CS345 Operating
Systems

Tutorial 2: Producer-Consumer
Threads, Shared Memory,
Synchronization

Threads

e A thread is a light - weight process

e A thread exists within a process, and uses the
ProCeSsSs resources

e |t is asynchronous
e The program in C calls the header file.

e How to compile:

Creating a thread

int pthread_create(pthread_t * thread, pthread_attr_t *afttr,
void * (*func)(void*), void *arg);

Returns O for success, (>0) for error.

e 1st arg (*thread) — pointer to the identifier of the created thread

e 2nd arg (*attr) — thread attributes. If NULL, then the thread is
created with default attributes

e 3rd arg (*func) — pointer to the function the thread will execute

e 4th arg (*arg) — the argument of the executed function

Creating a thread

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void *hello world(void * ptr) {
printf ("Hello World! I am a thread!\n");
pthread exit (NULL) ;

int main(int argc, char * argv][]) {
pthread t thread;
int rc;

if (rc) |
printf ("ERROR: return code from pthread create()
sd\n", rc) ;
exit (-1);

pthread exit (NULL) ;

is

Shared memory

e A Is a portion of physical
memory that is virtually shared between multiple
processes

¢ |n this assignment we are dealing with intra-process
communication

e All the global variables of a program-process are
shared memory for it’s threads

Shared memory - Concerns

e Needs concurrency control/synchronization
o Data inconsistencies are possible

> Two threads update a shared counter at the same time
without synchronization, causing the final value to be
iIncorrect due to race conditions

e Processes should be informed if it’s safe to read and
write data to the shared resource

Thread synchronization mechanisms

e Mutual Exclusion (mutex)

O Used to serialize access to the shared memory
O

® Semaphores

O A generalized mutex, that allow us to split the
buffer and access separately each resource

Mutexes

e Guard against multiple threads modifying the
same shared data simultaneously

e Provide locking/unlocking critical code sections
where shared data is modified

e Each thread waits for the mutex to be
unlocked (by the thread who locked it) before
performing the code section

Mutexes - Create and initialize

e Mutex variables are declared with type pthread mutex t, and must
be initialized before they can be used.

e There are two ways to initialize a mutex variable:

1. Statically, when it is declared
0 pthread mutex t mut = PTHREAD MUTEX INITIALIZER

2. Dynamically, with the pthread_mutex_init() routine.
o This method permits setting mutex object attributes, attr.
o The mutex is initially unlocked.

e Routines:
O pthread mutex init (mutex, attr)

O pthread mutex destroy (mutex)

Mutexes — Basic functions

int pthread mutex lock(pthread mutex t*mutex);
int pthread mutex trylock (pthread mutex t*mutex);

int pthread mutex unlock (pthread mutex t*mutex);

e A mutex is like a key (to access the code section) that
IS handed to only one thread at a time

e The lock/unlock functions work together

e A mutex is unlocked only by the thread that has locked it

#include <pthread.h>

int main() {
int tmp;

// initialize the mutex
tmp = pthread mutex init (&my mutex, NULL);

// create threads

do something private();

return 0;

e \Whenever a thread reaches the lock/unlock block, it first determines if the

mutex is locked.
o |f so, it waits until it is unlocked
o Otherwise, it takes the mutex, locks the succeeding code, then frees
the mutex and unlocks the code when it's done

Semaphores

Counting Semaphores:
e Permit a limited number of threads to execute a section
of the code

e Similar to mutexes
o If we use binary semaphores it’'s the same

e Should include the header file

e Semaphore functions do not have pthread prefixes;
instead, they have sem prefixes

Semaphores — Basic Functions

e (Creating a semaphore:

int sem init (sem t*sem, int pshared, unsigned int value);

o Initializes a semaphore object pointed to by sem
O pshared is a sharing option
m If pshared has the value 0, then the semaphore

is shared between the threads of a process
o G@Gives an initial value value to the semaphore

e TJerminating a semaphore:
int sem destroy (sem t*sem);
o Frees the resources allocated to the semaphore
o An error will occur if a semaphore is destroyed for
which a thread is waiting

Semaphores — Basic Functions

e Semaphore Control:
int sem post(sem t*sem);
o Atomically increases the value of a semaphore by 1
o When 2 threads call sem_post simultaneously, the
semaphore's value will also be increased by 2

e \Waiting for a semaphore:
int sem wailt (sem t*sem);
o Atomically decreases the value of a semaphore by 1
o Always waits until the semaphore has a non-zero
value first

Mutex vs Semaphores

MeBodoc

T eival

Aettoupyia

Semaphore

2uvnBlopevn
neBodog
Signal
mechanism

Integer
Counting or
binary semaphore

[MoAAaTTAQ vrjpaTa
TIPOYPAUHATOG
LUTIOPOUV VA €XOLV
Tipoofaon o€

TIEPLOPLOPEVO aPLOPO

instance Ttnywv.

