Chapter 11

Case Study 2: Windows 2000

11.1 History of windows 2000

11.2 Programming windows 2000

11.3 System structure

11.4 Processes and threads in windows 2000

11.5 Memory management

11.6 Input/output in windows 2000
11.7 The windows 2000 file system

11.8 Security in windows 2000
11.9 Caching in windows 2000

Windows NT

Item Windows 95/98 Windows NT
Full 32-bit system? No Yes
Security? No Yes
Protected file mappings? No Yes
Private addr space for each MS-DOS prog? | No Yes
Unicode? No Yes
Runs on Intel B0Ox86 80x86, Alpha, MIPS, ...
Multiprocessor support? No Yes
Re-entrant code inside OS? No Yes
Plug and play? Yes No
Power management? Yes No
FAT-32 file system? Yes Optional
NTFS file system No Yes
Win32 API? Yes Yes
Run all old MS-DOS programs? Yes No
Some critical OS data writable by user? Yes No

Some differences between Windows 98 and Windows NT

Windows 2000

1)

Version Max RAM | CPUs | Max clients | Cluster size | Optimized for
Professional 4GB 2o 0 Response time
Server 4GB 4 | Unlimited 0 Throughput
Advanced server 8GB 8 | Unlimited 2 Throughput
Datacenter server | 64 GB 32 | Unlimited 4 Throughput

Different versions of Windows 2000

Windows 2000 (2)

Year AT&T BSD MINIX Linux Solaris Win NT

1976 | V6 9K

1979 | V7 21K

1980 4.1 38K

1982 | Syslll 58K

1984 4.2 98K

1986 4.3 179K

1987 | SVR3 92K 1.0 13K

1989 | SVR4 280K

1991 0.01 10K

1993 Free 1.0 235K 5.3 850K | 3.1 6M

1994 4.4 Lite 743K 1.0 165K 35 10M

1996 2.0 470K 4.0 16M

1997 2.0 62K 5.6 1.4M
1999 22 M
2000 Free 4.0 1.4M

5.8 2.0M | 2000 29M

Comparison of some operating system sizes

The Win32 Application Programming Interface

Win32
application

program

Win32 Application Programming Interface

|Win32s|

The Registry (1)

Key

Description

HKEY _LOCAL_MACHINE
HARDWARE

Properties of the hardware and software
Hardware description and mapping of hardware to drivers

SAM Security and account information for users

SECURITY System-wide security policies

SOFTWARE Generic information about installed application programs

SYSTEM Information for booting the system

HKEY_USERS Information about the users; one subkey per user

USER-AST-ID User AST's profile
AppEvents Which sound to make when (incoming emailfax, error, etc.)
Console Command prompt settings (colors, fonts, history, etc.)
Control Panel Desktop appearance, screensaver, mouse sensitivity, etc.
Environment Environment variables
Keyboard Layout Which keyboard: 102-key US, AZERTY, Dvorak, etc.
Printers Information about installed printers
Software User preferences for Microsoft and third party software

Windows 3.x

Windows

95/98/Me Windows NT

Window 2000

HKEY_PERFORMANCE _DATA

Hundreds of counters monitoring system performance

HKEY _CLASSES_ROOT

Link to HKEY _LOCAL _MACHINE\SOFTWARE\CLASSES

The Win32 API allows programs to run on almost all

versions of Windows

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

Link to the current hardware profile
Link to the current user profile

* Top level keys and

selected subkeys

 Capitalization has no meaning but follows Microsoft

practice.

The Registry (2)

Win32 API function Description

RegCreateKeyEx Create a new registry key

RegDeleteKey Delete a registry key

RegOpenKeyEx Open a key to get a handle to it

RegEnumKeyEx Enumerate the subkeys subordinate to the key of the handle
RegQueryValueEx Look up the data for a value within a key

The Operating System Structure

| POSIX program | | Win32 program | | O5/2 program | t

| POSIX subsystem |—>'| Win32 subsystem |-1—| OS/2 subsystem | g

! ! ! B

[System interface (NT DLL.DLL) | l,

System services 1‘

YO mar | object [Process MemorylSecurity] Cache | PnP | Power [Config| LPC | winaz *é

mgr | mgr | mgr | mgr | mgr | mgr | mgr | mgr | mgr | GDI 3
Video

I@I I Kernel driver T

Hardware Abstraction layer (HAL) |

Hardware

Some of the Win32 API calls for using the registry

Structure of Windows 2000 (slightly simplified).

