Assignment 4 Tutorial
Linux Scheduler

Michalis Pachilakis
HY345: Operating Systems

QOutline

* Linux Scheduler

* Scheduler internals

* History

* Assignment 4

Linux Kernel

* Heart of the Operating System

* |Interface between resources and user
processes

* What the Kernel does:
* Memory Management
* Process Management
* Device Drivers

e y' /4

* System calls

Process Management

* Multitasking operating systems

* Tasks must run in parallel

* Usually, tasks are more than the CPU cores

* Need to make it possible to execute tasks at the
same time

Scheduler

* Coordinates how tasks share the available

processors
winux kemel SCI (System Call Interface) - ,

1/0 subsystem _n":::"mm m
* Prevents task starvation and preserves e Il memor ff encies !
fai rness Paging process/thread 'i
repIg:g;ent Shayuiadie ’

|

termination |
| : |

‘:‘ Linux kernel :
Process
‘ Scheduler

* Take into account system tasks

Task Types

» Balance between two types of processes
» Batch processes

(a) | | — |

» 1/0 Bound tasks P
Long CPU burst
Waiting for /'O
» Preemption: temporarily S"°'7U°vm \
evict a running task © E—O——1

Time
—

» Quantum: Variable but keep it as long as possible

Internals

Priority

» Linux provides Priority-based scheduling

» A number determines how important a task is

Process Priority

(Niceness) Real-Time Process
Priority
-20 0 19
I Ae=High Prioritymes | we—l oW Prioritys=gy I 0 99

| | High Priority s——

A

Default value

Process Descriptor and scheduler design

» Scheduler needs information for each process
» task_struct holds multiple information about each process

» Scheduler supports a modular design to easily support
different scheduling policies

static const struct sched class fair sched class = {

» Each task belongs to a scheduling class -next = &idle_sched_class,
.enqueue_task = enqueue_task_ fair,
» The scheduling class defines the scheduling policy i tae e e g
. . . .check:preempt_curr = check:pree;pt_wakeup,
» Some scheduling policies: _pick_next_task = pick next task_fair,
.put_prev_task = put_prev_task_fair,

» SCHED_NORMAL - Default linux task policy (CFS, fair)
» SCHED_FIFO- Special time critical tasks (real-time)
» SCHED_PR - Round-robin scheduling (real-time)

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched fair.c

The schedule function: schedule(void)

/:
* schedule() is the main scheduler function.
o 4

asmlinkage void __sched schedule(void)

{
struct task_struct ‘prev, *next;
unsigned long *switch_count;

» Main scheduler function is schedule(void) i

need_resched:

_ kernel/sched .C g el | LSO

rq = cpu_rq(cpu);
rcu_note_context_switch(cpu);
prev = rg--curr;

» It replaces the currently executing process S —

need_resched_nonpreemptible:

with another N———

it (sched_feat(HRTICK))
hrtick_clear(rq);

» Called from different places SEP——_

switch_count ~ iprev->nivesw;
if (prev->state && | (preempt_count() & PREEMPT_ACTIVE)) {

» Periodic scheduler N S

} else {
Vil

C t t k t l t t * If a worker is going to sleep, notify and
* ask w . he i Nt s
> Lurrent task enters sleep state ety e drpgcxoiat g dimati Sy
* up the task.
/

» Sleeping task wakes up R T e

to_wakeup = wq worker sleeping(prev, cpu);
if (to_wakeup)
try to_wake_up_ local(to_wakeup);

Run queue

I

EE Y

» Data structure that /3

This is the main, per-CPU runqueue data structure.

Locking rule: those places that want to lock multiple rungueues
(such as the load balancing or the thread migration code), lock
acquire operations must be ordered by ascending é&rungueue.

struct rq {

manages active processes

» Holds tasks in runnable

/* runqueue lock: */
raw_spinlock_t lock;

Vi

* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.

v/
unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load|CPU_LOAD_IDX_MAX);
unsigned long last_load update_tick;

state P (e ks eken)

#endif

unsigned char nohz_balance_kick;
unsigned int skip clock_update;

/* capture load from *all* tasks on this cpu:
struct load_weight load;

unsigned long nr_load_updates;

u64 nr_switches;

struct cfs_rq cfs;
struct rt_rq rt;

#ifdef CONFIG_FAIR_GROUP_SCHED

#endif

/* list of leaf cfs rq on this cpu: */
struct list_head leaf cfs_rq list;

#ifdef CONPIG_RT_GROUP_SCHED

#endit

struct 1Ist_hoa¢ leaf_rt_rq_list;

v/

Sched_entity

} cacheline_aligned;

struct sched_entity {

549 /* For load-balancing: x/
550 struct load_weight load;
551 struct rb_node run_node;
552 u64 deadline;
553 u6d min_deadline;
o 554
» Every task_struct has a sched_entity 555 struct List_head group_node;
— — 556 unsigned int on_rq;
557
’ - .
» It’s a schedulable object o ua -
560 ub4 prev_sum_exec_runtime;
561 ubd vruntime;
562 s64 vlag;
563 u64 slice;
o ° ° o ° 564 . .
» Contains timing information used for 565 uea nr_nigrations;
: : 567 #ifdef CONFIG_FAIR_GROUP_SCHED
load balancing and scheduling. 68 e —
epth;
569 struct sched_entity *parent;
570 /* rq on which this entity is (to be) queued: x/
571 struct cfs_rq *cfs_rq;
572 /* rq "owned" by this entity/group: */
573 struct cfs_rq *my_q;
574 /* cached value of my_g->h_nr_running %/
s unsigned long runnable_weight;
576 #endif
577
578 #ifdef CONFIG_SMP
579 /*
580 * Per entity load average tracking.
581 *
582 * Put into separate cache line so it does not
583 * collide with read-mostly values above.
584 */
585 struct sched_avg avg;
586 #endif

