C shell
(PpovTioThpIo YIa TV 1n oeipd)

Dimitris Deyannis
deyannis@csd.uoc.gr

System Calls

e If a process is running a user program in user mode and needs a system
service, such as reading data from a file, it has to execute a trap instruction
to transfer control the operating system

[Application User Space 1

System Call

[Kernel Space 1

System Calls

A system call is a request for service that a program makes of the kernel. The
service is generally something that only the kernel has the privilege to do, such as
doing I/O

System Calls
Process Control fork(), wait(), exec(), exit(), ...
File Manipulation open(), close(), read(), write(), ...

Directory Management mkdir(), rmdir(), mount(), link(), ...

Other chdir(), chmod(), kill(), time(), ...

fork()

e Fork creates a new process (child process)

o It creates an exact duplicate of the original process, including all the file descriptors, registers
etc.

e The fork is called once, but returns twice!

o After the fork, the original process and the copy (the parent and the child) go at separate ways
o The fork call returns a value, which is zero in the child and equal to the child’s process
identifier (PID) in the parent.

e Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user
command

fork() — PID (Process |IDentity)

e pid<0 the creation of a child process was unsuccessful
e pid== the newly created child
e pid>0 the process ID of the child process passes to the parent

/#include <unistd.h> \

pid_t pid = fork();
printf(“PID:%d\n”,pid); fork()

P1 > C1
The parent will print: PID: 28 PID: 34
P1D:34

The child will always print:

\PID:O /

fork()

#define TRUE 1
while (TRUE) {
type_prompt();
read_command(command, parameters);
if (fork() '= 0) {
/* Parent code */
waitpid(-1, &status, 0);
} else {
/* Child code */
execve(command, parameters, 0);

[* repeat forever */
[* display prompt on the screen */
[* read input from terminal */
[* fork off child process */
[* wait for child to exit */
[* execute command */

exec (binary path)

e The exec() call replaces/overwrites a current process image with a new one
(i.e. loads a new program within the current process)

e The file descriptor table remains the same as the original process

e Argument passed via exec() appear in the argv[] of the main function

e Upon success, exec() never returns to the caller

o It replaces the current process image, so it cannot return anything to the program that made
the call

o If it does return, it means the call failed

exec(“/bin/ls”): overwrites the memory code image with the binary from /bin/ls and
executes

exec (binary path)

e There’s not a single syscall under the same exec()

e By exec() we usually refer to a family of calls:
o int execl(char *path, char *arg, ...);

int execv(char *path, char *argv[]);

int execle(char *path, char *arg, ..., char *envpl]);

int execve(char *path, char *argv[], char *envpl]); e | environmental vector

int execlp(char *file, char *arg, ...);

int execvp(char *file, char *argv]]);

I argument list

v | argument vector

p | search path

o O O O O

fork and exec

e Often after calling fork() we want to load a new program into the child. E.g.: a shell

parent | | resumes

L W?it J

Ean

child

wait()

Forces the parent to suspend execution, i.e. wait for its children or a specific
child to die (terminate)

When the child process dies, it returns an exit status to the operating system,
which is then returned to the waiting parent process. The parent process then

resumes execution

A child process that dies but is never waited on by its parent becomes a
zombie process. Such a process continues to exist as an entry in the system
process table even though it is no longer an actively executing program

exit()

e This call terminates process execution gracefully. Gracefully means it does
clean up and release of resources, and puts the process into the zombie state

e \When the child process dies, an exit status is returned to the OS and a signal
is sent to the parent process

e The exit status can then be retrieved by the parent process via the wait system
call

fork, exec and wait

while (1) {
type_prompt();
read_command(command, parameters);
if (fork() 1= 0) {
[* Parent code */
waitpid(-1, &status, 0);
} else {
[* Child code */
execve(command, parameters, 0);

[* repeat forever */
[* display prompt on the screen */
[* read input from terminal */
[* fork off child process */
/* wait for child to exit */
/* execute command */

Process state

In computing, a process is an instance of a computer program that is being
executed. It contains the program code and its current activity

e Orphan is a process whose parent process has finished or terminated,
though it remains running itself

e Daemon runs as a background process rather than being under the direct
control of an interactive user

e Zombie is a process that has completed execution but still has an entry in the
process table

Pipelines
e Pipelines (pipes) provide a unidirectional interprocess communication channel

e “|” (pipe) operator between two commands directs the stdout of the first to the
stdin of the second. Any of the commands may have options or arguments

e Examples:
o command_1| command_2 parameter_1 | command_3 | command 4
o Is-l|grepkey| more
o Is-al|grep txt | wc -l

void main(int argc, char *argv[]) {

int pipefd[2];

pid_t cpid;

char buf;

if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);

}

cpid = fork();

if (cpid == -1) {
perror("fork");
exit(EXIT_FAILURE);

}

if (cpid == 0) {
close(pipefd[1]);
while (read(pipefd[0], &buf, 1) > 0)
write(STDOUT_FILENO, &buf, 1);
write(STDOUT_FILENO, "\n", 1);
close(pipefd[0]);
exit(EXIT_SUCCESS);

}else {
close(pipefd[0]);
write(pipefd[1], argv[1], strlen(argv[1]));
close(pipefd[1]);
wait(NULL);
exit(EXIT_SUCCESS);

/* Child reads from pipe
/* Close unused write end

/* Parent writes argv[1] to pipe
/* Close unused read end

/* Reader will see EOF
/* Wait for child

*/
*/

*/
*/

*/
*/

Redirection

e Use dup2()

o dup2(source_fd, destination_fd)

e Standard Input “<”
o sort <file_list.txt

e Standard Output “>",">>"

o Is>file_list.txt

o Is>>file_list.txt (append)
e Use fopen()

o “r forinput “<*

o ‘“w+” for output “>”

o “a” for append output

Assignment 1

e Implement a C shell (command interpreter) that reads and executes user
commands
e Shell prompt: [cs345sh][<user>][<dir>]

e Simple command examples:
o cd
o exit
O
e Complex command examples:
o lIs-al
o catfile.txt
o sort -r -o log.txt input.txt
O

Assignment 1

“I”

e For this shell we replace the pipe operator with “>” instead of

e Pipe examples
o lIs-al>wc-l
o Is-al>sort-r-k 6 >head5
O

e For this shell we replace “<” with “|”, “>” with “||” and “>>" with “|||”

e Redirection examples
o cat| data.txt
o Is-al|| log.txt [* overwrite */
o Is-al||| log.txt [* append */

Assignment 1

e Shortcuts
o Shortcuts are key combinations, usually involving CTRL or ALT and a letter of the alphabet
and trigger a specific shell operation

e CTRL-C
o Terminates (kills) the current process
e CTRL-H
o Deletes the character before the cursor (similar to Backspace)
e CTRL-S
o Pauses the output
e CTRL-Q

o Resumes the output

Useful links

https://linux.die.net/man/3/exec

https://linux.die.net/man/2/fork

https://linux.die.net/man/2/wait

https://linux.die.net/man/2/pipe

https://linux.die.net/man/2/dup?
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man3/termios.3.html
http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
https://kb.iu.edu/d/acar

https://linux.die.net/man/3/exec
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/wait
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/dup2
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man3/termios.3.html
http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
https://kb.iu.edu/d/acar