Shaded area is executed
Boxes, D, are device drivers
Service processes are system daemons

Hardware Abstraction Layer

Device Device Spin

registers addresses Interrupts DMA Timers locks BIOS

T T T T T T

| I 1 I I I

| I | I I I
— O ' |raw| | N e
AT} EAR BAX
I | I I | || B
a— 12. 4 i\, | i | I @ I géi
| | I] | 1 SR
E— | | | | | ol b

—! | ' Toe] | |

| I | 1 I I

| I | | I I

| I | | I I

1 1 1 1 1 1

Some of the hardware functions the HAL manages

Implementation of Objects (1)

Object
header <
_
.
Object
data
—

Object name

Directory in which the object lives

Security information (which can use object)

Quota charges (cost to use the object)

List of proc with handles

Reference counts

Pointer to the type object

Object-specific data

The structure of an object

Type name
Access types

Access rights

Quota charges

Synchronizable?

Pageable

Open method

Close method
Delete method
Query name method
Parse method

Security method

9 10
Implementation of Objects (2) Implementation of Objects (3)
Type Description
Process User process
Thread Thread within a process
Semaphore Counting semaphore used for interprocess synchronization
Mutex Binary semaphore used to enter a critical region
Event Synchronization object with persistent state (signaled/not)
Port Mechanism for interprocess message passing
Timer Obiject allowing a thread to sleep for a fixed time interval Handle
Queue Object used for completion notification on asynchronous /O prl?::sl:rB
Open file Object associated with an open file —
Access token Security descriptor for some object .
Profile Data structure used for profiling CPU usage
Section Structure used for mapping files onto virtual address space
Key Registry key
Obiject directory | Directory for grouping objects within the object manager
Symbolic link Pointer to another object by name
Device 1/O device object
Device driver Each loaded device driver has its own object
Some common executive object types
managed by the object manager " The relationship between handle tables, objects and type objects b

The Object Name Space

Directory Contents
?? Starting place for looking up MS-DOS devices like C:
Device All discovered I/O devices
Driver Objects corresponding to each loaded device driver
ObijectTypes The type objects
Windows Objects for sending messages to all the windows
BaseNamedObjs | User-created objects such as semaphores, mutexes, etc.
Arcname Partition names discovered by the boot loader
NLS National language support objects
FileSystem File system driver objects and file system recognizer objects
Security Objects belonging to the security system
KnownDLLs Key shared libraries that are opened early and held open

Some typical directories in the object name space

13

Environment Subsystems (1)

Gdiz2.dil —-|] =

User32.dl —»D —
Enviroment
subsystem Kernel32.dll ——
process
(csrss.exe) ob
User oa
space

3b
| System interface (ntdll.dll)
4b 3a
Kernel | 4 Y
space { Operating system

Various routes taken to implement Win32 API function calls
14

Environmental Subsystems (2)

File Mode | Fens Contents
hal.dll Kernel 95 | Low-level hardware management, e.g., port /O
ntoskrnl.exe | Kernel | 1209 | Windows 2000 operating system (kernel + executive)
win32k.sys Kernel - Many system calls including most of the graphics
ntdil.dlil User 1179 | Dispatcher from user mode to kernel mode

CSrss.exe User 0 | Win32 environment subsystem process

kermnel32.dll | User 823 | Most of the core (nongraphics) system calls

gdiz2.dil User 543 | Font, text, color, brush, pen, bitmap, palette, drawing, etc. calls
user32.dll User 695 | Window, icon, menu, cursor, dialog, clipboard, etc. calls
advapi32.dll | User 557 | Security, cryptography, registry, management calls

» Some key windows 2000 files
— mode they runin
— number of exported function calls
— main contents of each file

o Calls in win32k.sys not formally exported

— not called directly
15

Processes and Threads (1)

Name Description
Job Collection of processes that share quotas and limits
Process | Container for holding resources
Thread Entity scheduled by the kernel
Fiber Lightweight thread managed entirely in user space

Basic concepts used for CPU and resource management

16

Processes and Threads (2)

/ Process \

User
stack

Process D I:l-ﬂ— Kernel mode thread stack —b-|:| EI
handl
taart‘ﬂee IE' -1— Access token El

Relationship between jobs, processes, threads, and fibers

Job, Process, Thread & Fiber Mgmt. API Calls

Win32 API Function Description

CreateProcess | Create a new process

CreateThread Create a new thread in an existing process
CreateFiber Create a new fiber

ExitProcess Terminate current process and all its threads
ExitThread Terminate this thread

ExitFiber Terminate this fiber

SetPriorityClass Set the priority class for a process
SetThreadPriority Set the priority for one thread

| CreateSemaphore Create a new semapahore
CreateMutex Create a new mutex
OpenSemaphore Open an existing semaphore
OpenMutex | Open an existing mutex
WaitForSingleObject Block on a single semaphore, mutex, etc.

