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Background



● A process is just an instance of a program
○ Including the current values of the program counter, registers, and 

variables

● Each process has an address space that contains its 
instructions, its data and its stack

● All the information about a process is
stored in an OS table called
the process table

Process



Process Details

● Information inside a process table entry:



Process Details

● A process can be in one of three states:



Thread

● Threads are like 
lightweight processes

● Do we need threads?
○ In many applications, multiple activities are 

going on simultaneously
○ Some of these may block from time to time



Thread

Why threads?

1. Lighter weight than processes, they are easier (i.e., faster) to create 
and destroy than processes

2. Ability for the parallel entities to share an address space and all of 
its data among themselves

3. Allow many activities to overlap, thus speeding up the application.



Process vs Thread

● Per-process vs Per-thread resources 



User-Space Threads

● Implement threads as a package/library 
entirely in user space

● Why?
○ Can be implemented on operating systems that 

do not support threads natively



User-Space Threads

● Major problems
○ How do you implement blocking system calls?

● Suppose that a thread reads from the keyboard 
before any keys have been hit

● Letting the thread actually make the system call is 
unacceptable, since this will block all threads



Interprocess Communication

● Processes that are working together may share some 
common storage

● Each process can read and write some shared data

● The final result depends on who runs precisely when
○ Race Conditions



Mutual Exclusion

● Need to prevent trouble in situations involving shared 
memory

● Mutual Exclusion
○ Or other synchronization primitives (e.g. semaphores, locks)

● Ensure that if one process is using a shared variable, a 
different process will be excluded from doing so



Mutual Exclusion



Scheduling

● A single processor may be shared among several 
processes

● You need to know when each process gets time 
on the CPU and for how long

● The scheduling algorithm determines when to 
stop a process and service another



Scheduler

● Coordinates how tasks share the available processor(s)

● Prevents task starvation and preserves fairness

● Algorithms:
○ First-In-First-Out
○ Shortest Job First
○ Round robin
○ …



Exercises



Exercise 1

● On all current computers, at least part of the interrupt handlers are 
written in assembly language. Why?

➢ All interrupts start by saving the registers (e.g. program counter) to 
the stack and switching to kernel mode. Then, we need to set up a 
context and a stack for the interrupt service-procedure to run.

➢ Actions such as saving the registers and setting the stack pointer 
cannot even be expressed in high-level languages such as C, so they 
are performed by a small assembly-language routine, usually the 
same one for all interrupts since the work of saving the registers is 
identical, no matter what the cause of the interrupt is.

➢ Interrupt service routines must execute as rapidly as possible
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Exercise 1

● On all current computers, at least part of the interrupt handlers 
are written in assembly language. Why?

➢ Actions such as saving the registers and setting the stack 
pointer cannot even be expressed in high-level languages such 
as C, so they are performed by a small assembly-language 
routine.
○ Usually the same one for all interrupts since the work of 

saving the registers is identical, no matter what the cause of 
the interrupt is.

➢ Interrupt service routines must execute as rapidly as possible



Exercise 2

● When an interrupt or a system call transfers control to the operating 
system, a kernel stack area separate from the stack of the 
interrupted process is generally used. Why?

1. First, you do not want the operating system to crash because a 
poorly written user program does not allow for enough stack space.

2. Second, if the kernel leaves stack data in a user program’s memory 
space upon return from a system call, a malicious user might be able 
to use this data to find out information about other processes.
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● The register set is listed as a per-thread rather than a 
per-process item. Why? After all, the machine has only one 
set of registers.

➢ The thread has a program counter that keeps track of which 
instruction to execute next. It has registers, which hold its 
current working variables.

➢ Just like when multiprogramming processes, when a thread 
is stopped, it has values in registers, which must be saved

Exercise 3



Exercise 3

● The register set is listed as a per-thread rather than a 
per-process item. Why? After all, the machine has only one 
set of registers.

➢ The thread has a program counter that keeps track of which 
instruction to execute next. It has registers, which hold its 
current working variables.

➢ Just like when multiprogramming processes, when a thread 
is stopped, it has values in registers, which must be saved



Exercise 4
● What is the biggest advantage of implementing threads in user 

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are 
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for 
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire 
process blocks. I/O, some system calls and page faults block the 
entire process

○ Programmers generally want threads in applications where the 
threads block often (e.g. Web server). User-level threads work for 
CPU bound applications.



Exercise 4
● What is the biggest advantage of implementing threads in user 

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are 
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for 
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire 
process blocks. I/O, some system calls and page faults block the 
entire process

○ Programmers generally want threads in applications where the 
threads block often (e.g. Web server). User-level threads work for 
CPU bound applications.



Exercise 4
● What is the biggest advantage of implementing threads in user 

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are 
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for 
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire 
process blocks. I/O, some system calls and page faults block the 
entire process

○ Programmers generally want threads in applications where the 
threads block often (e.g. Web server). User-level threads work for 
CPU bound applications.



Exercise 5

● In a system with threads, is there one stack per thread or one stack 
per process when user-level threads are used? What about when 
kernel-level threads are used?

➢ Each thread will generally call different procedures and thus have a 
different execution history. It must have its own stack for the local 
variables, return addresses, and so on. This is why each thread 
needs its own stack

➢ This is equally true for user-level threads as for kernel-level threads.
➢ When threads are managed in user space, each process needs its 

own private thread table to keep track of  each thread ’s program 
counter, stack pointer, registers, state, etc…
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Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an 
arbitrary value) can be implemented using only binary semaphores 
and ordinary machine instructions.

