Processes
The Process Model
Chapter 2
O:a-a_ program counter .
our program counters
Processes and Threads I »] oee A
REC el — —
c w B Y ci of| T8 — -

2.1 Processes E AT —

2.2 Threads [F 8 g

2.3 Interprocess communication (=) (k) (c)

2.4 Classical IPC pFOblEIIlS * Multiprogramming of four programs

2.5 SChEdunng * Conceptual model of 4 independent, sequential processes

* Only one program active at any instant
1
Process Creation Process Termination
Principal events that cause process creation Conditions which terminate processes
1. System initialization 1. Normal exit (voluntary)
* Execution of a process creation system 2. Error exit (voluntary)
User request to create a new process 3. Fatal error (involuntary)
2. Initiation of a batch job 4. Killed by another process (involuntary)
3

Process Hierarchies

* Parent creates a child process, child processes
can create its own process

* Forms a hierarchy
— UNIX calls this a "process group"

* Windows has no concept of process hierarchy
— all processes are created equal

Process States (1)

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

* Possible process states
— running
— blocked
— ready
* Transitions between states shown

Process States (2)

Processes

Scheduler

* Lowest layer of process-structured OS
— handles interrupts, scheduling

* Above that layer are sequential processes

Implementation of Processes (1)

Process management Memory management File management
Registers Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment | File descriptors
Stack pointer User D

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

Fields of a process table entry

Implementation of Processes (2)

. Hardware stacks program counter, etc.

. Hardware loads new program counter from interrupt vector.

. Assembly language procedure saves registers.

. Assembly language procedure sets up new stack.

. C interrupt service runs (typically reads and buffers input).

. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

. Assembly language procedure starts up new current process.

CO~N OO BN —

Skeleton of what lowest level of OS does when an
interrupt occurs

Threads
The Thread Model (1)

Process 1 Process 1 Process 1 Process

i \\] | i

User {
space

Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

10

The Thread Model (2)

Per thread items
Program counter

Per process items
Address space

Global variables Registers
Open files Stack
Child processes State

Pending alarms
Signals and signal handlers
Accounting information

* Items shared by all threads in a process

* Items private to each thread

11

The Thread Model (3)

Thread 2

Thread 1 \ T"“ja“

| —~Process

— Thread 3's stack

SER e
Thread 1's — E g H

stack

Kernel

Each thread has its own stack

12

Thread Usage (1)

=
Kernel

Keyboard Disk

A word processor with three threads

13

Thread Usage (2)

Web server process

|
¥

-
Dispatcher thread
Worker thread U
ser
> space
Web page cache
-y
Kernel
Kernel space
Network
connection

A multithreaded Web server

14

Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work({&buf)
handaff_work({&buf); look _for_page_in_cache{&buf, &page);
} if (page _not_in_cache(&page)

read_page_from _disk(&buf, &page);
return_page(&page);
}
(a) (b)

* Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

15

Thread Usage (4)

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process | No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

16

Implementing Threads in User Space

Process Thread

it
=11 588) (888

= | =]
| | B
X,
/ \
Run-time Thread Process
system table table

A user-level threads package

17

Implementing Threads in the Kernel

Process Thread
\ _/
\
Kernel E E
/ I}

Process Thread
table table

A threads package managed by the kernel

18

Hybrid Implementations

Multiple user threads
on a kernel thread

\

User
> space

-

K | Kernel
erne space

Multiplexing user-level threads onto kernel- level threads

S“‘— Kernel thread

19

Scheduler Activations

* Goal — mimic functionality of kernel threads
— gain performance of user space threads
Avoids unnecessary user/kernel transitions
Kernel assigns virtual processors to each process
— lets runtime system allocate threads to processors

Problem:
Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

20

Pop-Up Threads

Pop-up thread
Procass created to handle
L incoming message

Existing thread
Incoming messags
I]
Metwark
(a) (b}

* Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

21

Making Single-Threaded Code Multithreaded (1)

Thread 1 Thread 2

Access (ermo set)