MuteXx

Locking mechanism

Object

[ToAAaTTIAQ vhpaTa
TIPOYPAUHATOG
UTIOPOUV VA EXOLV
Tipoofaocn oe Evav
TIOPO, AAAQ OXl
TAUVTOXPOVA.

Mutex vs Semaphores

Akaiwpata
Tipodofaonc

TOTTOL

MNwc

Wait? (rtéte pmaivw
oto critical area)

Semaphore

H Tipn g
semaphore pttopei va
avavewbei arod
OTIOLOONTIOTE
dlepyaoaia.

Binary (0 kat 1)
Counting (1,2,3...n)

Signal/Post and wait
Xpnotyortolouvtat ya
va aAAQEoLV TNV TN

™G

[MeplpEvw PEXPL TO
counter Tou
resource va avénoei.

MuteXx

Movo n diepyaoia
TTOU KAEIOWOE TO
mutex, YTtopei va
TO EEKAELOWOEL.

No types

Request the lock
: trylock, lock
Release : unlock

[MeppuEVW PEXPL TO
lock va yivel release.

#include <pthread.h>
#include <semaphore.h>

void *thread function(void *arg);

sem_t semaphore; // also a global variable just like
mutexes

void *thread function(void *arg) {
sem walt (&semaphore);
perform task when sem open/()

4

pthread exit(NULL);

int main () {
int tmp;

// initialize the semaphore
tmp = sem init(&semaphore, 0, 0);

// create threads
pthread create(&thread[i], NULL,
thread function, NULL);

while (still has something to do()) {
sem post (&semaphore) ;

}

pthread join(thread[i], NULL);
sem destroy(&semaphore) ;
return 0;

Example

e The main thread increments the semaphore's count
value in the while loop

e the threads wait until the semaphore's count value is
non-zero before performing
perform_task_when_sem_open()

A Simple working Example

Creating a thread that prints “Hello World”

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void *hello world(void * ptr) {
printf ("Hello World! I am a
thread!\n"); pthread exit (NULL);

int main(int argc, char * argvl[]) {
pthread t thread;
int rc;

1f (rc) |
printf ("ERROR: return code from pthread create() 1is
sd\n", rc) ;
exit(-1);

pthread exit (NULL) ;

A Simple working Example

e C(Creating two threads:
o The first prints "Hello" and the second prints "World".

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void *print Hello(void *ptr) ({
printf (“Hello”) ;
}

void *print World(void *ptr) ({
printf (“World”) ;
}

int main (int argc, char * argv[]) {
pthread t tl1, t2;
int rc, rc2;

if (rc) |

printf ("ERROR: return code from pthread create() is %d\n", rc);
exit (-1);

}

if (rc2) {
printf ("ERROR: return code from pthread create() is %d\n", rc);
exit (-1);

}
pthread join(tl, NULL);
pthread join(t2, NULL);

A Simple working Example

e The previous example sometimes prints "Hello World", sometimes prints "World Hello"
e Using a semaphore can synchronize them.
o Now the thread t2 will never be executed before the first threat t1.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>

sem t sem;
void *print Hello(void *ptr) {

sem post (&sem); //semaphore unlocked (Up)!!

}

void *print World(void *ptr) {
//semaphore locked (Down) !
printf ("World\n") ;
}

int main(int argc, char * argv[]) {
pthread t tl1, t2;
int rcl, rc2;

sem init(&sem, 0, 0); /*Initialize semaphore with intraprocess scope*/

rcl = pthread create(&tl, NULL, print Hello, NULL);
rc2 = pthread create(&t2, NULL, print World, NULL);

pthread join(tl, NULL);
pthread join(t2, NULL);

