Assignment 4 Tutorial

Linux Scheduler

*

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-345: Operating Systems
Computer Science Department
University of Crete

e Linux Scheduler

e Scheduler internals

e History

e Assignment 4

Linux Kernel

Library Functions

e Heart of the Operating System

System Calls

e Interface between resources and
user processes

Kernel

Hardware

e What the Kernel does
o Memory Management
o Process Management
o Device Drivers
o System Calls

Process Management

e Multitasking operating systems
o Tasks must run in parallel

e Usually tasks are more than the CPU cores

e Need to make it possible to execute tasks
at the “same” time

e Coordinates how tasks share the available

processor(s)

al Linux kemel SCI (System Call Interface) Y
Memory Process
1/0 subsystem = mar g t mar g t
b
— . subsystem _ subsystem .
° ’ Virtual File System ‘ Vittual Signal
. P reve nts ta S k Sta rvatl o n | Terminals | \ Sockets | | File systems | memory handling
(]) Netfilter / Nftables Generic
an d p reserves fa IrNessS oS Network | Plocklayer Paging process/thread
=g protocols page creation &
) Linux kernel replacement termination
° Linux kernel 1/0 Scheduler
Packet Scheduler
° Character Network Block Page LProckess'
devi devi devi
e Take into account | o || e
¢~ mRes Dispatcher)

system tasks

Task Types

e Balance between two types of processes:
a. Batch processes

b. I/O Bound tasks i a '—i\

Long CPU burst

0

e Preemption: temporarily N ﬁﬂ\

) 3

evict a running task L

e Quantum: Variable but keep it as long as possible

Real-time processes

e Need guarantee about their execution in time
boundaries

e Soft real-time processes
o A task might run a bit late

e Hard real-time processes
o Strict time limits
o Not supported by default Linux

Scheduler Internals

Priority

e Linux provides Priority-based scheduling

e A “number” determines how important a task is

Process Priority

(Niceness) Real-Time Process
Priority
-20 0 19
I &—High Priority I—Low Priority—}l (I) bl ae b e | 9I9
I I I ‘
A | |

Default value

Process Descriptor

e Scheduler needs information for each
process

e Useful fields in task_struct:
O prio: Process priority
o sched_class: Scheduling class L—
o policy: Scheduling policy

Scheduler Design

e Extensible hierarchy of scheduler modules

static const struct sched class fair sched class = {
¢ EaCh mOd u Ie .next = &idle_sched class,
.enqueue_task = enqueue_task fair,
eénca ps u Iates a .dequeue_task = dequeue_task fair,
° ° .yield task = yield task_fair,
SCh ed u I In g pOI ICy .check preempt curr = check_ preempt wakeup,

.pick_next task pick next task fair,
.put_prev_task = put prev_ task fair,

e Real-time classes:
O SCHED_F”:O https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

o SCHED_RR

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

schedule (void)

e Main scheduler function is schedule ()
o Replace currently executing process with another

e Called from different places

o Periodic scheduler ©@
o Current task enters sleep state
o Sleeping task wakes up

Run queue

e Data structure that manages active
processes

e Holds tasks in the “runnable” state

e i

History

e Genesis r N

o Circular queue Runnable | Runnable | Runnable
© Round-robin policy

\ S

e Linuxv2.4 - O(n) scheduler
o Each task runs a quantum of time in each epoch
o Epoch advances after all runnable tasks have their quantum
o At the beginning of each epoch, all tasks get a new quantum

e Linuxv2.6 - O(1) Scheduler

o Division between real-time and normal tasks
o One list per priority

e Linuxv2.6.23 -CFS
o Introduced in 2007/, Improved in 2016

Completely Fair Scheduler

e Models an “ideal, precise multitasking CPU”

e Ideal scheduling: n tasks share 100/n percentage
of CPU effort each

e Fairness:
o Tasks get their share of the CPU relative to others
o Atask should run for a period proportional to its priority

Completely Fair Scheduler

e Time-ordered red-black tree
o Runnable tasks are sorted by vruntime

Nodes represent
sched_entity(s)
indexed by their

e When a task is executing

its vruntime increases
o Moves to the right of the tree

Vvirtual runtime

-

Most need of CPU Least need of CPU

e Scheduler always selects leftmost leaf
o Task with smallest vruntime

Completely Fair Scheduler - Improvements

e Virtual clock ticks slowly for important tasks
o Move slower to the right of the tree
o Chance to be scheduled again sooner g &z

e Leftmost node is cached — |
o O(1) access .

