
HY-345 Assignment 1

Φροντιστηριο: 22/10
Deadline: 05/11

❖ You are asked to implement a shell that can reads and executes commands
provided by the user

❖ The command prompt should be <user>@cs345sh/<dir> : , where:
➢ <user> is the currently logged in user name (use the getlogin() function)
➢ <dir> is the current working directory path (use the getcwd() function)

Assignment 1: A C shell implementation

● Some examples of simple commands are:
○ ls -l
○ exit
○ cd
○ cat
○ mkdir

● Moreover you have to implement the execution of sequences of commands
like:

○ ls ; pwd ; whoami

Assignment 1: Simple commands

❖ Your shell should support redirection.Those operators change the way from
where a command reads its input to where the command writes its output

❖ Some examples:
➢ cat < data.txt : cat will read its input from the file data.txt
➢ ls > data.txt : the output of the ls command will be written in the files.txt file replacing

previous contents
➢ ls >> data.txt : the output of the ls command will be appended at the end of the files.txt file.

Assignment 1: Redirections

❖ Pipelines (pipes) provide a unidirectional interprocess communication channel.
❖ The operator “|” between two commands, directs the standard output of the left to the

standard input of the right.
➢ In a simpler manner, whatever is the output of the left command is used as the input

argument of the right command.

❖ Simple pipes : command 1 | command 2
➢ example : echo “Hello world” | wc -w

❖ Multiple pipes: command 1 | command 2 | … | command n
➢ example : cat test.txt | sort | head -2

Assignment 1: Pipelines

Assignment 1: Pipelines

Shell execution overview

fork()

wait()

exec() exit()

parent

child

resume execution

System Calls:

● A system call (syscall) is a request from a process to the kernel, for the execution of a service in the
operating system in which the process is executed.

● This service is a process or operation that only the kernel has privilege to execute.This could be a I/O
operation or the execution of a new process.

System Calls

❖ You can find more information about system calls here:
https://technobyte.org/system-calls-in-operating-systems-simple-explanation/

Process Control fork(),exec(),wait(),exit()

File Operations open(),read(),write(),close()

Directory Management mkdir(),rmdir(),link(),opendir(),closedir()

Other chdir(),chmod(),kill(),time()

https://technobyte.org/system-calls-in-operating-systems-simple-explanation/

❖ fork() creates a new process (child process)
➢ It creates a process duplicate to the original one (parent process), including all file

descriptors, registers etc.
➢ The child process inherits all variables from the parent at their current state.If in a later step

the child process change the value of a variable this change takes place locally (the parent
will still have the old value)

❖ There are three cases which you need to consider regarding the return value
of fork():
➢ pid < 0 : That means that fork was unsuccessful
➢ pid == 0 : This is the pid of the child process (child execution space)
➢ pid > 0 : The pid of the child process passed to the parent (parent execution space)

System calls: fork()

System calls: fork() example

● !You should always wait for a child process to finish smoothly it’s execution
before continuing with the parent process (use of the waitpid() system call)

System calls: exec()

● The exec() is family of system calls that is used to execute a command by
replacing the current process with the one that the command dictates (loads a
new program within the current process).

● File descriptors are preserved across a call to exec .

● Upon success the exec() never returns a value:
○ If it returns something then the execution of the command failed

❖ The exec() family consists of the following system calls:
➢ int execl(char *path, char *arg, ...);
➢ int execlp(const char *file, const char *arg, ...);
➢ int execle(const char *path, const char *arg, ..., char * const envp[]);
➢ int execv(const char *path, char *const argv[]);
➢ int execvp(const char *file, char *const argv[]);
➢ int execvpe(const char *file, char *const argv[], char *const envp[]);

❖ You can visit the man page of exec(3) for more information about those
system calls : https://man7.org/linux/man-pages/man3/exec.3.html

System calls: exec()

https://man7.org/linux/man-pages/man3/exec.3.html

❖ The wait() syscall forces the parent to suspend its execution and wait for the children
process/es to finish its execution (or to be terminated e.g. by a signal)

❖ When a child process terminates, it returns an exit status to the OS, which is returned
to the parent process waiting, to continue its execution.

System calls: wait()

● This call gracefully terminates the process of execution, meaning that it cleans up and
releases resources taken by this process.

