Chapter 10
Interface
l Users
Library -1
Case Study 1: UNIX and LINUX e Sttty pogars !
y . l (shell, editors, compliers etc)
System User
call mode
interface Standard library
+ (open, close, read, write, fork, etc) 1
10.1 History of unix
o . UNIX operating system f
10.2 Overview of unix (process management, memory management, Kernel mode
10.3 Processes in unix the file system, /O, etc) ¥
10.4 Memory management in unix Hardware
10.5 |npUt/OUtpUt in UniX (CPU, memory, disks, terminals, etc)
10.6 The unix file system
10.7 Security in unix
1
Program Typical use
cat Concatenate multiple files to standard output
chmod Change file protection mode
cp Copy one or more files System calls Interrupts and traps
cut Cut columns of text from a file = T
grep Search a file for some pattern Terminal handing Sockets naming pinl:; fau?ts . Process
head Extract the first lines of a file : S hg:tgdrlliar:g creation and
Is List directory Cookedtty | Network protocols . 's:tlleern . m:r:-l:ry termination
make Compile files to build a binary Raw y
mkdir Make a directory tty Line Routin Buffer 1 Page Process
od Octal dump a file disciplines 9 cache | cache scheduling
paste Paste columns of text into a file Character Network Disk Process
pr Format a file for printing devices device drivers device drivers dispatching
rm Remave one or more files
rmdir Remove a directory Hardware
sort Sort a file of lines alphabetically
tail Extract the last lines of a file
tr Translate between character sets
Approximate structure of generic UNIX kernel
A few of the more common UNIX utility programs required by POSIX
3

pid = fork();

Processes in UNIX

if (pid < 0) {

handle_error();

} else if (pid > 0) {

/* if the fork succeeds, pid > 0 in the parent */

/* fork failed (e.g., memory or some table is full) */

/* parent code goes here. /*/

} else {

}

/* child code goes here. /*/

POSIX

Signal Cause
SIGABRT | Sent to abort a process and force a core dump
SIGALRM | The alarm clock has gone off
SIGFPE A floating-point error has occurred (e.g., division by 0)
SIGHUP The phone line the process was using has been hung up
SIGILL The user has hit the DEL key to interrupt the process
SIGQUIT | The user has hit the key requesting a core dump
SIGKILL Sent to kill a process (cannot be caught or ignored)
SIGPIPE The process has written to a pipe which has no readers
SIGSEGV | The process has referenced an invalid memory address
SIGTERM | Used to request that a process terminate gracefully
SIGUSR1 | Available for application-defined purposes
SIGUSR2 | Available for application-defined purposes

System Calls for Process Management

System call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts)

Wait for a child to terminate

s = execve(name, argv, envp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

s = sigaction(sig, &act, &oldact)

Define action to take on signals

s = sigreturn(&context)

Return from a signal

s = sigprocmask(how, &set, &old)

Examine or change the signal mask

s = sigpending(set)

Get the set of blocked signals

s = sigsuspend(sigmask)

Replace the signal mask and suspend the process

s = kill(pid, sig)

Send a signal to a process

residual = alarm(seconds)

Set the alarm clock

s = pause()

Suspend the caller until the next signal

S IS an error code
pid is a process ID

residual is the remaining time from the previous alarm

while (TRUE) {
type_prompt();

POSIX Shell

/* repeat forever /*/
/* display prompt on the screen */

read_command(command, params); /* read input line from keyboard */

pid = fork(); /= fork off a child process */
if (pid < 0) {
printf("Unable to fork0); /* error condition */
continue; /* repeat the loop */
}
if (pid = 0) {

waitpid (-1, &status, 0);

}else {

/= parent waits for child =/

execve(command, params, 0); /* child does the work */

}

A highly simplified shell

Threads in POSIX

Thread call

Description

pthread_create

Create a new thread in the caller's address space

pthread_exit

Terminate the calling thread

pthread_join

Wait for a thread to terminate

pthread_mutex _init

Create a new mutex

pthread_mutex_destroy

Destroy a mutex

pthread_mutex_lock

Lock a mutex

pthread_mutex_unlock

Unlock a mutex

pthread_cond _init

Create a condition variable

pthread_cond_destroy

Destroy a condition variable

pthread_cond_wait

Wait on a condition variable

pthread_cond_signal

Release one thread waiting on a condition variable

The Is Command

PID = 501 PID = 748 PID = 748

New process — Same process —

1. Fork call 3. exec call
\, 2. new sh 4 ?ﬂivlesﬂajd
creaed _, [cods |
[}

] I
Allocate child's process table entry Find the executable program
Fill child's entry from parent Verify the execute permission
Allocate child's stack and user area Read and verify the header
Fill child's user area from parent Copy arguments, environ to kernel
Allocate PID for child Free the old address space
Set up child to share parent's text Allocate new address space
Copy page tables for data and stack Copy arguments, environ to stack
Set up sharing of open files Reset signals
Copy parent's registers to child Initialize registers

