
CS345 Operating

Systems
Tutorial 2: Producer-Consumer

Threads, Shared Memory,

Synchronization

Threads

• A thread is a light - weight process.

• A thread exists within a process, and uses the

process resources.

• It is asynchronous.

• The program in C calls the pthread.h header file.

• How to compile:

gcc hello.c –pthread –o hello

Creating a thread

int pthread_create(pthread_t * thread, pthread_attr_t *attr,

void * (*func)(void *),

void *arg);

Returns 0 for success, (>0) for error.

• 1st arg (*thread) – pointer to the identifier of the created thread.
• 2nd arg (*attr) – thread attributes. If NULL, then the thread is created

with default attributes

• 3rd arg (*func) – pointer to the function the thread will execute

• 4th arg (*arg) – the argument of the executed function

Shared memory

• A shared memory segment is a portion of physical
memory that is virtually shared between multiple
processes.

• In this assignment we are dealing with intra-process
communication.

• All the global variables of a program-process are
shared memory for it’s threads.

Shared memory - concerns

• Needs concurrency control/synchronization (data

inconsistencies are possible)

• Processes should be informed if it’s safe to read

and write data to the shared resource.

Thread synchronization mechanisms

• Mutual exclusion (mutex)

Used to serialize access to the shared memory.

It is a locking mechanism.

• Semaphores
A generalized mutex, that allow us to split the buffer

and access separately each resource.

It is a signaling mechanism.

Mutexes

• guard against multiple threads modifying the

same shared data simultaneously

• provide locking/unlocking critical code sections

where shared data is modified

• each thread waits for the mutex to be

unlocked (by the thread who locked it) before

performing the code section

Mutexes-create and initialize
Mutex variables are declared with type pthread_mutex_t, and must be

initialized before they can be used.

There are two ways to initialize a mutex variable:

1. Statically, when it is declared. For example: pthread_mutex_t mut=

PTHREAD_MUTEX_INITIALIZER;

2. Dynamically, with the pthread_mutex_init()routine. This method

permits

setting mutex object attributes, attr.

The mutex is initially unlocked.

Routines :

pthread_mutex_init (mutex, attr) pthread_mutex_destroy (mutex)

Mutexes – basic functions

int pthread_mutex_lock(pthread_mutex_t*mutex); int

pthread_mutex_trylock(pthread_mutex_t*mutex); int

pthread_mutex_unlock(pthread_mutex_t*mutex);

• a mutex is like a key (to access the code section) that is
handed to only one thread at a time

• the lock/unlock functions work together

• a mutex is unlocked only by the thread that has locked it.

#include <pthread.h>

...

pthread_mutex_t my_mutex;

...

int main()

{

int tmp;

...

// initialize the mutex

tmp= pthread_mutex_init(&my_mutex, NULL);

...

// create threads

...

pthread_mutex_lock(&my_mutex); do_something_private();

pthread_mutex_unlock(&my_mutex);

… pthread_mutex_destroy(&my_mutex); return 0;
}

Whenever a thread reaches the lock/unlock block, it first determines if
the mutex is locked. If so, it waits until it is unlocked. Otherwise, it
takes the mutex, locks the succeeding code, then frees the mutex and
unlocks the code when it's done.

Semaphores

Counting Semaphores:

• permit a limited number of threads to execute

a section of the code

• similar to mutexes (if we use binary semaphores it’s

the same)

• should include the semaphore.h header file

• semaphore functions do not have

pthread_prefixes; instead, they have

sem_prefixes

Semaphores – basic functions

• Creating a semaphore:

int sem_init (sem_t*sem, int pshared, unsigned int

value);
–initializes a semaphore object pointed to by sem
–pshared is a sharing option; a value of 0 means the
semaphore is local to the calling process

–gives an initial value value to the semaphore

• Terminating a semaphore:
int sem_destroy (sem_t*sem);

–frees the resources allocated to the semaphore sem
–an error will occur if a semaphore is destroyed for which a
thread is waiting

Semaphores – basic functions

• Semaphore control:

int sem_post(sem_t*sem);
–atomically increases the value of a semaphore by 1, i.e.,
when 2 threads call sem_post simultaneously, the
semaphore's value will also be increased by 2 (there are 2
atoms calling)

int sem_wait(sem_t*sem);
–atomically decreases the value of a semaphore by 1; but

always waits until the semaphore has a non-zero value

first

#include <pthread.h> #include <semaphore.h>

...

void *thread_function(void *arg);

...

sem_t semaphore; // also a global variable just like mutexes

...

int main()

{

int tmp;

...

