
Assignment 4 Tutorial
Linux Scheduler

Michalis Pachilakis

HY345: Operating Systems



Outline 

• Linux Scheduler

• Scheduler internals

• History

• Assignment 4



Linux Kernel
• Heart of the Operating System

• Interface between resources and user 
processes

• What the Kernel does:

• Memory Management

• Process Management

• Device Drivers 

• System calls



Process Management

• Multitasking operating systems 
• Tasks must run in parallel

• Usually, tasks are more than the CPU cores

• Need to make it possible to execute tasks at the 
same time 



Scheduler

• Coordinates how tasks share the available 
processors

• Prevents task starvation and preserves 
fairness

• Take into account system tasks



Task Types

u Balance between two types of processes
u Batch processes
u I/O Bound tasks

u Preemption: temporarily 
 evict a running task

u Quantum: Variable but keep it as long as possible



Internals



Priority

u Linux provides Priority-based scheduling

u A number determines how important a task is



Process Descriptor and scheduler design

u Scheduler needs information for each process
u task_struct holds multiple information about each process 

u Scheduler supports a modular design to easily support 
different scheduling policies
u Each task belongs to a scheduling class

u The scheduling class defines the scheduling policy

u Some scheduling policies:
u SCHED_NORMAL – Default linux task policy (CFS, fair)

u SCHED_FIFO- Special time critical tasks (real-time)

u SCHED_PR – Round-robin scheduling (real-time)



The schedule function: schedule(void)

u Main scheduler function is schedule(void) 
– kernel/sched.c
u It replaces the currently executing process 

with another

u Called from different places 
u Periodic scheduler

u Current task enters sleep state

u Sleeping task wakes up



Run queue

u Data structure that 
manages active processes 

u Holds tasks in runnable 
state



Sched_entity 

u Every task_struct has a sched_entity

u It’s a schedulable object 

u Contains timing information used for 
load balancing and scheduling.



Linux Kernel source files
u Browse easily through the Linux Kernel source files using this link

u https://elixir.bootlin.com/linux/v2.6.38.1/source 

u Actual context switch code, runqueue struct definition, etc.
u kernel/sched.c https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c 

u Implementation of Completely Fair Scheduling (CFS)
u kernel/sched_fair.c 

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c 

u Implementation of Real-Time Scheduling (RT)
u kernel/sched_rt.c 

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_rt.c 

u Tasks are abstracted as struct sched_entity and struct sched_rt_entity (for rt 
class); Also, check struct sched_class
u include/linux/sched.h 

https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h 

https://elixir.bootlin.com/linux/v2.6.38.1/source
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_rt.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h


History
u Genesis

u Circular queue 

u Round-robin policy

u Linux v2.4 – O(n) scheduler
u Each task runs a quantum of time in each epoch

u Epoch advances after all runnable tasks have their quantum

u At the beginning of each epoch, all tasks get a new quantum

u Linux v2.6 – O(1) Scheduler
u Division between real-time and normal tasks

u One list per priority

u Linux v2.6.23 – CFS
u Introduced in 2007, Improved in 2016 



Completely Fair Scheduling

u Models an “ideal, precise multitasking CPU”

u Ideal scheduling: n tasks share 100/n percentage of CPU 
effort each

u Fairness:
u Tasks get their share of the CPU relative to others

u A task should run for a period proportional to its priority



Completely Fair Scheduling

u Time-ordered red-black tree

u Runnable tasks are sorted by vruntime

u When a task is executed its vruntime increases

u Moves to the right of the tree

u Scheduler always selects leftmost leaf

u Task with the smallest vruntime

u The leftmost node is cached (O(1) access)

u Reinsertion of a preempted task takes O(logn)



Assignment 4 – Group Fairness 
Scheduling algorithm

u Implement the Group Fairness scheduling algorithm, which assigns equal 
portion of the CPU to groups and equal equal portion to the processes 
inside a group 

u Process runtime: Τ(process_params, number_of_groups) = 
100/number_of_groups/number_of_processes_in_group(process_params.group_na
me) 

u Use your code from Assignment 3

u Use the guidelines from Assignment 3 to compile and run the Linux kernel



Assignment 4 – Group Fairness 
Scheduling algorithm

u Each process is assigned to a group during creation

u Each groups get an equal share of the CPU
u For N groups: 100/N

u Each process inside a group gets an equal percentage of the group’s share
u For M processes inside the group: 100/N/M

u Process runtime: Τ(process_params, number_of_groups) = 
100/number_of_groups/number_of_processes_in_group(process_params.grou
p_name) 



Assignment 4 – Group Fairness 
Scheduling algorithm

u Process A1 starts and it’s assigned to group A:
u Process A1 gets 100% of the CPU since A is the only group and process A1 is the only process in this group 

(100/1/1)

u Process A2 starts and it’s assigned to group A:

u Process A2 gets 50% of the CPU since A is the only group and process A2 is the only process in this group 
(100/1/2). The portion of A1 also need to be recalculated

u Process B1 starts and it’s assigned to group B:

u Process B1 gets 50% of the CPU since now there are 2 groups (A,B) and on B there is only one process B1 
(100/2/1)

u Process A1 and A2 need to recalculate their CPU portions since now there are 2 groups (100/2/2) and they 
need to update their portion to 25%

u Process A3 start and it’s assigned to group A:

u Process A3 gets 16.6% of the CPU since there are 2 groups and 3 processes to group A (100/2/3)

u Processes A1 and A2 need to recalculate their portions

u Process B1 portion doesn’t change since it’s in a different group 



Assignment 4 – Helpful tips 

u When a new process is starting or the scheduler selects the next 
process

u Scan all the processes in the run queue list 

u Count the number of different groups and number of processes in 
the groups 

u Update the portions of CPU time per slice for each process 

u Processes can be added or removed, so remember to check



Assignment 4 – Demo

u Create simple demo processes 
u Each process sets its parameters

u Each processes should spin for some time
u Infinite loop, not sleep

u The scheduler should print:
u The PID of the task it selected
u Its parameters 
u Its portion of the CPU 



Assignment 4 – More Notes

• Browse kernel code with: https://elixir.bootlin.com/linux/v2.6.38.1/source 

• Another way to map source code is by using ctag:
• http://www.tutorialspoint.com/unix_commands/ctags.htm 

• Understand how the scheduler works

• For example, you can start with printing inside the schedule() function

• Follow the function call path from schedule in order to find out how the next task is 
picked

• Use the printk() function often, its syntax is close to printf and it’s an easy way to 
observe the kernel’s behaviour from the user level (with dmesg)

• Reuse existing code snippets within the kernel source code (e.g., to traverse data 
structures or access members in struct nodes)

• Compile after small changes in the source code (good for easy debugging)

• Submit ANYTHING you can that helps you show your effort!

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm


Assignment 4 – Turnin

1. bZImage 

2. Modified or created source files

3. Test programs and headers in Guest OS

4. README – Document your effort, and it can go a long 
way!