Steps in executing the command Is type to the shell

9 10
Hi9h§st B
pnorny::g : 4}
-4 Waiting for disk 1/0 - Pt iy
Flag Meaning when set Meaning when cleared 3 Wiaiting for disk buffer in kernel mode
CLONE_VM Create a new thread Create a new process 2 Walting for terminal input
CLONE_FS Share umask, root, and working dirs | Do not share them A7 wahin o tarminl oot =D
CLONE_FILES Share the file descriptors Copy the file descriptors __g - _P
CLONE_SIGHAND | Share the signal handler table Copy the table 0 | Yallng or chidto owiel —1
CLONE_PID New thread gets old PID New thread gets own PID a L a8 priorty.0
1 User priority 1 —O—O
o Process waiting
2 User priority 2 in user mode
3 User priority 3 _O
. - - . I~ : ~
Bits in the sharing_flags bitmap Lowest T) _
- priority Process queued
on priority level 3
The UNIX scheduler is based on a multilevel queue structure
11

12

Booting UNIX

Process 2

Terminal 1 Terminal 2

‘T

Terminal 0

The sequences of processes used to boot some systems
13

Handling Memory

Physical E
ysicalmemoty _ Process B ack pointer

Stack pointer- Process A)
Y [y P \

ALY,
A,
S,
Vs
vz

Unused
memaory.

G
)

7 - .
20K —Bés— 3 4. BS
"-Dala" 2
8K e : S : 8K
. Text - Text 0K

» Process A's virtual address space
* Physical memory
» Process B's virtual address space

14

Sharing Files

Process A Physical memory Process B

Stack pointer — el ,,-—:?—4— Stack pointer

i }}Mapped file
111
Mapped fIIe{HH
INEN

Text '_,-"'—' oS

A new file mapped simultaneously into two processes

15

System Calls for Memory Management

System call Description
s = brk(addr) Change data segment size
a = mmap(addr, len, prot, flags, fd, offset) | Map afile in
S = unmap(addr, len) Unmap a file
* sisanerror code

b and addr are memory addresses
len is a length

prot controls protection

flags are miscellaneous bits

fd is a file descriptor

offset is a file offset

16

Paging in UNIX

Main memory Core map entry
s N Index of next entry Used when
e ~ page frame is
Index of previous entry on the free list
b Disk block number
Disk device number
Page frame
Block hash code
Page frame Index into proc table
1
Two-handed = > Text/'data/stack
clock scans aga;irame
core map 0 Offset within segment
@/ A ~
4.3BSD :
Locked in
kernel +— 2
Core map | | | | memaery bit
entries, one

per page frame Free Intransit Wanted

The core map has an entry for each page

17

Paging in Linux (1)

Page
Page
Global middle Page 1 Word selected
directory directory table
_] I)
Directory | Middle | Page | Cffset | Virtual address

Linux uses three-level page tables

18
Paging in Linux (2) Networking
Sending process Receiving process
32 32 32 32 32 32 32 32 / \
Q\,.\ /—p User space
o4 8 8 8 8 T
16 16 16 7 Z Z [Socket T Kernel space
32 > 2 -
8 : 8
18 8 ‘ 8 \ 8 8 8 18 L Connection J
Network
: Use of sockets for networkin
Buddy algorithm g
19

20

Terminal Management

Function call

Description

s = cfsetospeed(&termios, speed)

Set the output speed

s = cfsetispeed(&termios, speed)

Set the input speed

s = cfgetospeed(&termios, speed)

Get the output speed

s = cfgtetispeed(&termios, speed)

Get the input speed

s = tcsetattr(fd, opt, &termios)

Set the attributes

s = tcgetattr(fd, &termios)

Get the attributes

The main POSIX calls for managing the terminal

21

UNIX 1/0 ()

Device Open Close Read Write loctl | Other
Null null null null null null

Memory null null mem_read | mem_write null

Keyboard | k_open | k_close k_read error k_ioctl

Tty tty_open | tty_close | tiy_read tty_write | tty_ioctl

Printer Ip_open | Ip_close error lp_write | Ip_ioctl

Some of the fields of a typical cdevsw table

22

UNIX 1/0 (2)

User
space

Reading/writing files

Cooked Raw interface
interface to tordev/tty
Idevitty |

L
File system

Kernel < | Buffer cache |

Line disciplines

| Disk drivers | |

H. -.‘
+——

The UNIX 1/O system in BSD

23

User moda {

Kernel mode <

An example of streams in System V

Streams

Computer

~
g

-1

Stream head

TCP

Stream head

4
TCP

P

Ethemet driver

¥
Token ring driver

Ethemet controller

A

Ethernet

¥
Token ring controller

Token Ring

24

The UNIX File System (1)

