page

[| 1.Page
fault

Disk

Page fault handling with an external pager

50

Segmentation (1)

Address space
allocated to the
parse tree

|

Virtual address space

Call stack| }

Parse tree

Constant table +

Source text *

[
Symbol table

} Free

Space currently being
used by the parse tree

Symbol table has
bumped into the
source text table

» One-dimensional address space with growing tables
* One table may bump into another 51

20K

12K

8K

4K

0K

Segmentation (2)

16K
12K 12K 12K
Symbol
table
8K 8K |- Parse 8K -
tree
Source Call
text stack
4K 4K - 4K -
Constants
0K 0K 0K 0K
Segment Segment Segment Segment Segment
0 1 3

Allows each table to grow or shrink, independently

52

Segmentation (3)

Consideration Paging Segmentation
Need the programmer be aware Mo Yes
that this technique is being used?
How many linear address 1 Many
spaces are there?
Can the total address space Yes Yes
axceed the size of physical
memory?
Can procedures and data be Mo Yes
distinguished and separately
protected?
Can tables whose size fluctuates No Yas

be accommodated easily?

Is sharing of procedures Mo Yes

between users facilitated?

Why was this technique To get a large To allow programs

invented? linear address and data to be broken
space without up inte logically
having to buy independent address
more physical spaces and fo aid
memory sharing and

protection

Comparison of paging and segmentation

53

Implementation of Pure Segmentation

L P
Segment 4 Segment 4 3K // (SK)/
(7K) (7K) Segment 5 Segment 5 (10K)
(4K) (4K)
965 / 7
Segment 3 Segment 3 Segment 3 o Scament’s
(8K) (8K) (8K) Segment 6 9{ 4K)
(4K)
Segment 6
Segment 2 Segment 2 Segment 2 Segment 2 (4K)
(5K) (5K) (5K) (5K) Segment 2
segment1 | 2N R S, &)
(8K) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment 0 Segment 0 Segment 0 Segment 0 Segment 0
(4K) (4K) (4K) (4K) (4K)
(a) (b) (c) (d) (e)

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction,

Segmentation with Paging: MULTICS (1)
| 1

=+— 36 bits ———=

L l Page 2 entry

T T Page 1 entry 18 3 111 3 3
Segment 6 descriptor Page 0 entry Main memery address Segment langth

of the page tabla (in pagas)
Segment 5 deseriptor Page table for seg 3
Segment 4 descriptor gig:uszl:.u:m.d; _1
Segment 3 descriptor l _L 1 64 words
Segment 2 descriptor I I ?: ﬁx: :i E:fgg.d
Segment 1 descriptor Page 2 entry Miscallaneous bils
Segment 0 descriplor Page 1 entry
Protaction bits
Descriptor segment Page 0 entry

Page table for segment 1

» Descriptor segment points to page tables
 Segment descriptor — numbers are field lengths

Segmentation with Paging: MULTICS (2)

Address within
the segment
Segment number Page Offset within
number the page
18 6 10

A 34-bit MULTICS virtual address

56

Segmentation with Paging: MULTICS (3)

MULTICS virtual address

Page
Segment number s, g Offset
Word
Descriptor Page frame \ ’
Segment | ﬁ ?HSEt
number Descriptor number Page Page
segment table

Conversion of a 2-part MULTICS address into a main memory address
57

Segmentation with Paging: MULTICS (4)

Comparison Is this
field ey
p A . used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
-

 Simplified version of the muLTICS TLB
» Existence of 2 page sizes makes actual TLB more complicated

Segmentation with Paging: Pentium (1)

Bits 13 1 2

Index

/X

0=GDT/1 =LDT Privilege level (0-3)

A Pentium selector

59

Segmentation with Paging: Pentium (2)

0: 16-Bit segment 0: Segment is absent from memory
1: 32-Bit segmentJ 1: Segment is present in memory

—— Privilege level (0-3)
0: Liis in bytes | 0:8ystem
1: Liis in pages | | 1: Application
+7 Segment type and protection
Limit
Base 24-31 G|D|O 16-19 P|DPL|S| Type Base 16-23 4
Base 0-15 Limit 0-15 0
. Relative
32 Bits address

* Pentium code segment descriptor
» Data segments differ slightly

60

Segmentation with Paging: Pentium (3)

Selector Offset

Descriptor

Base address

S Limit

Other fields

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

61

Segmentation with Paging: Pentium (4)

Linear addre:
Bit 10 10 12
‘ Dir Page ‘ Offset |
(a)
Page directory Page table Page frame
Word
selected
1024 N
Entries l
Dir T Ciset
| T
Diractory entry Page table
points to eniry points
page table to word

(b)

Mapping of a linear address onto a physical address

62

Segmentation with Paging: Pentium (5)

r progra,
\ser Programs Typical uses of
3 the levels

Level

Protection on the Pentium

63

