
Assignment 4 Tutorial

Linux Scheduler

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-345: Operating Systems
Computer Science Department

University of Crete

Outline

● Linux Scheduler

● Scheduler internals

● History

● Assignment 4

2

Linux Kernel

● Heart of the Operating System

● Interface between resources and
user processes

● What the Kernel does
○ Memory Management
○ Process Management
○ Device Drivers
○ System Calls

3

Hardware

Kernel

System Calls

Library Functions

Process Management

● Multitasking operating systems
○ Tasks must run in parallel

● Usually tasks are more than the CPU cores

● Need to make it possible to execute tasks
at the “same” time

4

Scheduler

● Coordinates how tasks share the available
processor(s)

● Prevents task starvation
and preserves fairness

● Take into account
system tasks

5

Task Types

● Balance between two types of processes:
a. Batch processes
b. I/O Bound tasks

● Preemption: temporarily
evict a running task

● Quantum: Variable but keep it as long as possible

6

Real-time processes

● Need guarantee about their execution in time
boundaries

● Soft real-time processes
○ A task might run a bit late

● Hard real-time processes
○ Strict time limits
○ Not supported by default Linux

7

Scheduler Internals

8

Priority

● Linux provides Priority-based scheduling

● A “number” determines how important a task is

9

Process Descriptor

● Scheduler needs information for each
process

● Useful fields in task_struct:
○ prio: Process priority
○ sched_class: Scheduling class
○ policy: Scheduling policy

10

Scheduler Design

● Extensible hierarchy of scheduler modules

● Each module
encapsulates a
scheduling policy

● Real-time classes:
○ SCHED_FIFO
○ SCHED_RR

11

static const struct sched_class fair_sched_class = {
 .next = &idle_sched_class,
 .enqueue_task = enqueue_task_fair,
 .dequeue_task = dequeue_task_fair,
 .yield_task = yield_task_fair,
 .check_preempt_curr = check_preempt_wakeup,
 .pick_next_task = pick_next_task_fair,
 .put_prev_task = put_prev_task_fair,

...

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

schedule(void)

● Main scheduler function is schedule()
○ Replace currently executing process with another

● Called from different places
○ Periodic scheduler
○ Current task enters sleep state
○ Sleeping task wakes up

12

Run queue

● Data structure that manages active
processes

● Holds tasks in the “runnable” state

13

History

14

History

● Genesis
○ Circular queue
○ Round-robin policy

● Linux v2.4 - O(n) scheduler
○ Each task runs a quantum of time in each epoch
○ Epoch advances after all runnable tasks have their quantum
○ At the beginning of each epoch, all tasks get a new quantum

15

History

● Linux v2.6 - O(1) Scheduler
○ Division between real-time and normal tasks
○ One list per priority

● Linux v2.6.23 - CFS
○ Introduced in 2007, Improved in 2016

16

Completely Fair Scheduler

● Models an “ideal, precise multitasking CPU”

● Ideal scheduling: n tasks share 100/n percentage
of CPU effort each

● Fairness:
○ Tasks get their share of the CPU relative to others
○ A task should run for a period proportional to its priority

17

Completely Fair Scheduler

● Time-ordered red-black tree
○ Runnable tasks are sorted by vruntime

● When a task is executing
its vruntime increases
○ Moves to the right of the tree

● Scheduler always selects leftmost leaf
○ Task with smallest vruntime

18

Completely Fair Scheduler - Improvements

● Virtual clock ticks slowly for important tasks
○ Move slower to the right of the tree
○ Chance to be scheduled again sooner

● Leftmost node is cached
○ O(1) access

● Reinsertion of preempted tasks takes O(logn)
19

Assignment 4

20

Assignment 4 - Highest Value First

● Each process is defined by:
○ Deadlines (2 values)
○ (Estimated) Computation Time

● “The process that will return the highest
value should go first”

21???

Value Definition

First Deadline

Second Deadline

Completion Time

“The process that gives the highest value goes first”
22

Value Definition

● We don’t consider when the process started, we only care
about when it will end.

● The further you move away from D1, the lower the value
23

Example 1

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 8s

●
24

Example 1

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 8s

●
25

Example 2

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 12s

●
26

Example 2

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 12s

●
27

Computation Time

● How do we know when a process will end?
○ The process defines its computation time

28

Computation Time

● Process has already
run for F ms

● Its computation time is C ms

● Its remaining computation
time is (C - F) ms

● Process will end in (C-F) ms
from now

29

Computation Time

● We already know C
because the process
has defined it (with system call)

● We need to somehow
remember F

● At any time we need to
know for how much time
the process has already run

30

Preemption

Time P1 P2

0 -

1

2

3 -

4 -

… … …

31

Time

● How do we measure time?
○ Do we use absolute values (like in examples)?
○ Do we use wall clock time?
○ Do we use a reference point?

● Free to choose whatever
suits your implementation

32

Implementation

● Use your code from assignment 3
○ System calls set deadlines

● Linux kernel compilation process
○ Instructions in assignment 3

● Might need to make changes to task_struct
33

Testing

● Create simple demo processes
○ Each initially sets its parameters

● Each process should spin forever
○ Infinite loop, not sleep
○ Scheduler will kill process once computation time has been fulfilled

● Scheduler should print:
○ PID of the task it selected
○ Its parameters

● Don’t forget existing processes
○ Don’t want to schedule only ours

34
You can grep this

Notes

35

Files

● Actual context switch
○ kernel/sched.c

● Completely Fair Scheduler
○ kernel/sched_fair.c

● Scheduling structs
○ include/linux/sched.h

36

● Process descriptor
○ include/linux/sched.h

● Real-time scheduling
○ kernel/sched_rt.c

sched.c

37

asmlinkage void __sched schedule(void) {

struct task_struct *prev, *next; Previous and next tasks

struct rq * rq; The processors runqueue (1 in this assignment)

preempt_disable(); Disable preemption (avoid schedule inside schedule)

prev = rq->curr; Previous is the current task runnin

pur_prev_task(rq, prev); Put prev task in the runqueue

next = pick_next_task(rq); The appropriate pick function is called depending on
the scheduling class

if (likely(prev != next)) {

 context_switch(rq, prev, next);

Actual context switch

. . .

. . .

. . .

. . .

. . .

. . .

Notes

● Use Bootlin to find functions, structs, etc…
○ https://elixir.bootlin.com/linux/v2.6.38.1/source

● You can also map source code using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Understand how the scheduler works
○ Use printk to observe kernel behavior
○ Follow the call to find out how the next tasked is picked

38

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

Notes

● Reuse existing code snippets within the kernel
○ E.g. traversing data structures

● Compile often with small changes
○ Massively helps debugging

● Submit anything you can to show your effort!!!
○ A README file goes a long way
○ Even if your implementation does not fully work

39

Turnin

What to submit:

1. bzImage
2. Modified or created source files
3. Test programs and headers in Guest OS
4. README

40

Credit
Icons from FlatIcon, made by

Freepik

Thank You!

papamano@csd.uoc.gr

Questions?

