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Linux Kernel

● Heart of the Operating System

● Interface between resources and
user processes

● What the Kernel does
○ Memory Management
○ Process Management
○ Device Drivers
○ System Calls

3

Hardware

Kernel

System Calls

Library Functions



Process Management

● Multitasking operating systems
○ Tasks must run in parallel

● Usually tasks are more than the CPU cores

● Need to make it possible to execute tasks 
at the “same” time 
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Scheduler

● Coordinates how tasks share the available 
processor(s)

● Prevents task starvation
and preserves fairness

● Take into account
system tasks
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Task Types

● Balance between two types of processes:
a. Batch processes
b. I/O Bound tasks

● Preemption: temporarily
evict a running task

● Quantum: Variable but keep it as long as possible
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Real-time processes

● Need guarantee about their execution in time 
boundaries

● Soft real-time processes
○ A task might run a bit late

● Hard real-time processes
○ Strict time limits
○ Not supported by default Linux
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Scheduler Internals
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Priority

● Linux provides Priority-based scheduling

● A “number” determines how important a task is
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Process Descriptor

● Scheduler needs information for each 
process

● Useful fields in task_struct:
○ prio: Process priority
○ sched_class: Scheduling class
○ policy: Scheduling policy
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Scheduler Design

● Extensible hierarchy of scheduler modules

● Each module
encapsulates a
scheduling policy 

● Real-time classes:
○ SCHED_FIFO
○ SCHED_RR
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static const struct sched_class fair_sched_class = {
  .next               = &idle_sched_class, 
  .enqueue_task       = enqueue_task_fair,
  .dequeue_task       = dequeue_task_fair,
  .yield_task         = yield_task_fair,
  .check_preempt_curr = check_preempt_wakeup,
  .pick_next_task     = pick_next_task_fair,
  .put_prev_task      = put_prev_task_fair,

...

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c


schedule(void)

● Main scheduler function is schedule( )
○ Replace currently executing process with another

● Called from different places
○ Periodic scheduler
○ Current task enters sleep state
○ Sleeping task wakes up
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Run queue

● Data structure that manages active 
processes

● Holds tasks in the “runnable” state
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History
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History

● Genesis
○ Circular queue
○ Round-robin policy

● Linux v2.4 - O(n) scheduler
○ Each task runs a quantum of time in each epoch
○ Epoch advances after all runnable tasks have their quantum
○ At the beginning of each epoch, all tasks get a new quantum
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History

● Linux v2.6 - O(1) Scheduler
○ Division between real-time and normal tasks
○ One list per priority

● Linux v2.6.23 - CFS
○ Introduced in 2007, Improved in 2016
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Completely Fair Scheduler

● Models an “ideal, precise multitasking CPU”

● Ideal scheduling: n tasks share 100/n percentage 
of CPU effort each

● Fairness:
○ Tasks get their share of the CPU relative to others
○ A task should run for a period proportional to its priority
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Completely Fair Scheduler

● Time-ordered red-black tree
○ Runnable tasks are sorted by vruntime

● When a task is executing 
its vruntime increases
○ Moves to the right of the tree

● Scheduler always selects leftmost leaf
○ Task with smallest vruntime
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Completely Fair Scheduler - Improvements

● Virtual clock ticks slowly for important tasks
○ Move slower to the right of the tree
○ Chance to be scheduled again sooner

● Leftmost node is cached
○ O(1) access

● Reinsertion of preempted tasks takes O(logn)
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Assignment 4
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Assignment 4 - Highest Value First

● Each process is defined by:
○ Deadlines (2 values)
○ (Estimated) Computation Time

● “The process that will return the highest 
value should go first”
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Value Definition

First Deadline

Second Deadline

Completion Time

“The process that gives the highest value goes first”
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Value Definition

● We don’t consider when the process started, we only care 
about when it will end.

● The further you move away from D1, the lower the value
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Example 1

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 8s

●
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Example 1

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 8s

●
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Example 2

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 12s

●
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Example 2

● Deadlines
○ D1 at 6s
○ D2 at 14s

● Process ends at 12s

●
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Computation Time

● How do we know when a process will end?
○ The process defines its computation time
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Computation Time

● Process has already
run for F ms

● Its computation time is C ms

● Its remaining computation
time is (C - F) ms

● Process will end in (C-F) ms
from now
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Computation Time

● We already know C
because the process
has defined it (with system call)

● We need to somehow
remember F 

● At any time we need to
know for how much time
the process has already run
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Preemption

Time P1 P2

0 -

1

2

3 -

4 -

… … …
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Time

● How do we measure time?
○ Do we use absolute values (like in examples)?
○ Do we use wall clock time?
○ Do we use a reference point?

● Free to choose whatever
suits your implementation
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Implementation

● Use your code from assignment 3
○ System calls set deadlines 

● Linux kernel compilation process
○ Instructions in assignment 3

● Might need to make changes to task_struct
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Testing

● Create simple demo processes
○ Each initially sets its parameters

● Each process should spin forever
○ Infinite loop, not sleep
○ Scheduler will kill process once computation time has been fulfilled

● Scheduler should print:
○ PID of the task it selected
○ Its parameters

● Don’t forget existing processes
○ Don’t want to schedule only ours
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Notes
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Files

● Actual context switch
○ kernel/sched.c

● Completely Fair Scheduler
○ kernel/sched_fair.c

● Scheduling structs
○ include/linux/sched.h
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● Process descriptor
○ include/linux/sched.h

● Real-time scheduling
○ kernel/sched_rt.c



sched.c
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asmlinkage void __sched schedule(void) {

struct task_struct *prev, *next; Previous and next tasks

struct rq * rq; The processors runqueue (1 in this assignment)

preempt_disable(); Disable preemption (avoid schedule inside schedule)

prev = rq->curr; Previous is the current task runnin

pur_prev_task(rq, prev); Put prev task in the runqueue

next = pick_next_task(rq); The appropriate pick function is called depending on 
the scheduling class

if (likely(prev != next)) {

    context_switch(rq, prev, next);

Actual context switch

. . .

. . .

. . .

. . .

. . .

. . .



Notes

● Use Bootlin to find functions, structs, etc…
○ https://elixir.bootlin.com/linux/v2.6.38.1/source

● You can also map source code using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Understand how the scheduler works
○ Use printk to observe kernel behavior
○ Follow the call to find out how the next tasked is picked
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https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm


Notes

● Reuse existing code snippets within the kernel
○ E.g. traversing data structures

● Compile often with small changes
○ Massively helps debugging

● Submit anything you can to show your effort!!!
○ A README file goes a long way
○ Even if your implementation does not fully work
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Turnin

What to submit:

1. bzImage
2. Modified or created source files
3. Test programs and headers in Guest OS
4. README
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