
CS345 - Tutorial 4

Implementation of the “Least Slack Time (LST)”
scheduling policy in Linux Kernel

Eva Papadogiannaki

papadogian@csd.uoc.gr



Process Scheduling

• Switching from one process to another in a very short time frame 

• Scheduler:
• When to switch processes
• Which process to choose next

• Major part of the operating system kernel 

2



Scheduler

• Allows the execution of multiple tasks at the “same” time

• Responsible for:
• Task coordination among processors
• Avoiding task starvation and preserving fairness 
• Taking into account system-level tasks (e.g., drivers)

3



Linux Scheduler
• Executes multiple programs at the “same” time, sharing the CPU with 

users of varying needs
• Minimizes response time
• Maximizes overall CPU utilization

• Ideal Scheduling: n tasks share 100/n percentage of CPU effort each 

• Preemptive: Higher priority processes evict lower-priority running processes 

• Quantum Duration
• Variable 
• Keep it as long as possible, while keeping good response time 

4



History of schedulers in Linux

• Linux v1.2 – Round Robin
• Linux v2.2 – Scheduling Classes & Policies, Categorizing tasks as 

non/real-time, non-preemptible
• Linux v2.4 – Division in epochs, goodness of function 
• Linux v2.6.0 – v2.6.22 –O(1), Runqueues & priority arrays
• Linux v2.6.23 (and after) – Completely Fair Scheduler (CFS)

5



Completely Fair Scheduler (CFS)

• Virtual time concept
• Running tasks are sorted using “vruntime”
• Time-ordered red-black tree instead of queue
• Maintains balance in providing processor time to tasks 
• At each scheduling invocation:
• The vruntime of the current task is incremented (time spent in processor)
• The scheduler chooses the leftmost leaf in the tree (lowest vruntime)

• The leftmost node is cached (O(1))
• Reinsertion of a preempted task takes O(logn)

6



Scheduling Classes and Policies
Modular design to easily support different scheduling policies
• Each task belongs to a scheduling class
• The scheduling class defines the scheduling policy
• Scheduling policy is set by sched_setscheduler() 
• Some scheduling policies:

• SCHED_NORMAL – Default linux task policy (CFS, fair)
• SCHED_FIFO – Special time-critical tasks (real-time)
• SCHED_RR – Round-robin scheduling (real-time)

7



Linux Kernel source files

• Browse easily through the Linux Kernel source files using this link 
https://elixir.bootlin.com/linux/v2.6.38.1/source
• Actual context switch code, runqueue struct definition, etc.

• kernel/sched.c https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c

• Implementation of Completely Fair Scheduling (CFS)
• kernel/sched_fair.c https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

• Implementation of Real-Time Scheduling (RT)
• kernel/sched_rt.c https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_rt.c

• Tasks are abstracted as struct sched_entity and struct sched_rt_entity (for rt 
class); Also, check struct sched_class
• include/linux/sched.h https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h

8

https://elixir.bootlin.com/linux/v2.6.38.1/source
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_rt.c
https://elixir.bootlin.com/linux/v2.6.38.1/source/include/linux/sched.h


Some code snippets
A task’s scheduling state (defined in include/linux/sched.h)

9



Some code snippets
The rq (runqueue) struct (defined in kernel/sched.c)

10



Some code snippets
The schedule function (in kernel/sched.c)

11



Some code snippets
The pick_next_task function (in kernel/sched.c)

12



Some code snippets
The sched_class struct (defined in include/linux/sched.h)

13



Some code snippets
Handling struct sched_class for fair vs. rt scheduling class

14



Assignment 4 – LST Scheduling Algorithm

• Implement the Least Slack Time (LST) scheduling algorithm, which 
assigns priority based on the slack time of a process 

• Slack_time = deadline – (computation_time – elapsed_runtime) – time

• Use your code from Assignment 3 
• You will need the set_deadlines system call you implemented

• Use the guidelines from the previous assignment to compile Linux 
Kernel and run it 

15



Assignment 4 – LST Scheduling Algorithm

16
Example from: https://www.geeksforgeeks.org/least-slack-time-lst-scheduling-algorithm-in-real-time-systems/

https://www.geeksforgeeks.org/least-slack-time-lst-scheduling-algorithm-in-real-time-systems/


Assignment 4 – Pre-processing and Filtering

17

• Before schedule() selects the next process 
• Scan all processes in the runqueue list and find if there is any process 

that has a deadline (deadline != -1)
• Calculate its slack time
• If this process has exceeded the given deadline, remove this 

process from the runqueue list so it'll never be executed
• If not, iterate the runqueue list rq. For each process p, check if p 

has less slack value
• If so execute process p first 



Assignment 4 – Demonstrate the new scheduler

18

Create at least 1 demo. 
This demo should do the following: 

• Create up to 10 child processes
• For each child process, the parent process will set its remaining 

computation time and its deadline (set deadline to gettimeofday() + 
100 seconds)
• Each child process will spin for the given computation time (e.g., use 

while, for)



Guidelines for Assignment 4 
• Browse kernel code with: https://elixir.bootlin.com/linux/v2.6.38.1/source
• Another way to map source code is by using ctag: 

http://www.tutorialspoint.com/unix_commands/ctags.htm
• Understand how the scheduler works

• For example, you can start with printing inside the schedule() function
• Follow the function call path from schedule in order to find out how the next 

task is picked 
• Use the printk() function often, its syntax is close to printf and it’s an easy way 

to observe the kernel’s behaviour from the user level (with dmesg) 
• Reuse existing code snippets within the kernel source code (e.g., to traverse 

data structures or access members in struct nodes)
• Compile after small changes in the source code (good for easy debugging)
• Submit anything you can that helps you show your effort!

19

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

