
Assignment 1

Teaching Assistant: Michalis Pachilakis (mipach@csd.uoc.gr)

System Calls

 If a process is running a user program in user mode and needs a system

service, such as reading data from a file, it has to execute a trap instruction

to transfer control the operating system.

System call

Application –USER SPACE

KERNEL SPACE

System Calls

A system call is a request for service that a program makes of the kernel. The

service is generally something that only the kernel has the privilege to do, such

as doing I/O.

SYSTEM CALLS

PROCESS CONTROL fork(), wait(),

exec(),exit()

FILE

MANIPULATION

open(), close(),

read(), write()

DIRECTORIES

MANAGEMENT

mkdir(),rmdir(),

mount(),link()

OTHER chdir(),chmod(),

kill(),time()

Fork()

 Fork creates a new process(child process).

 It creates an exact duplicate of the original process, including all the file

descriptors, registers etc.

 The fork is called once, but returns twice!

 After the fork, the original process and the copy(the parent and the child) go their

separate ways.

 The fork call returns a value, which is zero in the child and equal to the child’s

process identifier (PID) in the parent.

 Now consider how fork is used by the shell. When a command is typed, the

shell forks off a new process. This child process must execute the user

command.

Fork() – PID (Process IDentity)

 pid < 0 the creation of a child process was unsuccessful.

 pid == 0 the newly created child.

 pid > 0 the process ID of the child process passes to the parent

fork()

Consider the program:

#include <unistd.h>

pid_t pid = fork();

printf(“PID:%d\n”,pid);

…

The parent will print:

PID:34

The child will always print:

PID:0

P1

PID:28
C1

PID:34

Fork()

#define TRUE 1

while (TRUE) { /* repeat forever */

type_prompt(); /* display prompt on the screen */

read_command(command, parameters); /* read input from terminal */

if (fork() != 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code. */

execve(command, parameters, 0); /* execute command */

}

}

Exec (binary_path)

 The exec() call replaces/overwrites a current process image with a new one

(i.e. loads a new program within the current process).

 The file descriptor table remains the same as the original process.

 Argument passed via exec() appear in the argv[] of the main function.

 Upon success, exec() never returns to the caller.

 It replaces the current process image, so it cannot return anything to the program

that made the call.

 If it does return, it means the call failed

exec(“/bin/ls”): overwrites the memory code image with binary from /bin/ls and

execute.

Exec(binary_path)

 There’s not a syscall under the same exec().

 By exec() we usually refer to a family of calls:

 int execl(char *path, char *arg, ...);

 int execv(char *path, char *argv[]);

 int execle(char *path, char *arg, ..., char *envp[]);

 int execve(char *path, char *argv[], char *envp[]);

 int execlp(char *file, char *arg, ...);

 int execvp(char *file, char *argv[]);

Where: l=argument list, v= argument vector, e=environmental vector, p= search

path

Fork and exec
 Often after doing a fork() we want to load a new program into the child. E.g.:

a shell

Fork()

exec exit

wait

Wait()

 Forces the parent to suspend execution, i.e. wait for its children or a specific

child to die(terminate).

 When the child process dies, it returns an exit status to the OS, which is then

returned to the waiting parent process. The parent process then resumes

execution.

 A child process that dies but is never waited on by its parent becomes a

zombie process. Such a process continues to exist as entry in the system

process table even though it is no longer an actively executing program.

Exit()

 This call gracefully terminates process execution. Gracefully means it does

clean up and release of resources, and puts the process into the zombie

state.

 By calling wait(), the parent cleans up all its zombie children.

 When the child process dies, an exit status is returned to the OS and a signal

is sent to the parent process.

 The exit status can then be retrieved by the parent process via the wait

system call.

Fork, exec and wait

while (1) { /* repeat forever */

type_prompt(); /* display prompt on the screen */

read_command(command, parameters); /* read input from terminal */

if (fork()!= 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code. */

execve(command, parameters, 0); /* execute command */

}

}

State of a process

In computing, a process is an instance of a computer program that is being

executed. It contains the program code and its current activity.

 Orphan process, is a computer process whose parent process has finished or

terminated, though it remains running itself.

 Daemon process, runs as a background process, rather than being under the

direct control of an interactive user.

 Zombie process, is a process that has completed execution but still has an

entry in the process table.

