
Assignment 4 Tutorial

Linux Scheduler

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-345: Operating Systems
Computer Science Department

University of Crete

Outline

● Linux Scheduler

● Scheduler internals

● History

● Assignment 4

2

Linux Kernel

● Heart of the Operating System

● Interface between resources and
user processes

● What the Kernel does
○ Memory Management
○ Process Management
○ Device Drivers
○ System Calls

3

Hardware

Kernel

System Calls

Library Functions

Process Management

● Multitasking operating systems
○ Tasks must run in parallel

● Usually tasks are more than the CPU cores

● Need to make it possible to execute tasks
at the “same” time

4

Scheduler

● Coordinates how tasks share the available
processor(s)

● Prevents task starvation
and preserves fairness

● Take into account
system tasks

5

Task Types

● Balance between two types of processes:
a. Batch processes
b. I/O Bound tasks

● Preemption: temporarily
evict a running task

● Quantum: Variable but keep it as long as possible

6

Real-time processes

● Need guarantee about their execution in time
boundaries

● Soft real-time processes
○ A task might run a bit late

● Hard real-time processes
○ Strict time limits
○ Not supported by default Linux

7

Scheduler Internals

Priority

● Linux provides Priority-based scheduling

● A “number” determines how important a task is

9

Process Descriptor

● Scheduler needs information for each
process

● Useful fields in task_struct:
○ prio: Process priority
○ sched_class: Scheduling class
○ policy: Scheduling policy

10

Scheduler Design

● Extensible hierarchy of scheduler modules

● Each module
encapsulates a
scheduling policy

● Real-time classes:
○ SCHED_FIFO
○ SCHED_RR

11

static const struct sched_class fair_sched_class = {
 .next = &idle_sched_class,
 .enqueue_task = enqueue_task_fair,
 .dequeue_task = dequeue_task_fair,
 .yield_task = yield_task_fair,
 .check_preempt_curr = check_preempt_wakeup,
 .pick_next_task = pick_next_task_fair,
 .put_prev_task = put_prev_task_fair,

...

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

schedule(void)

● Main scheduler function is schedule()
○ Replace currently executing process with another

● Called from different places
○ Periodic scheduler
○ Current task enters sleep state
○ Sleeping task wakes up

12

Run queue

● Data structure that manages active
processes

● Holds tasks in the “runnable” state

13

History

History

● Genesis
○ Circular queue
○ Round-robin policy

● Linux v2.4 - O(n) scheduler
○ Each task runs a quantum of time in each epoch
○ Epoch advances after all runnable tasks have their quantum
○ At the beginning of each epoch, all tasks get a new quantum

15

History

● Linux v2.6 - O(1) Scheduler
○ Division between real-time and normal tasks
○ One list per priority

● Linux v2.6.23 - CFS
○ Introduced in 2007, Improved in 2016

16

Completely Fair Scheduler

● Models an “ideal, precise multitasking CPU”

● Ideal scheduling: n tasks share 100/n percentage
of CPU effort each

● Fairness:
○ Tasks get their share of the CPU relative to others
○ A task should run for a period proportional to its priority

17

Completely Fair Scheduler

● Time-ordered red-black tree
○ Runnable tasks are sorted by vruntime

● When a task is executing
its vruntime increases
○ Moves to the right of the tree

● Scheduler always selects leftmost leaf
○ Task with smallest vruntime

18

Completely Fair Scheduler - Improvements

● Virtual clock ticks slowly for important tasks
○ Move slower to the right of the tree
○ Chance to be scheduled again sooner

● Leftmost node is cached
○ O(1) access

● Reinsertion of preempted tasks takes O(logn)
19

Assignment 4

Assignment 4 - Shortest Task First

● Each process is defined by:
○ Deadline
○ (Estimated) Runtime

● “The process with the shortest execution
margin should go first”

21

Assignment 4 - Shortest Task First

 S = D - R
 = D - (T - E)

 “Smallest S goes first”
22

Deadline Remaining Time

Deadline Estimated
Runtime

Consumed
Execution Time

Shortest Job Definition

Scheduling Definition

24

Shortest Job First - Preemption

Shortest Job First - Example

Time P1 P2

0 6-(2-0)=4 -

1 6-(2-1)=5 6-(3-0)=3

2 6-(2-1)=5 6-(3-1)=4

3 6-(2-1)=5 6-(3-2)=5

4 - 6-(3-2)=5

5 - -

Implementation

● Use your code from assignment 3
○ System calls related to period processes

● Linux kernel compilation process
○ Instructions in assignment 3

● Might need to make changes to task_struct
27

Testing

● Create simple demo processes
○ Each initially sets its parameters

● Each process should spin for some time
○ Infinite loop, not sleep

● Scheduler should print:
○ PID of the task it selected
○ Its parameters

28

Notes

29

Files

● Actual context switch
○ kernel/sched.c

● Completely Fair Scheduler
○ kernel/sched_fair.c

● Scheduling structs
○ include/linux/sched.h

30

● Process descriptor
○ include/linux/sched.h

● Real-time scheduling
○ kernel/sched_rt.c

sched.c

31

asmlinkage void __sched schedule(void) {

struct task_struct *prev, *next; Previous and next tasks

struct rq * rq; The processors runqueue (1 in this assignment)

preempt_disable(); Disable preemption (avoid schedule inside schedule)

prev = rq->curr; Previous is the current task runnin

pur_prev_task(rq, prev); Put prev task in the runqueue

next = pick_next_task(rq); The appropriate pick function is called depending on
the scheduling class

if (likely(prev != next)) {

 context_switch(rq, prev, next);

Actual context switch

. . .

. . .

. . .

. . .

. . .

. . .

Notes

● Use Bootlin to find functions, structs, etc…
○ https://elixir.bootlin.com/linux/v2.6.38.1/source

● You can also map source code using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Understand how the scheduler works
○ Use printk to observe kernel behavior
○ Follow the call to find out how the next tasked is picked

32

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

Notes

● Reuse existing code snippets within the kernel
○ E.g. traversing data structures

● Compile often with small changes
○ Massively helps debugging

● Submit anything you can to show your effort!!!
○ A README file goes a long way

33

Turnin

What to submit:

1. bzImage
2. Modified or created source files
3. Test programs and headers in Guest OS
4. README

34

Credit
• Icons from FlatIcon, made by:

Thank You!

papamano@csd.uoc.gr

Questions?○ DinosoftLabs ○ Freepik
○ surang ○ Smashicons
○ Flat Icons