WaitForMultipleObjects | Block on a set of objects whose handles are given

PulseEvent Set an event to signaled then to nonsignaled
ReleaseMutex | Release a mutex to allow another thread to acquire it
ReleaseSemaphore Increase the semaphore count by 1
EnterCriticalSection Acquire the lock on a critical section
LeaveCriticalSection Rel the lock on a critical section

Some of Win32 calls for managing processes, threads and fibers

17 18
Scheduling (1) Scheduling (2)
Priority
(31
Win32 process class priorities Next thread to run
Above Below ¥
Realtime | High | Normal | Normal | Normal | Idle S;IV;‘;:‘S —QO
Time critical 31 15 15 15 15 15 E &t
Highest 26 15 | 12 10 8 6 —0O—0O
Win32 Above normal 25 14 11 9 7 5 \16
thread Normal 24 13 10 8 6 4 (—0O-0
priorities | Below normal 23 12 9 7 5 3 _O
Lowest 22 11 8 6 4 2 User _O_O_O_O_O_O
Idle 16 1 1 1 1 1 prorities < &
—O—0O—0
—O

Mapping of Win32 priorities to Windows 2000 priorities

19

! 1
lero page thread -0

Idle thread

Windows 2000 supports 32 priorities for threads ,,

Scheduling (3)

Blocked

Does a down on the
semaphore and blocks

A

s
s
/,
s

/" Would like to do an up
on the semaphore but
Ready never gets scheduled

Waiting on the semaphore

(a) (b)

An example of priority inversion

MS-DOS Emulation

/ Process

MS-DOS program

Trampoline —»|_‘:| y |4

Operating system

How old MS-DOS programs are run under Windows 2000

21 22
fce Process A Process B Process C
Process Deschipion 0 pemmme—e=] lke—e————aq —m———
idle Not really a process, but hame to the idle thread ENonpageclpool thonpegecipool itsonpagecipooll
system Creates smss.exe & paging files; reads registry; opens DLLs | _Paged pool _ | _Paged pool _ Paged pool
Smss.exe First real proc; much initialization; creates csrss & winlogon _E's]:fais_ta_bﬂ_eg _ETs_p_aEe_teTbl_s; _as_jaie_ta_bl_e?
csrss.exe Win32 subsystem process e oI [P~
winlogon.exe Login daemon |2 CHEGB [EEEoeancE [BESE e 0B
Isass.exe Authentication manager HAL + OS HAL + 0S HAL + OS
services.exe Looks in registry and starts services 2 GB g stom data_ | _Systemdata_ | _System data_
Printer server Allows remote jobs to use the printer
File server Serves requests for local files
Telnet daemon Allows remote logins Process A's Process B's Process C's
Incoming email handler | Accepts and stores inbound email private code private code private code
Incoming fax handler Accepts and prints inbound faxes and data and data and data
DNS resolver Internet domain name system server
Event logger Logs various system events
Plug-and-play manager | Monitors hardware to see what is out there A I I
Bottom and top
P t t d) b t h 64 KB are invalid
° rocesses starting u uring noo ase .
g4tp g P * Virtual address space layout for 3 user processes
* Those above the line are always started . .
. . °
» Those below are examples of services which could be started White areas are private per process
”s Shaded areas are shared among all processes

24

Fundamental Concepts (2)

Backing store on disk
A

Process A N Process B
Stack | —'""——__'_
Region{ Data h"‘«-_,_‘_-‘_‘q e
agng R -
aging file
Shared | .
- | ‘-““L‘
todl e Shared
_____ >~ | library
o I .
E Program

Progl.exe

Prog2.exe

» Mapped regions with their shadow pages on disk
 The lib.dll file is mapped into two address spaces

Memory Management System Calls

Win32 API function Description

VirtualAlloc Reserve or commit a region
VirtualFree Rel or decommit a region
VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region
VirtualLock Make a region memory resident (i.e., disable paging for it)
VirtualUnlock Make a region pageable in the usual way
CreateFileMapping Create a file mapping object and (optionally) assign it a name
MapViewOiFile Map (part of) a file into the address space
UnmapViewOfFile Remove a mapped file from the address space
OpenFileMapping Open a previously created file mapping object