Directory Contents

bin Binary (executable) programs
dev Special files for 1/O devices
etc Miscellaneous system files

lib Libraries

usr User directories

Some important directories found in most UNIX systems

25

The UNIX File System (2)

bin bin
dev dev
etc etc
lib lib
tmp tmp
EN | usr |

fred / \ lisa fred/ \ lisa

a
b
(-

X

y
z

X

|y
=l 4

®x 0O oW

(a) (b)

(a) Before linking. (b) After linking

26

The UNIX File System (3)

Hard disk Diskette Hard disk

(a) Before mounting. (b) After mounting

27

Locking Files

Process As
shared
lock

e]
{a}lo 1|2 3%4%/5//56%728|9|1U|11|12|13|14|15‘

A's shared lock

1D[11|12[13|14|15]

SoEOnnn

(a) File with one lock
(b) Addition of a second lock
(c) A third lock

28

System Calls for File Management

System call Description
fd = creat(name, mode) One way to create a new file
fd = open(file, how, ...) Open a file for reading, writing or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) | Move the file pointer
s = stat(name, &buf) Get a file's status information
s = fstat(fd, &buf) Get a file's status information
s = pipe(&fd[0]) Create a pipe
s = fentl(fd, cmd, ...) File locking and other operations

* sisan error code
o fd is a file descriptor
 position is a file offset

29

The Istat System Call

Device the file is on

I-node number (which file on the device)
File mode (includes protection information)
Number of links to the file

Identity of the file’s owner

Group the file belongs to

File size (in bytes)

Creation time

Time of last access

Time of last modification

Fields returned by the Istat system call.

30

System Calls for Directory Management

System call Description
s = mkdir(path, mode) Create a new directory
s = rmdir(path) Remove a directory
s = link(oldpath, newpath) | Create a link to an existing file
s = unlink(path) Unlink a file
s = chdir(path) Change the working directory

dir = opendir(path) Open a directory for reading

s = closedir(dir) Close a directory

dirent = readdir(dir) Read one directory entry
rewinddir(dir) Rewind a directory so it can be reread

* sisan error code
o dir identifies a directory stream
 dirent is a directory entry

31

UNIX File System (1)

Boot Super
block block

| nodes Data blocks

o o

Disk layout in classical UNIX systems

32

UNIX File System (2)

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 39 Address of first 10 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 | Time the i-node was last changed (except the other times)

Structure of the i-node

UNIX File System (3)

Cypen file
description

Mode

ion
RW / -
Painter to i-node Link count
File position Uid

Gid

Painter to i-node:

File size

Y] Times

Addresses of .
first 10 Edlnters lo

disk blocks disk blocks
Single indirect
Deuble indirect
Triphe indirect

Triple
indirect /
block Double
indirect /
block

*

indirect

The relation between the file descriptor table, the
open file description

33 34
UNIX File System (4) The Linux File System
I-node number
/ Entry size
/ Type
Fllename!en:gml - e Boot| Block group O | Block group 1 | Block group 2 | Block group 3 | Block group 4 | -+
(a)|1 i\.F.a.Wbssal 195\5':5105 voluminous aailiDisi bigdir %HUS% ---——’-'____,-——" H“"““'--___‘h
v _/ v E— “‘(?“
Super—| Group | Block |l-node Data
e SRR block | descriptor | bitmap | bitmap I-nodes blocks .
« A BSD directory with three files Layout of the Linux Ex2 file system.
* The same directory after the file voluminous
has been removed . .

Network File System (1)

Client 1 Client 2

Jusr/ast

— Mount
fusrfastiwork

o P y

cat cp Is mv sh

/bin

Server 1 Server 2

» Examples of remote mounted file systems
« Directories are shown as squares, files as circles

Network File System (2)

Client kernel

Server kernel

| System call layer |
¥

l Virtual file system layer 99 n-.-T»—- V- node

Local Local NFS
FS 1 FS 2 cllenl

[Bulfar cache

Y
8 Meszage
to server
Local disks

Virtual file system layer 9090

NFS Looal
server FS 1 FS 2

Message
from client

Local disks

|

The NFS layer structure

38

Security in UNIX

System Calls for File Protection

Description

Binary Symbolic Allowed file accesses
111000000 | rwx—————— Owner can read, write, and execute
111111000 | rwxrwx——— Owner and group can read, write, and execute
110100000 | rw—r————-— Owner can read and write; group can read
110100100 | rw—r——r—— Owner can read and write; all others can read
111101101 | rwxr—xr—x Owner can do everything, rest can read and execute
000000000 | —=—==—===——=— Nobody has any access
000000111 | —————— rwx Only outsiders have access (strange, but legal)

Some examples of file protection modes

System call

s = chmod(path, mode)

Change a file's protection mode

s = access(path, mode)

Check access using the real UID and GID

uid = getuid() Get the real UID
uid = geteuid() Get the effective UID
gid = getgid() Get the real GID
gid = getegid() Cet the effective GID

s = chown(path, owner, group)

Change owner and group

s = setuid(uid)

Set the UID

s = setgid(gid)

Set the GID

e SIS an error code

 uid and gid are the UID and GID, respectively

40