§

~— Time

}

Open (errno overwritten)

;

;

Errno inspected
Conflicts between threads over the use of a global variable

22

Making Single-Threaded Code Multithreaded (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~

Thread 2's
- stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables

23

Interprocess Communication
Race Conditions

Spooler
directory
4 abc] out=4 |
Process A . progc
6 prog.n
7 [in=7 |

Two processes want to access shared memory at same time

24

Critical Regions (1)

Four conditions to provide mutual exclusion
1. No two processes simultaneously in critical region
. No assumptions made about speeds or numbers of CPUs

. No process running outside its critical region may block
another process

. No process must wait forever to enter its critical region

25

Critical Regions (2)

A enters critical region

/ A leaves critical region

Process A ———

B attempts to B enters B leaves
enter critical critical region critical region

e, /

1 B blocked | 1

I
|
I
I
|
|
|
Process B T
|
1
T

Time =

Mutual exclusion using critical regions

26

Mutual Exclusion with Busy Waiting (1)

while (TRUE) { while (TRUE) {

while (turn 1= 0) /* loop */ ; while (turn 1= 1) /* loop */ ;
critical _region(); critical _region();

turn = 1; turn = 0;

noncritical _region(); noncritical _region();

(a) (b)

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

27

Mutual Exclusion with Busy Waiting (2)

#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */

int turn; /* whose turn is it? =/

int interested[N]; /* all values initially 0 (FALSE) */

void enter_region(int process); /* process is 0 or 1 %/

{

int other; /* number of the other process */

other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */

turn = process; /* set flag */

while (tum == process && interested[other] == TRUE) /* null statement */ ;

}
void leave_region(int process) /* process: who is leaving */

interested[process] = FALSE; /* indicate departure from critical region */

}
Peterson's solution for achieving mutual exclusion 28

Mutual Exclusion with Busy Waiting (3)

enter_region:
TSL REGISTER,LOCK
CMP REGISTER,#0 | was lock zerp?
JNE enter_region | if it was non zero, lock was set, so loop
RET | return to caller; critical region entered

| copy lock to register and set lock to 1

leave_region:
MOVE LOCK.,#0
RET | return to caller

| store a 0 in lock

Entering and leaving a critical region using the
TSL instruction

29

Sleep and Wakeup

#define N 100 /* number of slots in the buffer «/
int count = 0; #* number of items in the buffer =/

void producerivaid)

{

int item;

while (TRUE) {
item = produce _item{ }:
if {count == N} sleep();
insert_item(itern); /= put item in buffer *f
count = count + 1; f* increment count of items in buffer */
if {count == 1) wakeup(consumer); /* was buffer empty? #/

i* repeat forever =/
i+ generate next item */
f if buffer ig full, go to sleep #/

void consumer(void)
int item;

while (TRUE) {
if {count == 0) sleep();

i repeat forever «f

i+ If buffer is empty, got to sleep */
item = remove_item() i+ take ttem out of buffer </

count = count — 1; % decrement count of items in buffer «/
if {count == 1) wakeup(producer), /+ was buffer full? =/
consume_item(item): f* print item =

1

Producer-consumer problem with fatal race condition,

Semaphores

wdcfing M 100 S~ numbcr of skts in the buffar +7
typeddef int semaphone; £+ sarmaphores gre 8 special kind of mk -
semaphare mutey = 1; !+ controls aceoss o critical rogion <
semapbore empty — N # counts empty buffer shts «
semaphare full = 0; = counts full butfar skats «*

vaid preducenfveid)

it itzm:
while {TRUL | f= TRUL i the constant 1 =f
item - producs item|); S genergte samething to put in buffar «
o n B ampity): £+ docrament smpty count «
clown (& mukex): s enter pritical region s
insort_itemiitem, £~ put new item in Buffor +
LRl muted; £ lgve cribcal region +
upi&dully; S~ inerement courit of full slots +7
i
1
wilkd crnsumer(void)
int itern;
while (TRUF) | semfimta kiop +7
down&full): = decrement full count «
oS mutex); S enter oritical region =
item = remaove_item() i~ take item from buffor «f
UpiEmute); ¥ leave crical region +
upifempty); f=anciement count of cmpty slots +/

cangume itemiditem);

