
Linux Scheduler
(Φροντιστήριο για την 4η σειρά)

christou@csd.uoc.gr

What is a scheduler

Why is it usefull
● Many tasks have to run in parallel
● Almost all times tasks are more than the CPU cores (i.e. playing music while

talking on skype and playing a game…)

The Scheduler is responsible:

● To coordinate how tasks, share the available processors
(how much time each (Quantum))

● To avoid task starvation and preserve fairness
(i.e. music will continue while gaming)

● To also take into account system tasks (e.g. drivers...)

Linux Scheduler - definition
● The scheduler makes it possible to execute multiple programs at the “same”

time, thus sharing the CPU with users of varying needs.
○ minimizing response time
○ maximizing overall CPU utilization

● Ideal scheduling: n tasks share 100/n percentage of CPU effort each.
● Preemptive:

○ Higher priority processes evict lower-priority running processes

● Quantum duration
○ Variable
○ Keep it as long as possible, while keeping good response time

History of schedulers in Linux
● v1.2 : circular queue, round robin (RR) policy
● v2.2 : scheduling classes, categorizing tasks as non/real-time,

non-preemptible
● v2.4 : O(n) scheduler,

○ each task could run a quantum of time, each epoch
○ epoch advances after all runnable tasks have used their quantum
○ At the beginning of each epoch, all processes get a new quantum
○ BUT lacked scalability (O(n)) and was weak for real-time tasks

● v2.6 : Completely Fair Scheduler (CFS)

Assignment version

CFS
● Time-ordered red-black tree “timeline” of future task execution
● Runnable tasks are sorted using “vruntime”
● At each scheduling invocation:

○ the vruntime of the current task is incremented (time it spent using the CPU)
○ the scheduler chooses the leftmost leaf in the tree (i.e the task with the smallest vruntime)

● Leftmost node is cached (O(1)),
reinsertion of a preempted task takes O(logn)

CFS scheduling classes
Modular design in order to easily support different scheduling policies

● Each task belongs to a scheduling class
● The scheduling class defines the scheduling policy
● fair sched class: the CFS policy
● rt sched class: implements SCHED_FIFO (queue) SCHED_RR policies

○ priority run queues for each RT priority level
○ 100ms time slice for RR tasks

Files in Linux source
● Actual context switch, runqueue struct definition (rq, cfs_rq, rt_rq)

○ kernel/sched.c
● Completely Fair Scheduler, implementation of CFS

○ kernel/sched_fair.c

● Real Time Scheduling, rt implementation
○ kernel/sched_rt.c

● Tasks are abstracted as struct sched_entity and struct sched_rt_entity (for rt
class), also sched_class struct

○ include/linux/sched.h

Some code (sched.c)
3934 asmlinkage void __sched schedule(void)
3935 {
3936 struct task_struct *prev, *next; previous and next (new) tasks
3937 unsigned long *switch_count; statistics
3938 struct rq *rq; the processor’s runqueue (1 in this assignment)
…
3942 preempt_disable(); disable preemption (avoid schedule inside
3943 cpu = smp_processor_id(); schedule)
3944 rq = cpu_rq(cpu);
3945 rcu_note_context_switch(cpu);
3946 prev = rq->curr; previous is the current task running
…
3986 put_prev_task(rq, prev); put prev task in the runqueue, in
3987 next = pick_next_task(rq); this functions the appropriate put/pick
… function is called depending the
3991 if (likely(prev != next)) { scheduling class
…
3999 context_switch(rq, prev, next); the actual context switch

http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3934
http://lxr.free-electrons.com/ident?v=2.6.38;i=asmlinkage
http://lxr.free-electrons.com/ident?v=2.6.38;i=asmlinkage
http://lxr.free-electrons.com/ident?v=2.6.38;i=__sched
http://lxr.free-electrons.com/ident?v=2.6.38;i=__sched
http://lxr.free-electrons.com/ident?v=2.6.38;i=schedule
http://lxr.free-electrons.com/ident?v=2.6.38;i=schedule
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3934
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3935
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3935
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/ident?v=2.6.38;i=smp_processor_id
http://lxr.free-electrons.com/ident?v=2.6.38;i=smp_processor_id
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3944
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu_rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu_rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3944
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3945
http://lxr.free-electrons.com/ident?v=2.6.38;i=rcu_note_context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=rcu_note_context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3945
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/ident?v=2.6.38;i=likely
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999

