
HY-345: Operating Systems

Recitation 1
Process Management - Synchronization

Papadogiannakis Manos
papamano@csd.uoc.gr

Computer Science Department
University of Crete

Overview

● Background
○ Processes & Threads
○ Shared Memory
○ Scheduling

● Exercises

Background

● A process is just an instance of a program
○ Including the current values of the program counter, registers, and

variables

● Each process has an address space that contains its
instructions, its data and its stack

● All the information about a process is
stored in an OS table called
the process table

Process

Process Details

● Information inside a process table entry:

Process Details

● A process can be in one of three states:

Thread

● Threads are like
lightweight processes

● Do we need threads?
○ In many applications, multiple activities are

going on simultaneously
○ Some of these may block from time to time

Thread

Why threads?

1. Lighter weight than processes, they are easier (i.e., faster) to create
and destroy than processes

2. Ability for the parallel entities to share an address space and all of
its data among themselves

3. Allow many activities to overlap, thus speeding up the application.

Process vs Thread

● Per-process vs Per-thread resources

User-Space Threads

● Implement threads as a package/library
entirely in user space

● Why?
○ Can be implemented on operating systems that

do not support threads natively

User-Space Threads

● Major problems
○ How do you implement blocking system calls?

● Suppose that a thread reads from the keyboard
before any keys have been hit

● Letting the thread actually make the system call is
unacceptable, since this will block all threads

Interprocess Communication

● Processes that are working together may share some
common storage

● Each process can read and write some shared data

● The final result depends on who runs precisely when
○ Race Conditions

Mutual Exclusion

● Need to prevent trouble in situations involving shared
memory

● Mutual Exclusion
○ Or other synchronization primitives (e.g. semaphores, locks)

● Ensure that if one process is using a shared variable, a
different process will be excluded from doing so

Mutual Exclusion

Scheduling

● A single processor may be shared among several
processes

● You need to know when each process gets time
on the CPU and for how long

● The scheduling algorithm determines when to
stop a process and service another

Scheduler

● Coordinates how tasks share the available processor(s)

● Prevents task starvation and preserves fairness

● Algorithms:
○ First-In-First-Out
○ Shortest Job First
○ Round robin
○ …

Exercises

Exercise 1

● On all current computers, at least part of the interrupt handlers are
written in assembly language. Why?

➢ All interrupts start by saving the registers (e.g. program counter) to
the stack and switching to kernel mode. Then, we need to set up a
context and a stack for the interrupt service-procedure to run.

➢ Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C, so they
are performed by a small assembly-language routine, usually the
same one for all interrupts since the work of saving the registers is
identical, no matter what the cause of the interrupt is.

➢ Interrupt service routines must execute as rapidly as possible

Exercise 1

● On all current computers, at least part of the interrupt handlers are
written in assembly language. Why?

➢ All interrupts start by saving the registers (e.g. program counter) to
the stack and switching to kernel mode. Then, we need to set up a
context and a stack for the interrupt service-procedure to run.

➢ Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C, so they
are performed by a small assembly-language routine, usually the
same one for all interrupts since the work of saving the registers is
identical, no matter what the cause of the interrupt is.

➢ Interrupt service routines must execute as rapidly as possible

Exercise 1

● On all current computers, at least part of the interrupt handlers
are written in assembly language. Why?

➢ Actions such as saving the registers and setting the stack
pointer cannot even be expressed in high-level languages such
as C, so they are performed by a small assembly-language
routine.
○ Usually the same one for all interrupts since the work of

saving the registers is identical, no matter what the cause of
the interrupt is.

➢ Interrupt service routines must execute as rapidly as possible

Exercise 2

● When an interrupt or a system call transfers control to the operating
system, a kernel stack area separate from the stack of the
interrupted process is generally used. Why?

1. First, you do not want the operating system to crash because a
poorly written user program does not allow for enough stack space.

2. Second, if the kernel leaves stack data in a user program’s memory
space upon return from a system call, a malicious user might be able
to use this data to find out information about other processes.