Pipes
 Pipes provide a unidirectional interprocess communication channel.

 “|” (pipe) operator between two command directs the stdout of the first to

the stdin of the second. Any of the commands may have options or

arguments.

 E.g. of pipelines:

 Command 1| command 2 parameter 1

 ls –l | grep key

void main(int argc, char *argv[]){

int pipefd[2];

pid_t cpid;

char buf;

if (pipe(pipefd) == -1) {

perror("pipe");

exit(EXIT_FAILURE); }

cpid = fork();

if (cpid == -1) {

perror("fork");

exit(EXIT_FAILURE); }

if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */

while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);

write(STDOUT_FILENO, "\n", 1);

close(pipefd[0]);

exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */

close(pipefd[0]); /* Close unused read end */

write(pipefd[1], argv[1], strlen(argv[1]));

close(pipefd[1]);/* Reader will see EOF */

wait(NULL); /* Wait for child */

exit(EXIT_SUCCESS); }

}

Signals
 A signal is an asynchronous event which is delivered to a process.

 Asynchronous means that the event can occur at any time

 May be unrelated to the execution of the process

 E.g. user types ctrl-C, or the modem hangs

 Unix supports a signal facility, looks like a software version of the interrupt

subsystem of the normal CPU

 Process can send a signal to another – Kernel can send signal to a process

 A process can:

 Ignore/discard the signal (not possible with SIGKILL or SIGSTOP)

 Execute a signal handler function, and then possibly resume execution or

terminate

 Carry out the default action for that signal

Signals
The signal() system call installs a new signal handler for the signal with the

number signum. The signal handler is set to sighandler which may be a user

specified function.

Example

int main() {

signal(SIGINT,foo); …

Signals return 0; }

void foo(int signo) {

… /*deal with SIGINT*/

return; }

USER SPACE Application

KERNEL

Flow control

 Flow control is to prevent too fast of a flow of bytes from overrunning a

terminal.

 Software flow control is a method of flow control. It uses special codes call

XOFF and XON(from “transmit off” and “transmit on”).

Code Meaning Keyboard

XOFF Pause transmission Ctrl+S

XON Resume transmission Ctrl+Q

Redirection

 Use dup2()

 dup2(source_fd, destination_fd)

 Standard Input “<“

 E.g. sort < file_list.txt

 Standard Output “>”,”>>”

 e.g. ls > file_list.txt

 e.g. ls >> file_list.txt (append)

 Use fopen()

 “r” for input “<“

 “w+” for output “>”

 “a” for append output “>>”

Assignment 1

A C shell (command interpreter) that reads user commands and executes them.

 getlogin() (if does not work try: struct passwd *pw = getpwuid(getuid());

printf(“username:%s\n”,pw->pw_name);)

 Implement character flow control (see termios)

 Simple commands such as:

 cd (see chdir)

 fg (brings a process from background in the foreground)

 exit

 Also

 ls, ls –l, ls –a –l, cat file.txt, sort –r –o output.txt file_to_sort.txt, …

Assignment 1
A C shell (command interpreter) that reads user commands and executes them.

 User can send a signal by pressing Ctrl-z to put a foreground process in the

background.

 Complex commands such as:

 Redirection of input and output (see dup2())

 ls –l > output

 cat < input

 cat < input > output

 Pipes (see pipe())

 ps axl | grep zombie

 ps axl | grep zombie > output

 ls | grep “.c”

Assignment 1
1. Print prompt

2. Read command

1. Parse command and look for “-,|,>,>>,<,&”

If command == exit terminate shell

Else if command == cd use chdir

Else if command == fg bring in the foreground the background process

2.2 fork

parent

if command has “&” work in the

child background else wait

If command has “|” use pipe

If command has “>,>>,<“ use dup2()

Exec()

Go back to step 1

Useful links

 https://linux.die.net/man/3/exec

 https://linux.die.net/man/2/fork

 https://linux.die.net/man/2/wait

 https://linux.die.net/man/2/pipe

 https://linux.die.net/man/2/dup2

 https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm

 http://man7.org/linux/man-pages/man2/pipe.2.html

 http://man7.org/linux/man-pages/man3/termios.3.html

https://linux.die.net/man/3/exec
https://linux.die.net/man/2/fork
https://linux.die.net/man/2/wait
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/dup2
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man3/termios.3.html