also in sched.c….
3906 static inline struct task_struct *
3907 pick_next_task(struct rq *rq) The function that chooses next task
3908 {
3909 const struct sched_class *class;
3910 struct task_struct *p;
3916 if (likely(rq->nr_running == rq->cfs.nr_running)) { First check CFS rq
3917 p = fair_sched_class.pick_next_task(rq);
3918 if (likely(p))
3919 return p;
3920 }
3922 for_each_class(class) { Macro to traverse the list of sched
3923 p = class->pick_next_task(rq); classes
3924 if (p)
3925 return p;
3926 } Which sched class has our demo program?

printk function, can help.

...then in sched_fair.c
4169 static const struct sched_class fair_sched_class = {
4170 .next = &idle_sched_class, next sched class in the sched class list
4171 .enqueue_task = enqueue_task_fair, the class specific functions
4172 .dequeue_task = dequeue_task_fair, all _fair functions are implemented in
4173 .yield_task = yield_task_fair, this file.
4175 .check_preempt_curr = check_preempt_wakeup,
4177 .pick_next_task = pick_next_task_fair,
4178 .put_prev_task = put_prev_task_fair,

http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4169
http://lxr.free-electrons.com/ident?v=2.6.38;i=sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=fair_sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=fair_sched_class
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4169
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=idle_sched_class
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/ident?v=2.6.38;i=yield_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=yield_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4175
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_curr
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_wakeup
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_wakeup
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4175
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4178
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4178

For this assignment
● Implement Least Time Remaining scheduling algorithm
● At each scheduling interval, decrement the remaining time of the current

(preempted) task, if the updated remaining time is negative, set infinite flag
● Choose as next, the task with the least remaining time of completion

○ Iterate the processes in the runqueue and find the minimum

● If the next is the same with the preempted, no need for preemption
● If all processes have the infinite flag set, use the default Linux Scheduler

behaviour

Continue from assignment 3
● Use your code from assignment 3 to start

○ You will use set_total_computational_time system call to set the remaining time for a process

● Use the guidelines from previous assignment in order to compile Linux kernel
and run your kernel image

How to test
● Create simple programs that initialy set their total_computation_time

○ total_computational time should be different for each
○ (10 - 20 seconds difference should be good)

● Then, each will spin for some time (don’t use sleep, a large while maybe...),
the spin should be the same for each program

● After spinning, each program should print a unique identifier
● What is the expected behaviour??

Guidelines 1/2
● Familiarize with http://lxr.free-electrons.com/source/?v=2.6.38

○ You can find function implementation, struct definition, etc… within clicks

● Another way to map source code is by using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Use printk function, its syntax is quite the same as printf and it’s an easy way
to observe the kernel behaviour from user level (with dmesg command)

● Kernel data structures implementation is quite different from what you have
learned till now

○ https://isis.poly.edu/kulesh/stuff/src/klist/ ,lists examples
○ Search for examples for other data structures also
○ Also check the APIs for each data structure in include/linux folder

http://lxr.free-electrons.com/source/?v=2.6.38
http://www.tutorialspoint.com/unix_commands/ctags.htm
http://www.tutorialspoint.com/unix_commands/ctags.htm
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/

Guidelines 2/2
● Understand how the scheduler works

○ start with printing things inside schedule function

● Follow the function call path from schedule in order to find out how the next
task is picked

○ Also printing

● Reuse existing code snippets within the kernel source in order to do what you
want

○ e.g. reuse code snippets for accessing members in struct nodes, traversing data structures...

● Compile often with small changes in the source from the previous compilation
○ Massively helps with debugging

● Submit anything you can to show your effort!