!

g spmething with the ifem 7

i

The producer-consumer problem using semaphores

Mutexes

mutex_ lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER, #0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again later

ok: RET| return to caller; critical region entered

mutex__unlock:
MOVE MUTEX,#0
RET | return to caller

| store a 0 in mutex

Implementation of mutex_lock and mutex_unlock

32

Monitors (1)

monilor examplie
integer i;
condition ¢;

procedure producer();

end;

procedure consuner();

cnd;
¢nd monitor;

Example of a monitor

Monitors (2)

monitor ProducerConsuiner .
procedure producer;

condition fill, empiy;

ot . hegin
¥ i3 -
n ege;' (’om"a ' L s while irue do
pro-u: ure inseri(tem: integer); heasin
begin item = prod -
if couni = N then wait(fisll); HEM'= Proauce._iem,
; i . - * ProducerConsumer.inserifitent)
inseri _ilem(item);
end
count == couni + 1; .
p .) end;
if couni = 1 then signal(empty) . N
procedure consunter;
end; .
function remove: inleger: begin
hegi . gers while irue do
b count = 0 then wait(empiy): Il
comtl= £n “fﬂ (emply); item = ProducerConsumer.remove,
TeMOVE = Femove _iiem; . .
consume _item(itent)
count = count — 1; end
if couni = N — | then signal(/ull) —
end; !
count == ()

end monitor;

* Qutline of producer-consumer problem with monitors
— only one monitor procedure active at one time

33 — buffer has N slots 34
public class ProducerGonsumer { static class our_monitor { // this is a monitor
static final int N = 100; / constant giving the buffer size private int buffer[] = new int{NJ;
static producer p = new producer{); // instantiate a new producer thread .) T N
static consumer ¢ = new consumer()./7 instantiate a new consumer thread pr'Vate int count_ =0, IO‘: _0= hi :_0= /f counters and indices
static our_manitor mon = new our_monitar(}; / instantiate a new manitor public synchronized void inseri(int val) {
public static void main{String args(]) { if {count == N) go_to_sleep(); //if the buffer is full, go to sleep
p.start(). ir start the producer thread buffer [hi] = val; // insert an item into the buffer
} RS) H et e ponsumer Wread hi = (hi + 1) % N: // slot 1o place next item in
static class producer extends Thread { count = count + 1, { one more item in the buffer now
public void run() { { run method contains the thread code if (count == 1) notify(); {1 if consumer was sleeping, wake it up
int item;]
while {true) { i producer loop . . ;
item = produce_ftem(}: pul_ollc synchronized int remove() {
men.insertitemy; int val;
} if (count == Q) go_to_sleep(); //if the buffer is empty, go 1o sleep
I) B val = buffer [lo]; // fetch an item from the buffer
} private int produce item{}{ ..} / actually produce Io=(lo+1)%N: // slot to fetch next item from
static class consumer extends Thread { count = count—1; // one few items in the buffer
public void run{) | run methad containg the thread code if (count == N — 1) notify(); /1 if producer was sleeping, wake it up
int item; return val;
wh_ile (trug) { # consumer loop 1
Einmsjm";‘i'};enﬂ” ?,::r(n)J ; private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};}
}
})
private void oonsume_itemf_im item) { } actually consume
1 . .
Solution to producer-consumer problem in Java (part 1) Solution to producer-consumer problem in Java (part 2) .