Exercise 2

● When an interrupt or a system call transfers control to the operating
system, a kernel stack area separate from the stack of the
interrupted process is generally used. Why?

1. First, you do not want the operating system to crash because a
poorly written user program does not allow for enough stack space.

2. Second, if the kernel leaves stack data in a user program’s memory
space upon return from a system call, a malicious user might be able
to use this data to find out information about other processes.

Exercise 2

● When an interrupt or a system call transfers control to the operating
system, a kernel stack area separate from the stack of the
interrupted process is generally used. Why?

1. First, you do not want the operating system to crash because a
poorly written user program does not allow for enough stack space.

2. Second, if the kernel leaves stack data in a user program’s memory
space upon return from a system call, a malicious user might be able
to use this data to find out information about other processes.

● The register set is listed as a per-thread rather than a
per-process item. Why? After all, the machine has only one
set of registers.

➢ The thread has a program counter that keeps track of which
instruction to execute next. It has registers, which hold its
current working variables.

➢ Just like when multiprogramming processes, when a thread
is stopped, it has values in registers, which must be saved

Exercise 3

Exercise 3

● The register set is listed as a per-thread rather than a
per-process item. Why? After all, the machine has only one
set of registers.

➢ The thread has a program counter that keeps track of which
instruction to execute next. It has registers, which hold its
current working variables.

➢ Just like when multiprogramming processes, when a thread
is stopped, it has values in registers, which must be saved

Exercise 4
● What is the biggest advantage of implementing threads in user

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire
process blocks. I/O, some system calls and page faults block the
entire process

○ Programmers generally want threads in applications where the
threads block often (e.g. Web server). User-level threads work for
CPU bound applications.

Exercise 4
● What is the biggest advantage of implementing threads in user

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire
process blocks. I/O, some system calls and page faults block the
entire process

○ Programmers generally want threads in applications where the
threads block often (e.g. Web server). User-level threads work for
CPU bound applications.

Exercise 4
● What is the biggest advantage of implementing threads in user

space? What is the biggest disadvantage?

✓ The biggest advantage is the efficiency. No traps to the kernel are
needed to switch threads.

✓ Each process can have its own customized scheduling algorithm for
its threads.

○ The biggest disadvantage is that if one thread blocks, the entire
process blocks. I/O, some system calls and page faults block the
entire process

○ Programmers generally want threads in applications where the
threads block often (e.g. Web server). User-level threads work for
CPU bound applications.

Exercise 5

● In a system with threads, is there one stack per thread or one stack
per process when user-level threads are used? What about when
kernel-level threads are used?

➢ Each thread will generally call different procedures and thus have a
different execution history. It must have its own stack for the local
variables, return addresses, and so on. This is why each thread
needs its own stack

➢ This is equally true for user-level threads as for kernel-level threads.
➢ When threads are managed in user space, each process needs its

own private thread table to keep track of each thread ’s program
counter, stack pointer, registers, state, etc…

Exercise 5

● In a system with threads, is there one stack per thread or one stack
per process when user-level threads are used? What about when
kernel-level threads are used?

➢ Each thread will generally call different procedures and thus have a
different execution history. It must have its own stack for the local
variables, return addresses, and so on. This is why each thread
needs its own stack.

➢ This is equally true for user-level threads as for kernel-level threads.
➢ When threads are managed in user space, each process needs its

own private thread table to keep track of each thread ’s program
counter, stack pointer, registers, state, etc…

Exercise 5

● In a system with threads, is there one stack per thread or one stack
per process when user-level threads are used? What about when
kernel-level threads are used?

➢ Each thread will generally call different procedures and thus have a
different execution history. It must have its own stack for the local
variables, return addresses, and so on. This is why each thread
needs its own stack.

➢ This is equally true for user-level threads as for kernel-level threads.
➢ When threads are managed in user space, each process needs its

own private thread table to keep track of each thread ’s program
counter, stack pointer, registers, state, etc…

Exercise 5

● In a system with threads, is there one stack per thread or one stack
per process when user-level threads are used? What about when
kernel-level threads are used?