e Reinsertion of preempted tasks takes 0 (1ogn)

Assignment 4

Assignment 4 - Shortest Task First

e Each process is defined by:

o Deadline
o (Estimated) Runtime

e “The process with the shortest execution
margin should go first”

Assignment 4 - Shortest Task First

Deadline / Remaining Time
Deadline Estimated Consumed
Runtime Execution Time

“Smallest S goes first”

Shortest Job Definition

< Deadline >

[J Time
I Al Runtime I A E

Start Deadline

Scheduling Definition

Sums to
Execution
Time

. é

¥

Process

Starts Deadline

Shortest Job First - Preemption

P1: Deadline 8s - Runtime: 2s Pa3: Deadline 6s - Runtime: 4s

Shortest Job First - Example

¥

Start{{il) Time P1 P2

I I I I I I I > 0 6-(2-0)=4 -
! 1 6-(2-1)=5 | 6-(3-0)=3
Start‘_] ! 2 6-(2-1)=5 | 6-(3-1)=4
I_l_l_l_l_l_l_) 3 6-(2-1)=5 | 6-(3-2)=5
0 2 4 6 4 - 6-(3-2)=5

?1: Deadline 6s - Runtime: 2s 5

P>: Deadline 6s - Runtime: 3s

Implementation

e Use your code from assignment 3
o System calls related to period processes

e Linux kernel compilation process
o Instructions in assignment 3

e Might need to make changes to task_struct

Testing

e Create simple demo processes
o Each initially sets its parameters

e Each process should spin for some time
o Infinite loop, not sleep

[]
° [Timestamp: 0] Selected process P1 with: Deadline 8s, Runtime 2s, Consumed Time 0s
® SChedUIer ShOUId prl nt° [Timestamp: 1] Selected process P2 with: Deadline 6s, Runtime 4s, Consumed Time 0s
[Timestamp: 2] Selected process P2 with: Deadline 6s, Runtime 4s, Consumed Time 1s

O PID Of the taSk |t Selected [Timestamp: 3] Selected process P2 with: Deadline 6s, Runtime 4s, Consumed Time 2s

[Timestamp: 4] Selected process P2 with: Deadline 6s, Runtime 4s, Consumed Time 3s

O ItS pa ra meters [Timestamp: 5] Selected process P1 with: Deadline 8s, Runtime 2s, Consumed Time 1s

[Timestamp: 6] No process to select

Notes

e Actual context switch e Process descriptor

o kernel/sched.c o include/linux/sched.h
e Completely Fair Scheduler e Real-time scheduling
o kernel/sched_fair.c o kernel/sched rt.c

e Scheduling structs

o include/linux/sched.h Iﬁ

asmlinkage void sched schedule(void) {

struct task struct *prev, *next; Previous and next tasks

s.t.r.uct rq * rq; The processors runqueue (1 in this assignment)
p.r-e-empt_disable (); Disable preemption (avoid schedule inside schedule)
p.r.e.v = rg->curr; Previous is the current task runnin

p'u'r-_preV_taSk (rq, prev); Put prev task in the runqueue

next = pick next task(rq); The appropriate pick function is called depending on

the scheduling class

if (likely(prev != next)) { Actual context switch

context switch(rqg, prev, next);

e Use Bootlin to find functions, structs, etc...
o https://elixir.bootlin.com/linux/v2.6.38.1/source

e You can also map source code using ctags
o http://www.tutorialspoint.com/unix_commands/ctags.htm

e Understand how the scheduler works

o Use printk to observe kernel behavior
o Follow the call to find out how the next tasked is picked

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

e Reuse existing code snippets within the kernel
o E.g. traversing data structures

e Compile often with small changes
o Massively helps debugging

e Submit anything you can to show your effort!!!
o A README file goes a long way

Turnin

What to submit: ‘[
1. bzlmage —T
2. Modified or created source files

3. Test programs and headers in Guest OS

4. README

Thank You!

SGHEDULING 5 =
papamano@csd.uoc.gr

Credit

- Icons from Flatlcon, made by:

o DinosoftLabs o Freepik QueStionS?

o surang o Smashicons
o Flat Icons