Message Passing

#define N 100 /M number of slots in the buffer »/

vold producer(void)

Barriers

int item;
message m: #* message buffer */ @ @
Wh”eitg:g?réduce_item(¥ #+ generate something to put in bufer +/ Process R B £ 2
receive(consumer, &m); f wait for an empty 1o arrive » E = =
build_message(&m, item), i+ construct a message to send =/ @ - o @ o o @
send{consumer, &m}; /* send item to consumer *¢
, ! ®- ® ®
void consumer{void) IR R R
Time —— Time ——= Time ——=—
int item. i;
message m; (@) ®) ©
for {i = 0; 1 < N; i++) send{producer, &m): /* send N empligs */
while (TRUE} {
receive(producer, &m); /* get message containing item #/ .
item = extract_item(&my}; f* gxtract item from message */ * Use of a barrier
send{producer, &m): ## send back emply reply =/ _ hi barri
consume_item{item): /* do something with the item ~/ processes approaching a barrier
} — all processes but one blocked at barrier
! — last process arrives, all are let through
The producer-consumer problem with N messages
37 38
Dining Philosophers (1) Dining Philosophers (2)
#define N5 /* number of philosophers */
. . void philosopher(int i /* i: philosopher number, from 0 to 4 */
* Philosophers eat/think prilosopher(int) PHosop
. . while (TRUE) {
Eatlng needs 2 forks think(); /* philosopher is thinking */
° Pick one fork at a time take_fork(i); /* take left fork */
take _fork{(i+1) % N); /* take right fork; % is modulo operator */
* How to prevent deadlock eat(): /* yum-yum, spaghetti =/
put_fark(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */
}
}
A nonsolution to the dining philosophers problem
39 40

Dining Philosophers (3)

#define N 5 /* number of philosophers =/
#idefine LEFT (i+N—1)%N /* number of 's left neighbor */
f#define RIGHT (i+1)%N I+ number of i's right neighbor */

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];

semaphore mutex = 1;
semaphore s[N];

I+ philosopher is thinking */

[+ philosopher is trying to get forks */

/* philosopher is eating */

/* semaphaores are a special kind of int =/
[* array to keep track of everyone’s state */
[+ mutual exclusion for critical regions */

/* one semaphore per philosapher */

void philosopher(int i) /* i philosopher number, from 0 to N—1 */

{
while (TRUE) { /* repeat foraver */
think(); /* philosopher is thinking */
take_ forks(i); /* acguire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */
}
}

Solution to dining philosophers problem (part 1)

Dining Philosophers (4)

void take forksfint i) * i: philosopher number, from 0 to N-1 #/

{
down{&mutex}; {* enter critical region =/
state[i] = HUNGRY; / record fact that philosopher 1 is hungry */
testii}; f= try to acquire 2 forks =/
up{&mutex); [+ exit critical region */
down{&s[i]); f* hlock if forks were not acquired =/
H
void put_forks(i) /* i. philosopher number, from 0 to N 1 =/
{
down{&mutex); [enter critical region */
state[i] = THINKING; /= philosopher has finished eating =/
test{LEFT}; f+ see if left neighbor can now eat */
test{RIGHT); f* gee if right neighbar can now eat +/
up{ &mutex); i+ exit critical region */
}
void test(i) = |: philosopher number, from0to N 1 #/
{
if (state[i] == HUNGRY && state[LEFT] = EATING && state[RIGHT] I= EATING}) {
state[i] = EATING;
up{&silk:
H

Solution to dining philosophers problem (part 2)

42

The Readers and Writers Problem

typedef int scmaphors; f* Usc yaur imagination =
semaphare mutes - 1; Snntrols aueess to et e
somaphare db = 1, foontrels accass 1o the databasc -

it r; — 0 F it of processes reading ar wanting ko s

waikd ressce rivoid)

while (TRLIF) [& repeat forever =/
down jEmutox): J got cucluzive accass 1o et
m-rg1; Sana regner mons now £
if {re == 1) downfédbl: = if this 1= the first reader ..~
upi&mute); F4 relerse Brolus ve HUDESS 0TS
read_data_basze(): S access the data ~
down(&mutex): fgat eclugive geeass fo 'y«
e=re 1; S+ anc reador fower naw
if {ro —— 0 uplfdb); Sa i this s the last readar . &)
P& mutex); J* eloasc cuclusive Accoss 10T«

uze data read]);