➢ Associated with each counting semaphore are two binary 
semaphores, M, used for mutual exclusion, and B, used for blocking. 
Also associated with each counting semaphore is a counter that 
holds the number of ups minus the number of downs, and a list of 
processes blocked on that semaphore.
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Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an 
arbitrary value) can be implemented using only binary semaphores 
and ordinary machine instructions.

➢ To implement down, a process first gains exclusive access to the 
semaphores, counter, and list by doing a down on M.

➢ It then decrements the counter. If it is zero or more, it just does an 
up on M and exits.If M is negative, the process is put on the list of 
blocked processes. Then an up is done on M and a down is done on 
B to block the process.



Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an 
arbitrary value) can be implemented using only binary semaphores 
and ordinary machine instructions.

➢ To implement up, first M is downed to get mutual exclusion, and 
then the counter is incremented.

➢ If it is more than zero, no one was blocked, so all that needs to be 
done is to up M. If, however, the counter is now negative or zero, 
some process must be removed from the list. Finally, an up is done 
on B and M in that order



Exercise 7

● Synchronization within monitors uses condition variables and two 
special operations, wait and signal. A more general form of 
synchronization would be to have a single primitive, waituntil, that 
had an arbitrary Boolean predicate as parameter:
waituntil x < 0 or y + z < n
The signal primitive would no longer be needed. This scheme is 
clearly more general but it is not used. Why not? 

➢ It is very expensive to implement. Each time any variable that 
appears in a predicate on which some process is waiting changes, 
the run-time system must re-evaluate the predicate to see if the 
process can be unblocked.
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Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30 
quanta to complete. How many times must it be swapped in, including the 
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
The last time it will actually get 16 quantumes but it needs only 15 of them

➢ It must be swapped in 5 times.
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➢ Sets up priority classes
➢ Always prefer processes of higher priority class
➢ Usually CPU-bound processes are assigned a smaller priority class than 

I/O-bound processes

➢ Each process gets 2n quantums. If it consumes the entirety of its assigned 
slot, next time it will receive 2n+1
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● A process running on CTSS (Compatible Time Sharing System) needs 30 
quanta to complete. How many times must it be swapped in, including the 
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
(The last time it will actually get 16 quantumes but it needs only 15 of them)

➢ It must be swapped in 5 times.



Exercise 9

● A tribe of savages eats communal dinners from a 
large pot that can hold M servings of stewed 
missionary.

● When a savage wants to eat, he helps himself 
from the pot, unless it is empty.

● If the pot is empty, the savage wakes up the 
cook and then waits until the cook has refilled 
the pot.

Do you know 
about concurrent 
programming?



Exercise 9

● Constraints:
a. Savages cannot get a serving 

from the pot if the pot is empty

b. The cook can put more servings 
in the pot only if the pot is empty

Do you know 
about concurrent 
programming?



Exercise 9

● Details:
○ The cook and each savage are all 

separate threads

○ Threads compete for CPU access

○ The behavior of the system depends 
on the order each threads is executed

Do you know 
about concurrent 
programming?



Exercise 9

● Naive approach: Consumer - Producer

while True:
    fullServings.wait()
    mutex.lock()
    
    eatOneServing()
    
    mutex.unlock()
    emptyServings.post()

while True:
    emptyServings.wait()
    mutex.lock()
    
    putNewServing()
    
    mutex.unlock()
    fullServings.post()
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    mutex.unlock()
    emptyServings.post()

while True:
    emptyServings.wait()
    mutex.lock()
    
    putNewServing()
    
    mutex.unlock()
    fullServings.post()

“The cook can put more servings 
in the pot only if the pot is empty”



Exercise 9

● Naive approach: Busy waiting

while True:
    fullServings.wait()
    mutex.lock()
    
    eatOneServing()
    
    mutex.unlock()

while True:
    mutex.lock()
    
    if servings == 0:
        putNewServing()
        for i in 1...N:
            fullServings.post()

    mutex.unlock()
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Waste of computer resources



Exercise 9

while True:
    mutex.lock()

    if servings == 0:
        emptyPot.post()
        fullPot.wait()

    eatOneServing()
    
    mutex.unlock()

while True:
    emptyPot.wait()

    putServingsInPot()

    fullPot.post()

Note: emptyPot and fullPot are semaphores
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while True:
    mutex.lock()

    if servings == 0:
        emptyPot.post()
        fullPot.wait()

    eatOneServing()
    
    mutex.unlock()

while True:
    emptyPot.wait()

    putServingsInPot()

    fullPot.post()

Note: emptyPot and fullPot are semaphores

Scoreboard Variable:
Keeps track of the 
system’s state
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Interrupts

What happens in an OS when an interrupt occurs?
1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.
3. Assembly-language procedure saves registers.
4. Assembly-language procedure sets up new stack.
5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.
7. C procedure returns to the assembly code.
8. Assembly-language procedure starts up new current process.



Semaphores

● Synchronization mechanism
○ Stores the number of remaining wakeup signals

● Think of it as a room with specific seats
○ You have to wait until a seat is available before you sit down

● Both the down() and the up() operations are atomic



Mutexes

● Synchronization mechanism
○ They are a binary semaphore

● This time the room has only one seat
○ Only one person can enter the room at a time

● They control access to a critical region



Monitors

● Synchronization mechanism
○ Higher level than a semaphore

● A collection of methods, variables and data structures
○ Threads don’t have access to the monitor’s internal state

● In order for threads to produce/consume data, they need to use the 
monitors methods (i.e. API)

● If a thread has to wait, it is placed in a queue
○ When a thread is done with its task, it signals a thread from the queue