➢ Each thread will generally call different procedures and thus have a
different execution history. It must have its own stack for the local
variables, return addresses, and so on. This is why each thread
needs its own stack.

➢ This is equally true for user-level threads as for kernel-level threads.
➢ When threads are managed in user space, each process needs its

own private thread table to keep track of each thread’s program
counter, stack pointer, registers, state, etc…

Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an
arbitrary value) can be implemented using only binary semaphores
and ordinary machine instructions.

➢ Associated with each counting semaphore are two binary
semaphores, M, used for mutual exclusion, and B, used for blocking.
Also associated with each counting semaphore is a counter that
holds the number of ups minus the number of downs, and a list of
processes blocked on that semaphore.

Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an
arbitrary value) can be implemented using only binary semaphores
and ordinary machine instructions.

➢ Associated with each counting semaphore are two binary
semaphores, M, used for mutual exclusion, and B, used for blocking.
Also associated with each counting semaphore is a counter that
holds the number of ups minus the number of downs, and a list of
processes blocked on that semaphore.

Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an
arbitrary value) can be implemented using only binary semaphores
and ordinary machine instructions.

➢ To implement down, a process first gains exclusive access to the
semaphores, counter, and list by doing a down on M.

➢ It then decrements the counter. If it is zero or more, it just does an
up on M and exits.If M is negative, the process is put on the list of
blocked processes. Then an up is done on M and a down is done on
B to block the process.

Exercise 6

● Show how counting semaphores (i.e., semaphores that can hold an
arbitrary value) can be implemented using only binary semaphores
and ordinary machine instructions.

➢ To implement up, first M is downed to get mutual exclusion, and
then the counter is incremented.

➢ If it is more than zero, no one was blocked, so all that needs to be
done is to up M. If, however, the counter is now negative or zero,
some process must be removed from the list. Finally, an up is done
on B and M in that order

Exercise 7

● Synchronization within monitors uses condition variables and two
special operations, wait and signal. A more general form of
synchronization would be to have a single primitive, waituntil, that
had an arbitrary Boolean predicate as parameter:
waituntil x < 0 or y + z < n
The signal primitive would no longer be needed. This scheme is
clearly more general but it is not used. Why not?

➢ It is very expensive to implement. Each time any variable that
appears in a predicate on which some process is waiting changes,
the run-time system must re-evaluate the predicate to see if the
process can be unblocked.

Exercise 7

● Synchronization within monitors uses condition variables and two
special operations, wait and signal. A more general form of
synchronization would be to have a single primitive, waituntil, that
had an arbitrary Boolean predicate as parameter:
waituntil x < 0 or y + z < n
The signal primitive would no longer be needed. This scheme is
clearly more general but it is not used. Why not?

➢ It is very expensive to implement. Each time any variable that
appears in a predicate on which some process is waiting changes,
the run-time system must re-evaluate the predicate to see if the
process can be unblocked.

Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30
quanta to complete. How many times must it be swapped in, including the
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
The last time it will actually get 16 quantumes but it needs only 15 of them

➢ It must be swapped in 5 times.

Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30
quanta to complete. How many times must it be swapped in, including the
very first time?

➢ Sets up priority classes
➢ Always prefer processes of higher priority class
➢ Usually CPU-bound processes are assigned a smaller priority class than

I/O-bound processes

➢ Each process gets 2n quantums. If it consumes the entirety of its assigned
slot, next time it will receive 2n+1

Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30
quanta to complete. How many times must it be swapped in, including the
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
The last time it will actually get 16 quantumes but it needs only 15 of them

➢ It must be swapped in 5 times.

Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30
quanta to complete. How many times must it be swapped in, including the
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
The last time it will actually get 16 quantumes but it needs only 15 of them

➢ It must be swapped in 5 times.

Exercise 8

● A process running on CTSS (Compatible Time Sharing System) needs 30
quanta to complete. How many times must it be swapped in, including the
very first time?

➢ Process gets 2n quantums each time
➢ First time it get 1 quantum

Second time, 2 quantums
Third time, 4 quantumes, etc.