The princi

pal Win32 API functions for

mapping virtual memory in Windows 2000

at same time 2 2
Implementation of Memory Management Physical Memory Management (1)
Bits 20 3 111111111 . Zero page needed (8)
T ///, Page read in (6)
7 Not 4 Wi
Page frame d4G[L [P|A[Cl, |V[WV
[use t Soft page fault (2)
7Y
To, Al A
Working i
G: Page is global to all processes Wt: Write through (no caching)
L: Large (4-MB) page U: Page is accessible in user mode Mod- Standby Free Zeroed Bad
) o i ek g ified page page page RAM
D: Page is dirty W: Writing to the page permitted page [podified | list Deanoc(g) list |7er0 [list page
A:Page has been accessed V: Valid page table entry list | page page list
writer(4) thread (7)
Bottom
2 . r

A page table entry for a mapped page on the Pentium

27

Page evicted from a working set (1)

Process exist (3)

The various page lists and the transitions between them

28

Physical Memory Management (2)

Page frame database
Page tables

State Cnt WS Other PT Next

_______ >
14 | Clean X =

13 [Dirty X
List headers 12 | Clean]

11 | Active 20 1 ;l >
[CStandby }— 10 [Clean

9 | Dirty N
Active 4
Dirty
Free X
Free —
X

D
>
Lol D
Y,

Zeroed
Active 14
Zeroed

O =M WO~ o

Some of the major fields in the page frame data base for a valid pages

Input/Output API Calls

API group Description
Window management | Create, destroy, and manage windows,
Menus Create, destroy, and append to menus and menu bars
Dialog boxes Pop up a dialog box and collect information
Painting and drawing Display points, lines, and geometric figures
Text Display text in some font, size, and color
Bitmaps and icons Placement of bitmaps and icons on the screen
Colors and palettes Manage the set of colors available
The clipboard Pass information from one application to another
Input Get information from the mouse and keyboard

Categories of Win32 API calls

30

Device Drivers

Llser process

User
program

hi
| Rest of windows |

| Driver
stack

I Function | I Function

| Monaiithic || Bus | | Bus |

[Hardware abstraction layer |

l Controller I I Controller] I ‘Contraller I

! l l
SO

Windows 2000 allows drivers to be stacked

File System API Calls in Windows 2000 (1)

Win32 API function | UNIX Description

CreateFile open Create a file or open an existing file; return a handle
DeleteFile unlink | Destroy an existing file

CloseHandle close | Close afile

ReadFile read Read data from a file

WriteFile write Write data to a file

SetFilePointer Iseek | Set the file pointer to a specific place in the file
GetFileAttributes stat Return the file properties

LockFile fentl Lock a region of the file to provide mutual exclusion
UnlockFile fentl Unlock a previously locked region of the file

* Principle Win32 API functions for file 1/0
« Second column gives nearest UNIX equivalent

32

File System API Calls in Windows 2000 (2)

* Open files for input and output. */

inhandle = CreateFile("data", GENERIC _READ, 0, NULL, OPEN_EXISTING, 0, NULL);

outhandle = CreateFile("newf", GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

* Copy the file. */
do {

s = ReadFile(inhandle, buffer, BUF _SIZE, &count, NULL);

if (s && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);
} while (s > 0 && count > 0);

* Close the files. */
CloseHandle(inhandle);
CloseHandle(outhandle);

A program fragment for copying a file
using the Windows 2000 API functions

33

File System API Calls in Windows 2000 (3)

Win32 API function UNIX Description
CreateDirectory mkdir Create a new directory
RemoveDirectory rmdir Remove an empty directory
FindFirstFile opendir | Initialize to start reading the entries in a directory
FindNextFile readdir | Read the next directory entry
MoveFile rename | Move a file from one directory to another
SetCurrentDirectory chdir Change the current working directory

* Principle Win32 API functions for directory
management

» Second column gives nearest UNIX equivalent,
when one exists

34

File System Structure (1)

1KB

Lt

o

w

14 eserved
13 eserved for future use 7

5]

eserved for future use) 2777777777
tExtend Extentions: quotas,etc
bUpcase Case conversion table
$Secure Security descriptors for all files
$BadClus List of bad blocks
$Boot Bootstrap loader

$Bilmap Bitmap of blocks used
] Root directory

Metadata files
>

bAttrDef Attribute definitions

bVolume Volume file

[SLogFile Log file to recovery

M#tMirr_Mirror copy of MFT
Mt Master File Table

O =MNWaOo=-oo

J

The NTFS master file table

35

File System Structure (2)

Attribute

Description

Standard information

Flag bits, timestamps, etc.