● When a child process is terminated an exit() status is returned to the OS and a signal is
being send to the parent.

● The exit status is captured by the parent via the wait() system call.If the parent waited
and receives such signal then the child terminates (dies).If the parent wasn't waiting
then the child process enters a zombie state.

System calls: exit()

Process state

❖ There are various states that a process can be found
(running,sleeping,waiting etc).

❖ For our child process we need to manage the end of its execution so it does
not enter one of the following states:
➢ Orphan is a process whose parent has finished or terminated even though it remains running

itself
➢ Daemon is a process that runs in the background and is not being controlled over the user
➢ Zombie is a process that has completed its execution but still has an entry at the process

table.

Working with QEMU:

❖ An emulator mimics the properties of a system to run in another platform efficiently
➢ It might bring some additional overhead but:

■ It is inexpensive
■ Easy to access
■ Helps us run programs that might be obsolete to the available system

❖ You are asked to use the QEMU emulator in order to utilize the department’s computers
safely amongst all students (e.g. prevent crashes)

❖ You should always compile and run your shell in the virtual environment of qemu.You
can implement the code in the machine you prefer but the testing of your shell should
not take place in that machine.

Working with QEMU: Setting up QEMU

❖ Qemu is installed to the department’s machines as a virtual disk image

❖ You have to copy this image to your working directory using the following command:
➢ cp ~hy345/qemu-linux/hy345-linux.img ~/<your_directory>

❖ Now that you have the disk image locally you can boot it up:
➢ To launch qemu run:

■ qemu-system-i386 -hda hy345-linux.img -curses
➢ The -curses parameter dictates that the Virtual machine will run without graphics
➢ If you are working remotely using this argument in the boot up is recommended (if not

necessary).
❖ To login as a user the credentials are:

➢ user_name : user
➢ password : csd-hy345

❖ To login as root the credentials are:
➢ user_name : root
➢ password : hy345

Working with QEMU: Booting up QEMU

❖ To transfer a file from your local directory to a directory in qemu:
➢ From within qemu run : scp username@10.0.2.2:<path>/test1.c <qemu-dir>
➢ Where:

■ username is your username (e.g. csd1234)
■ <path> is the path to your file, in your local machine
■ <qemu_dir> is the directory you wish to copy the file inside of qemu

❖ To transfer a file within qemu to your local machine:
➢ From within qemu run : scp test1.c username@10.0.2.2:~/<path> (parameters same as

the above in meaning).
❖ To exit qemu simply :

➢ Hit ALT + 2
➢ and then type : “quit”

Working with QEMU:

❖ You can visit the documentation pages of the system calls.Some useful links
are provided below:
➢ https://man7.org/linux/man-pages/man2/fork.2.html
➢ https://man7.org/linux/man-pages/man3/exec.3.html
➢ https://man7.org/linux/man-pages/man2/pipe.2.html
➢ https://man7.org/linux/man-pages/man2/dup.2.html
➢ https://man7.org/linux/man-pages/man2/wait.2.html
➢ https://man7.org/linux/man-pages/man2/chdir.2.html
➢ https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
➢ https://www.geeksforgeeks.org/fork-system-call/
➢ https://www.geeksforgeeks.org/zombie-processes-prevention/
➢ https://winscp.net/download/WinSCP-5.19.3-Setup.exe

Useful sources:

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man3/exec.3.html
https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man2/dup.2.html
https://man7.org/linux/man-pages/man2/wait.2.html
https://man7.org/linux/man-pages/man2/chdir.2.html
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
https://www.geeksforgeeks.org/fork-system-call/
https://www.geeksforgeeks.org/zombie-processes-prevention/
https://winscp.net/download/WinSCP-5.19.3-Setup.exe

Questions?

parent process

child process

	Slide 1
	Assignment 1: A C shell implementation
	Assignment 1: Simple commands
	Assignment 1: Redirections
	Assignment 1: Pipelines
	Assignment 1: Pipelines
	Shell execution overview
	System Calls:
	System calls: fork()
	System calls: fork() example
	System calls: exec()
	System calls: exec()
	System calls: wait()
	System calls: exit()
	Process state
	Working with QEMU:
	Working with QEMU: Setting up QEMU
	Working with QEMU: Booting up QEMU
	Working with QEMU:
	Useful sources:
	Questions?

