
Assignment 1

Teaching Assistant: Michalis Pachilakis (mipach@csd.uoc.gr)

System Calls

 If a process is running a user program in user mode and needs a system

service, such as reading data from a file, it has to execute a trap instruction

to transfer control the operating system.

System call

Application –USER SPACE

KERNEL SPACE

System Calls

A system call is a request for service that a program makes of the kernel. The

service is generally something that only the kernel has the privilege to do, such

as doing I/O.

SYSTEM CALLS

PROCESS CONTROL fork(), wait(),

exec(),exit()

FILE

MANIPULATION

open(), close(),

read(), write()

DIRECTORIES

MANAGEMENT

mkdir(),rmdir(),

mount(),link()

OTHER chdir(),chmod(),

kill(),time()

Fork()

 Fork creates a new process(child process).

 It creates an exact duplicate of the original process, including all the file

descriptors, registers etc.

 The fork is called once, but returns twice!

 After the fork, the original process and the copy(the parent and the child) go their

separate ways.

 The fork call returns a value, which is zero in the child and equal to the child’s

process identifier (PID) in the parent.

 Now consider how fork is used by the shell. When a command is typed, the

shell forks off a new process. This child process must execute the user

command.

Fork() – PID (Process IDentity)

 pid < 0  the creation of a child process was unsuccessful.

 pid == 0  the newly created child.

 pid > 0  the process ID of the child process passes to the parent

fork()

Consider the program:

#include <unistd.h>

pid_t pid = fork();

printf(“PID:%d\n”,pid);

…

The parent will print:

PID:34

The child will always print:

PID:0

P1

PID:28
C1

PID:34

Fork()

#define TRUE 1

while (TRUE) { /* repeat forever */

type_prompt(); /* display prompt on the screen */

read_command(command, parameters); /* read input from terminal */

if (fork() != 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code. */

execve(command, parameters, 0); /* execute command */

}

}

Exec (binary_path)

 The exec() call replaces/overwrites a current process image with a new one

(i.e. loads a new program within the current process).

 The file descriptor table remains the same as the original process.

 Argument passed via exec() appear in the argv[] of the main function.

 Upon success, exec() never returns to the caller.

 It replaces the current process image, so it cannot return anything to the program

that made the call.

 If it does return, it means the call failed

exec(“/bin/ls”): overwrites the memory code image with binary from /bin/ls and

execute.

Exec(binary_path)

 There’s not a syscall under the same exec().

 By exec() we usually refer to a family of calls:

 int execl(char *path, char *arg, ...);

 int execv(char *path, char *argv[]);

 int execle(char *path, char *arg, ..., char *envp[]);

 int execve(char *path, char *argv[], char *envp[]);

 int execlp(char *file, char *arg, ...);

 int execvp(char *file, char *argv[]);

Where: l=argument list, v= argument vector, e=environmental vector, p= search

path

Fork and exec
 Often after doing a fork() we want to load a new program into the child. E.g.:

a shell

Fork()

exec exit

wait

Wait()

 Forces the parent to suspend execution, i.e. wait for its children or a specific

child to die(terminate).

 When the child process dies, it returns an exit status to the OS, which is then

returned to the waiting parent process. The parent process then resumes

execution.

 A child process that dies but is never waited on by its parent becomes a

zombie process. Such a process continues to exist as entry in the system

process table even though it is no longer an actively executing program.

Exit()

 This call gracefully terminates process execution. Gracefully means it does

clean up and release of resources, and puts the process into the zombie

state.

 By calling wait(), the parent cleans up all its zombie children.

 When the child process dies, an exit status is returned to the OS and a signal

is sent to the parent process.

 The exit status can then be retrieved by the parent process via the wait

system call.

Fork, exec and wait

while (1) { /* repeat forever */

type_prompt(); /* display prompt on the screen */

read_command(command, parameters); /* read input from terminal */

if (fork()!= 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code. */

execve(command, parameters, 0); /* execute command */

}

}

State of a process

In computing, a process is an instance of a computer program that is being

executed. It contains the program code and its current activity.

 Orphan process, is a computer process whose parent process has finished or

terminated, though it remains running itself.

 Daemon process, runs as a background process, rather than being under the

direct control of an interactive user.

 Zombie process, is a process that has completed execution but still has an

entry in the process table.