➢ It will get 1 + 2 + 4 + 8 + 15
(The last time it will actually get 16 quantumes but it needs only 15 of them)

➢ It must be swapped in 5 times.

Exercise 9

● A tribe of savages eats communal dinners from a
large pot that can hold M servings of stewed
missionary.

● When a savage wants to eat, he helps himself
from the pot, unless it is empty.

● If the pot is empty, the savage wakes up the
cook and then waits until the cook has refilled
the pot.

Do you know
about concurrent
programming?

Exercise 9

● Constraints:
a. Savages cannot get a serving

from the pot if the pot is empty

b. The cook can put more servings
in the pot only if the pot is empty

Do you know
about concurrent
programming?

Exercise 9

● Details:
○ The cook and each savage are all

separate threads

○ Threads compete for CPU access

○ The behavior of the system depends
on the order each threads is executed

Do you know
about concurrent
programming?

Exercise 9

● Naive approach: Consumer - Producer

while True:
 fullServings.wait()
 mutex.lock()

 eatOneServing()

 mutex.unlock()
 emptyServings.post()

while True:
 emptyServings.wait()
 mutex.lock()

 putNewServing()

 mutex.unlock()
 fullServings.post()

Exercise 9

● Naive approach: Consumer - Producer

while True:
 fullServings.wait()
 mutex.lock()

 eatOneServing()

 mutex.unlock()
 emptyServings.post()

while True:
 emptyServings.wait()
 mutex.lock()

 putNewServing()

 mutex.unlock()
 fullServings.post()

“The cook can put more servings
in the pot only if the pot is empty”

Exercise 9

● Naive approach: Busy waiting

while True:
 fullServings.wait()
 mutex.lock()

 eatOneServing()

 mutex.unlock()

while True:
 mutex.lock()

 if servings == 0:
 putNewServing()
 for i in 1...N:
 fullServings.post()

 mutex.unlock()

Exercise 9

● Naive approach: Busy waiting

while True:
 fullServings.wait()
 mutex.lock()

 eatOneServing()

 mutex.unlock()

while True:
 mutex.lock()

 if servings == 0:
 putNewServing()
 for i in 1...N:
 fullServings.post()

 mutex.unlock()

Waste of computer resources

Exercise 9

while True:
 mutex.lock()

 if servings == 0:
 emptyPot.post()
 fullPot.wait()

 eatOneServing()

 mutex.unlock()

while True:
 emptyPot.wait()

 putServingsInPot()

 fullPot.post()

Note: emptyPot and fullPot are semaphores

Exercise 9

while True:
 mutex.lock()

 if servings == 0:
 emptyPot.post()
 fullPot.wait()

 eatOneServing()

 mutex.unlock()

while True:
 emptyPot.wait()

 putServingsInPot()

 fullPot.post()

Note: emptyPot and fullPot are semaphores

Scoreboard Variable:
Keeps track of the
system’s state

Credit
• Icons from FlatIcon, made by:

Thank You!

papamano@csd.uoc.gr

Questions?○ Freepik ○ FlowIcon

○ Eucalyp ○ Juicy_fish

Backup Slides

Interrupts

What happens in an OS when an interrupt occurs?
1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.
3. Assembly-language procedure saves registers.
4. Assembly-language procedure sets up new stack.
5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.
7. C procedure returns to the assembly code.
8. Assembly-language procedure starts up new current process.

Semaphores

● Synchronization mechanism
○ Stores the number of remaining wakeup signals

● Think of it as a room with specific seats
○ You have to wait until a seat is available before you sit down

● Both the down() and the up() operations are atomic

Mutexes

● Synchronization mechanism
○ They are a binary semaphore

● This time the room has only one seat
○ Only one person can enter the room at a time

● They control access to a critical region

Monitors

● Synchronization mechanism
○ Higher level than a semaphore

● A collection of methods, variables and data structures
○ Threads don’t have access to the monitor’s internal state

● In order for threads to produce/consume data, they need to use the
monitors methods (i.e. API)

● If a thread has to wait, it is placed in a queue
○ When a thread is done with its task, it signals a thread from the queue