// initialize the semaphore

tmp = sem_init(&semaphore, 0, 0);

...

// create threads

pthread_create(&thread[i], NULL, thread_function,

NULL);

...

while (still_has_something_to_do())

{

sem_post(&semaphore);

...

}

...

pthread_join(thread[i], NULL); sem_destroy(

&semaphore); return 0;

}

the main thread increments the semaphore's count value

in the

while loop

the threads wait until the semaphore's count value is non-

zero before performing perform_task_when_sem_open()

and further

void *thread_function(void *arg)

{

sem_wait(&semaphore);

perform_task_when_sem_ope

n();

...

pthread_exit(NULL);

}

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *hello_world(void * ptr) {

printf("Hello World! I am a thread!\n");

pthread_exit(NULL);

}

int main(int argc, char * argv[]){

pthread_t thread;

int rc;

rc = pthread_create(&thread, NULL, hello_world, NULL);

if (rc) {

printf("ERROR: return code from pthread_create() is %d\n",

rc);

exit(-1);

}

pthread_exit(NULL);

}

Creating a thread that prints “Hello World”

A Simple working Example

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *print_Hello(void *ptr){

printf(“Hello”);

}

void *print_World(void *ptr){

printf(“World”);

}

int main(int argc, char * argv[]){

pthread_t t1, t2;

int rc, rc2;

rc = pthread_create(&t1, NULL, print_Hello, NULL);

if (rc) {

printf("ERROR: return code from pthread_create() is %d\n", rc);

exit(-1);

}

rc2 = pthread_create(&t2, NULL, print_World, NULL);

if (rc2) {

printf("ERROR: return code from pthread_create() is %d\n", rc);

exit(-1);

}

pthread_join(thread1, NULL); /*Wait for the thread to finish*/

pthread_join(thread1, NULL);

}

Creating two threads: The first prints "Hello" and the second prints "World".

A Simple working Example

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <semaphore.h>

sem_t sem;

void *print_Hello(void *ptr){

printf("Hello ");

sem_post(&sem); //semaphore unlocked (Up)!

}

void *print_World(void *ptr){

sem_wait(&sem); //semaphore locked (Down)!

printf("World\n");

}

int main(int argc, char * argv[]){

pthread_t t1, t2;

int rc, rc2;

sem_init(&sem, 0, 0); /*Initialize semaphore with intraprocess scope*/

rc = pthread_create(&t1, NULL, print_Hello, NULL);

rc2 = pthread_create(&t2, NULL, print_World, NULL);

pthread_join(t1, NULL); /*Wait for the thread to finish*/

pthread_join(t2, NULL);

}

This program sometimes prints "Hello World", sometimes prints "World Hello".

Using a semaphore with intraprocess Scope can syncronize them. Now the thread t2 will never be

executed before the first threat t1.

A Simple working Example

Assignment 2

Part 1 - Narrow road
● Traffic control problem
● Single process using multiple threads
● Shared memory : Number of cars crossing

the road any time
● Cars can drive only in the same direction
● Road too narrow

○ No more than three cars may cross
simultaneously

● Simulate cars with threads
○ Synchronize cars-threads

(mutex,semaphores)
○ Each car takes some time to cross the

road
○ Prevent starvation (wait for ever)

● Print information for every car waiting to
pass and successfully crossed the road

● The number of cars is given as argument
from the command line.
Example

○ ./nr -c 50
Output
Car 2: Waiting to pass to East.
Car 10: Reached to East. Cars on the road: 1

Car 20: Coming from East. Cars on the road: 2

Part 2 - Ferry boat

● Producer consumer problem
● Single process using multiple threads
● Shared memory : Number of cars waiting

and boarding
● Ferry is boarding up to 20 cars per trip
● Simulate cars with threads

○ Synchronize cars-threads
(mutex,semaphores)

○ Each car takes some time to board
○ Prevent starvation (wait for ever)

● Print information for every car waiting to
board and successfully pass to Anti-rio

● The number of cars is given as argument
from the command line.
Example

○ ./ferry 50
Output

The ferry is waiting for cars to board
Someone woke up the ferry.
Car 5 embarking on ferry.
Car 4 embarking on ferry.
All on board.
Car 5 disembarking ferry.

Car 4 disembarking ferry.
The ferry is waiting for cars to board
Someone woke up the ferry.
Car 1 embarking on ferry.
...