'

S noneriboal region

1

waid writcrivoid)

while: (TRUL) [J+ repoat forover =7

think up datal); S naneribosl ragion «F

dowmn &k J ol cWclusivie accoss +7
write data base(); S update the data +/
upi&db); S oloasc exclusive accoss =

A solution to the readers and writers problem

43

The Sleeping Barber Problem (1)

44

The Sleeping Barber Problem (2)

#define GHAIRS 5 f 3 chairs for waiting customers «/

typedef int semaphore: f+ use your imagination */

semaphore customers = 0; i+ # of customers waiting for service */
semaphore barbers = 0; #+ # of barbers waiting for customers */
semaphore mutex = 1; f for mutual exclusion */

int waiting = 0; f* customers are waiting (not being cut) */
void barber(void)

while (TRUE) {

down({&customers); # go to sleep if # of customers is 0 «/
down{&mutex); i+ acquire access to ‘waiting’

waiting = waiting — 1; #+ decrement count of waiting customers =/
up(&barbers); i+ pne barber is now ready to cul hair */
up(&mutex); i+ release ‘waiting' +/

cut_hair(; #* gut hair {outside critical region) */

void customer(void)

down{&mutex}; # enler critical region */

if (waiting < CHAIRS) { = If there are no free chairs, leave +/
waiting = waiting + 1, #* ingrement count of waiting customers */
up{&customers); f wake up barber if necessary */
upi{&mutex); /= release access to ‘wailing’ =/
down{&barbers); £+ go to sleep if # of free barbers is 0 */
get haircut(): / be seated and be serviced */

Yelse {
up{&mutex); #+ shop is full; do not wait */

}

' Solution to sleeping barber problem. 45

Scheduling
Introduction to Scheduling (1)

(@ I — — — |

/

Long CPU burst

Waiting for /O
Short CPU burst
(o) [T] { {1 — 1+l ———
Time
—_—

* Bursts of CPU usage alternate with periods of 1/0 wait
— a CPU-bound process
— an I/O bound process

46

Introduction to Scheduling (2)

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Respaonse time - respond to requests quickly
Proportionality - meet users’ expectations
Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems
Scheduling Algorithm Goals

47

Scheduling in Batch Systems (1)

An example of shortest job first scheduling

48

Scheduling in Batch Systems (2)

Arriving
job
Input
queue

¢ Main
O [[IoLRl] ———> Moy

!

Admission
scheduler

Memery Disk

scheduler

Three level scheduling

49

Scheduling in Interactive Systems (1)

Current Mext Currant
process process process
B 0 0] B
(a) {b)

* Round Robin Scheduling
— list of runnable processes
— list of runnable processes after B uses up its quantum

Scheduling in Interactive Systems (2)

Queue
headers

Priority 4

Runable processes

Priority 3

(Highest priority)

Priority 2

Priority 1

(Lowest priority)

A scheduling algorithm with four priority classes

51

Scheduling in Real-Time Systems

Schedulable real-time system
* Given
— m periodic events

— event i occurs within period P; and requires C;
seconds

* Then the load can only be handled if
m C
P

a B

1

Policy versus Mechanism Thread Scheduling (1)

Process A Process B
Order in which
. . threads run
Separate what is allowed to be done with A\
how it is done o
— a process knows which of its children threads il
are important and need priority thread

L1. Kernel picks a process

Scheduling algorithm parameterized
. . Possible: Al, A2, A3, A1, A2, A3
— mechanism in the kernel Not possible: A1, B1, A2, B2, A3, B3

Possible schedulin; g of user-level threads
50-msec p q
* thre: d c/CPU b

* Parameters filled in by user processes
— policy set by user process

53

Thread Scheduling (2)

Process A Process B

1 Kernel picks a thread E

Possible: A1, A2 A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

Possible scheduling of kernel-level threads
* 50-msec process quantum
* threads run 5 msec/CPU burst

55