Pipes
 Pipes provide a unidirectional interprocess communication channel.

 “|” (pipe) operator between two command directs the stdout of the first to

the stdin of the second. Any of the commands may have options or

arguments.

 E.g. of pipelines:

 Command 1| command 2 parameter 1

 ls –l | grep key

void main(int argc, char *argv[]){

int pipefd[2];

pid_t cpid;

char buf;

if (pipe(pipefd) == -1) {

perror("pipe");

exit(EXIT_FAILURE); }

cpid = fork();

if (cpid == -1) {

perror("fork");

exit(EXIT_FAILURE); }

if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */

while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);

write(STDOUT_FILENO, "\n", 1);

close(pipefd[0]);

exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */

close(pipefd[0]); /* Close unused read end */

write(pipefd[1], argv[1], strlen(argv[1]));

close(pipefd[1]);/* Reader will see EOF */

wait(NULL); /* Wait for child */

exit(EXIT_SUCCESS); }

}

Signals
 A signal is an asynchronous event which is delivered to a process.

 Asynchronous means that the event can occur at any time

 May be unrelated to the execution of the process

 E.g. user types ctrl-C, or the modem hangs

 Unix supports a signal facility, looks like a software version of the interrupt

subsystem of the normal CPU

 Process can send a signal to another – Kernel can send signal to a process

 A process can:

 Ignore/discard the signal (not possible with SIGKILL or SIGSTOP)

 Execute a signal handler function, and then possibly resume execution or

terminate

 Carry out the default action for that signal

Signals
The signal() system call installs a new signal handler for the signal with the

number signum. The signal handler is set to sighandler which may be a user

specified function.

Example

int main() {

signal(SIGINT,foo); …

Signals return 0; }

void foo(int signo) {

… /*deal with SIGINT*/

return; }

USER SPACE Application

KERNEL

Flow control

 Flow control is to prevent too fast of a flow of bytes from overrunning a

terminal.

 Software flow control is a method of flow control. It uses special codes call

XOFF and XON(from “transmit off” and “transmit on”).

Code Meaning Keyboard

XOFF Pause transmission Ctrl+S

XON Resume transmission Ctrl+Q

Redirection

 Use dup2()

 dup2(source_fd, destination_fd)

 Standard Input “<“

 E.g. sort < file_list.txt

 Standard Output “>”,”>>”

 e.g. ls > file_list.txt

 e.g. ls >> file_list.txt (append)

 Use fopen()

 “r” for input “<“

 “w+” for output “>”

 “a” for append output “>>”

Assignment 1

A C shell (command interpreter) that reads user commands and executes them.

 getlogin() (if does not work try: struct passwd *pw = getpwuid(getuid());

printf(“username:%s\n”,pw->pw_name);)

 Implement character flow control (see termios)

 Simple commands such as:

 cd (see chdir)

 fg (brings a process from background in the foreground)

 exit

 Also

 ls, ls –l, ls –a –l, cat file.txt, sort –r –o output.txt file_to_sort.txt, …

Assignment 1
A C shell (command interpreter) that reads user commands and executes them.

 User can send a signal by pressing Ctrl-z to put a foreground process in the

background.

 Complex commands such as:

 Redirection of input and output (see dup2())

 ls –l > output

 cat < input

 cat < input > output

 Pipes (see pipe())

 ps axl | grep zombie

 ps axl | grep zombie > output

 ls | grep “.c”

Assignment 1
1. Print prompt

2. Read command

1. Parse command and look for “-,|,>,>>,<,&”

If command == exit terminate shell

Else if command == cd use chdir

Else if command == fg bring in the foreground the background process

2.2 fork

parent

if command has “&” work in the

child background else wait

If command has “|” use pipe

If command has “>,>>,<“ use dup2()

Exec()

Go back to step 1

Useful links

 https://linux.die.net/man/3/exec

 https://linux.die.net/man/2/fork

 https://linux.die.net/man/2/wait

 https://linux.die.net/man/2/pipe

 https://linux.die.net/man/2/dup2

 https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm

 http://man7.org/linux/man-pages/man2/pipe.2.html

 http://man7.org/linux/man-pages/man3/termios.3.html

https://linux.die.net/man/3/exec
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/wait
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/dup2
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man3/termios.3.html