587 };

PN

Linux Kernel source files

>

>

Browse easily through the Linux Kernel source files using this link
» https://elixir.bootlin.com/linux/v2.6.38.1/source
Actual context switch code, runqueue struct definition, etc.
» kernel/sched.c https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c
Implementation of Completely Fair Scheduling (CFS)

» kernel/sched_fair.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched fair.c

Implementation of Real-Time Scheduling (RT)

» kernel/sched_rt.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched rt.c

Tasks are abstracted as struct sched_entity and struct sched_rt_entity (for rt
class); Also, check struct sched_class

» include/linux/sched.h
https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h

https://elixir.bootlin.com/linux/v2.6.38.1/source
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_rt.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h

History

>

>

>

>

Genesis
» Circular queue
» Round-robin policy
Linux v2.4 - O(n) scheduler
» Each task runs a quantum of time in each epoch
» Epoch advances after all runnable tasks have their quantum
» At the beginning of each epoch, all tasks get a new quantum
Linux v2.6 - O(1) Scheduler
» Division between real-time and normal tasks
» One list per priority
Linux v2.6.23 - CFS
» Introduced in 2007, Improved in 2016

Completely Fair Scheduling

» Models an “ideal, precise multitasking CPU”

» ldeal scheduling: n tasks share 100/n percentage of CPU
effort each

» Fairness:
» Tasks get their share of the CPU relative to others

» A task should run for a period proportional to its priority

Completely Fair Scheduling

Time-ordered red-black tree

» Runnable tasks are sorted by vruntime

When a task is executed its vruntime increases

» Moves to the right of the tree

Scheduler always selects leftmost leaf

» Task with the smallest vruntime

» The leftmost node is cached (O(1) access)

Reinsertion of a preempted task takes O(logn)

@

Nodes repre
sched_entity(s)

indexed by their
virtual runtime

NONLG [N [N [

i N (NL ML N

) Most need of CPU

virtual runtime
\ Least Recsakar CHRL

Assignment 4 - Group Fairness
Scheduling algorithm

» Implement the Group Fairness scheduling algorithm, which assigns equal
portion of the CPU to groups and equal equal portion to the processes
inside a group

» Process runtime: T(process_params, number_of groups) =

100/number_of groups/number_of processes_in_group(process_params.group_na
me)

» Use your code from Assignment 3

» Use the guidelines from Assignment 3 to compile and run the Linux kernel

Assignment 4 - Group Fairness
Scheduling algorithm

» Each process is assigned to a group during creation

» Each groups get an equal share of the CPU
» For N groups: 100/N

» Each process inside a group gets an equal percentage of the group’s share
» For M processes inside the group: 100/N/M

» Process runtime: T(process_params, number_of _groups) =

100/number_of groups/number_of processes_in_group(process_params.grou
p_name)

Assignment 4 - Group Fairness
Scheduling algorithm

>

>

>

>

Process A1 starts and it’s assigned to group A:

» Process A1 gets 100% of the CPU since A is the only group and process A1 is the only process in this group
(100/1/1)

Process A2 starts and it’s assigned to group A:

» Process A2 gets 50% of the CPU since A is the only group and process A2 is the only process in this group
(100/1/2). The portion of A1 also need to be recalculated

Process B1 starts and it’s assigned to group B:

» Process B1 gets 50% of the CPU since now there are 2 groups (A,B) and on B there is only one process B1
(100/2/1)

» Process A1 and A2 need to recalculate their CPU portions since now there are 2 groups (100/2/2) and they
need to update their portion to 25%

Process A3 start and it’s assigned to group A:
» Process A3 gets 16.6% of the CPU since there are 2 groups and 3 processes to group A (100/2/3)
» Processes A1 and A2 need to recalculate their portions

» Process B1 portion doesn’t change since it’s in a different group

Assignment 4 - Helpful tips

» When a new process is starting or the scheduler selects the next
process

» Scan all the processes in the run queue list

» Count the number of different groups and number of processes in
the groups

» Update the portions of CPU time per slice for each process

» Processes can be added or removed, so remember to check

Assignment 4 - Demo

» Create simple demo processes
» Each process sets its parameters

» Each processes should spin for some time
» Infinite loop, not sleep

» The scheduler should print:
» The PID of the task it selected
» Its parameters

» lIts portion of the CPU

Assignment 4 - More Notes

°* Browse kernel code with: https://elixir.bootlin.com/linux/v2.6.38.1/source

* Another way to map source code is by using ctag:

* http://www.tutorialspoint.com/unix _commands/ctags.htm

* Understand how the scheduler works

* For example, you can start with printing inside the schedule() function

* Follow the function call path from schedule in order to find out how the next task is
picked

* Use the printk() function often, its syntax is close to printf and it’s an easy way to
observe the kernel’s behaviour from the user level (with dmesg)

* Reuse existing code snippets within the kernel source code (e.g., to traverse data
structures or access members in struct nodes)

* Compile after small changes in the source code (good for easy debugging)
* Submit ANYTHING you can that helps you show your effort!

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

Assignment 4 - Turnin

1. bZImage
2. Modified or created source files
3. Test programs and headers in Guest OS

4. README - Document your effort, and it can go a long
way!

