
C shell
(Φροντιστήριο για την 1η σειρά)

Dimitris Deyannis
deyannis@csd.uoc.gr

System Calls
● If a process is running a user program in user mode and needs a system

service, such as reading data from a file, it has to execute a trap instruction
to transfer control the operating system

Application User Space

Kernel Space

System Call

System Calls
A system call is a request for service that a program makes of the kernel. The
service is generally something that only the kernel has the privilege to do, such as
doing I/O

Process Control fork(), wait(), exec(), exit(), ...

File Manipulation open(), close(), read(), write(), ...

Directory Management mkdir(), rmdir(), mount(), link(), ...

Other chdir(), chmod(), kill(), time(), ...

System Calls

fork()
● Fork creates a new process (child process).

○ It creates an exact duplicate of the original process, including all the file descriptors, registers
etc.

● The fork is called once, but returns twice!
○ After the fork, the original process and the copy (the parent and the child) go at separate ways
○ The fork call returns a value, which is zero in the child and equal to the child’s process

identifier (PID) in the parent.

● Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user
command

fork() – PID (Process IDentity)
● pid < 0 the creation of a child process was unsuccessful
● pid == 0 the newly created child
● pid > 0 the process ID of the child process passes to the parent

#include <unistd.h>
pid_t pid = fork();
printf(“PID:%d\n”,pid);
…
The parent will print:
PID:34
The child will always print:
PID:0

P1
PID: 28

C1
PID: 34

fork()

fork()
#define TRUE 1
while (TRUE) { /* repeat forever */

type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() != 0) { /* fork off child process */

/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code */
execve(command, parameters, 0); /* execute command */

}
}

exec (binary path)
● The exec() call replaces/overwrites a current process image with a new one

(i.e. loads a new program within the current process)
● The file descriptor table remains the same as the original process
● Argument passed via exec() appear in the argv[] of the main function
● Upon success, exec() never returns to the caller

○ It replaces the current process image, so it cannot return anything to the program that made
the call

○ If it does return, it means the call failed

exec(“/bin/ls”): overwrites the memory code image with the binary from /bin/ls and
executes

exec (binary path)
● There’s not a single syscall under the same exec()
● By exec() we usually refer to a family of calls:

○ int execl(char *path, char *arg, ...);
○ int execv(char *path, char *argv[]);
○ int execle(char *path, char *arg, ..., char *envp[]);
○ int execve(char *path, char *argv[], char *envp[]);
○ int execlp(char *file, char *arg, ...);
○ int execvp(char *file, char *argv[]);

l argument list

v argument vector

e environmental vector

p search path

fork and exec
● Often after calling fork() we want to load a new program into the child. E.g.: a shell

exec exit

fork

wait
parent

child

resumes

wait()
● Forces the parent to suspend execution, i.e. wait for its children or a specific

child to die (terminate)

● When the child process dies, it returns an exit status to the operating system,
which is then returned to the waiting parent process. The parent process then
resumes execution

● A child process that dies but is never waited on by its parent becomes a
zombie process. Such a process continues to exist as an entry in the system
process table even though it is no longer an actively executing program

exit()
● This call gracefully terminates process execution. Gracefully means it does

clean up and release of resources, and puts the process into the zombie state

● When the child process dies, an exit status is returned to the OS and a signal
is sent to the parent process

● The exit status can then be retrieved by the parent process via the wait system
call

fork, exec and wait
while (1) { /* repeat forever */

type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() != 0) { /* fork off child process */

/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code */
execve(command, parameters, 0); /* execute command */

}
 }

Process state
In computing, a process is an instance of a computer program that is being
executed. It contains the program code and its current activity

● Orphan is a process whose parent process has finished or terminated,
though it remains running itself

● Daemon runs as a background process rather than being under the direct
control of an interactive user

● Zombie is a process that has completed execution but still has an entry in the
process table

Pipelines
● Pipelines (pipes) provide a unidirectional interprocess communication channel

● “|” (pipe) operator between two commands directs the stdout of the first to the
stdin of the second. Any of the commands may have options or arguments

● Examples:
○ command_1| command_2 parameter_1 | command_3 | command_4 ….
○ ls -l | grep key | more
○ ls -al | grep txt | wc -l

void main(int argc, char *argv[]) {
int pipefd[2];
pid_t cpid;
char buf;
if (pipe(pipefd) == -1) {

perror("pipe");
exit(EXIT_FAILURE);

}
cpid = fork();
if (cpid == -1) {

perror("fork");
exit(EXIT_FAILURE);

}
if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */
while (read(pipefd[0], &buf, 1) > 0)
write(STDOUT_FILENO, &buf, 1);
write(STDOUT_FILENO, "\n", 1);
close(pipefd[0]);
exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */
close(pipefd[0]); /* Close unused read end */
write(pipefd[1], argv[1], strlen(argv[1]));
close(pipefd[1]); /* Reader will see EOF */
wait(NULL); /* Wait for child */
exit(EXIT_SUCCESS);

}

Redirection
● Use dup2()

○ dup2(source_fd, destination_fd)

● Standard Input “<“
○ sort < file_list.txt

● Standard Output “>”,”>>”
○ ls > file_list.txt
○ ls >> file_list.txt (append)

● Use fopen()
○ “r” for input “<“
○ “w+” for output “>”
○ “a” for append output

Assignment 1
● Implement a C shell (command interpreter) that reads and executes user

commands
● Shell prompt: <user>@cs345sh/<dir>$
● Simple command examples:

○ cd
○ exit
○ ….

● Complex command examples:
○ ls -al
○ cat file.txt
○ sort -r -o log.txt input.txt
○

Assignment 1
● Pipe examples

○ ls -al | wc -l
○ ls -al | sort -r -k 6 | head 5
○

● Redirection examples
○ cat < data.txt
○ ls -al > log.txt /* overwrite */
○ ls -al >> log.txt /* append */

Assignment 1
● Environment Variables

○ Variables that are exported to all processes spawned by the shell
○ Some environment variables affect the shell itself, such as PATH

● setenv
○ setenv VAR [VALUE]
○ E.g <user>@cs345sh/<dir>$ setenv PATH /home/user/src

● unsetenv
○ unsetenv VAR
○ E.g <user>@cs345sh/<dir>$ unsetenv PATH

● env
○ Reports all the environment variables in use

Useful links
● https://linux.die.net/man/3/exec
● https://linux.die.net/man/2/fork
● https://linux.die.net/man/2/wait
● https://linux.die.net/man/2/pipe
● https://linux.die.net/man/2/dup2
● https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
● http://man7.org/linux/man-pages/man2/pipe.2.html
● http://man7.org/linux/man-pages/man3/termios.3.html
● http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
● https://kb.iu.edu/d/acar

https://linux.die.net/man/3/exec
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/wait
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/dup2
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man3/termios.3.html
http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
https://kb.iu.edu/d/acar