File name

File name in Unicode; may be repeated for MS-DOS name

Security descriptor

Obsolete. Security information is now in $Extend$Secure

Attribute list

Location of additional MFT records, if needed

Object ID

64-bit file identifier unigue to this volume

Reparse point

Used for mounting and symbolic links

Volume name

Name of this volume (used only in $Volume)

Volume information

Volume version (used only in $Volume)

Index root Used for directories
Index allocation Used for very large directories
Bitmap Used for very large directories

Logged utility stream

Controls logging to $LogFile

Data

Stream data; may be repeated

The attributes used in MFT records

File System Structure (3)

Standard File name Data -=—— Info about data blocks —

info header header header
Record Header Run#1 Run #2 Run #3
header -~

Standard

I File name || O i 9 20? 4 545 2 805 3 %Unused%
record E : : I /////

MTF info

e y

0]]

o S

] e
'

H i

'
"
]
1 [

oiscwioes [[TT] [T1 [TT1
=

[—— ———
Blocks numbers 20-23 64-65 80-82

An MFT record for a three-run, nine-block file

37

File System Structure (4)

109
108 JJRun #m-+{
107
106
105 J[JRun #k+1] |Run m |«—— First extension record
104
103

102] MFT 105 [MFT 108]Run #1]: - |Run #k|<—— Base record
101

100

| Runn P77/ -<—— Second extension record

A file that requires three MFT records to store its runs

38

File System Structure (5)

A directory entry contains the MFT index for the |
the length of the file name, the file name itself,
and various fields and flags

Standard Index root
info header header

Record
header

Standard /////////

Unused

info /////////

The MFT record for a small directory.

39

File Name Lookup

5. Return handle

\?? Directory \Devices MFT for HD volume 1

| Handle |

C: ~ web.htm
D: k C
maria
Harddisk Volume 1) [

\b Root directory 4

1. Look up C:in\??

4. Create new
file object

2. Follow symbolic link
to get disk portion

3. Look up path name

Steps in looking up the file C:mariaweb.htm

to calling process

40

File Compression

File Encryption

Original uncompressed file K retrieved
by applying
Random user's private
|||||I|IIII|||II||||||||I||||I|||||I|||II||II|||| 128-bit key, K koyfaziored. K
l Disk key on disk l
.24 3
| Compressed | | | | l U:nc:'.oEnFi:r%s:se{d l | | | Compressed
Disk addr 30 37 55 85 92 Plaintext file | podified C = Encrypted file= | Modified Plaintext file
@) DES DES
Header Five runs (of which two empties)
Standard || . : ////////// Y_ V_
info || lename || 0 {48308 0:8|40:16(85;8 |0 |8 Encryption Decryption
: ' I : : K encrypted with
(b} user's public key
(@) An example of a 48-block file being compressed to 32 blocks
(b) The MTF record for the file after compression Operation of the encrypting file system
41 42
Security in Windows 2000 Security API Calls (1)
Security
descriptor
File
s : Den‘y
de:z::gr 15";'151 } ACE
[—— Header Ao
Expiration| G Default | U G Restricted | o . . Owner's SID Cal
DACL Allow
SACL a3
111111
Allow
Everyone
100000
Header
Audit
Marilyn }ACE
111111
Structure of an access token
Example security descriptor for a file "

43

Security API Calls (2)

Win32 API function

Description

InitializeSecurityDescriptor

Prepare a new security descriptor for use

LookupAccountSid

Look up the SID for a given user name

SetSecurityDescriptorOwner

Enter the owner SID in the security descriptor

SetSecurityDescriptorGroup

Enter a group SID in the security descriptor

InitializeAcl

Initialize a DACL or SACL

AddAccessAllowedAce

Add a new ACE to a DACL or SACL allowing access

AddAccessDeniedAce

Add a new ACE to a DACL or SACL denying access

DeleteAce

Remove an ACE from a DACL or SACL

SetSecurityDescriptorDacl

Attach a DACL to a security descriptor

Principal Win32 API functions for security

45

Caching in Windows 2000

User process reads from a file

Call is handled in shared library

Kermel32.dl

Actual system call is made

FAT-32

The path through the cache to the hardware

Call is caught by cache manager
If block is absent, page fault
Call to file system to get block

Call to disk driver to read block

46

