Linux Scheduler
(PpovTIoThPIo YIa TNV 4n oe1pd)

christou@csd.uoc.gr

What is a scheduler

- Linux kemel SCI (System Call Interface) Y
Memory Process
1/O subsystem management management
subsystem subsystem
4 Linux kernel Y R N
Virtual File System MitEual Signal
Terminals Sockets File systems memory handling
| Netfilter/ Nftables || Generic
@
c block layer Pagin
V ag Jprocessinread
i T protocols pag S
._.3 Linux kernel replacement termination
Linux kernel I,O SChEdUIer
Packet Scheduler
Character Network Block Page Lﬁ”r”gggr;;'
device device device cache
. . . Scheduler
drivers drivers drivers
\z ~
¢ R = Dispatcher)

Why is it usefull

e Many tasks have to run in parallel

e Almost all times tasks are more than the CPU cores (i.e. playing music while
talking on skype and playing a game...)

The Scheduler is responsible:

e To coordinate how tasks, share the available processors
(how much time each (Quantum))

e To avoid task starvation and preserve fairness
(i.e. music will continue while gaming)

e To also take into account system tasks (e.g. drivers...)

Linux Scheduler - definition

e The scheduler makes it possible to execute multiple programs at the “same”
time, thus sharing the CPU with users of varying needs.
o minimizing response time
o maximizing overall CPU utilization
e |deal scheduling: n tasks share 100/n percentage of CPU effort each.
e Preemptive:
o Higher priority processes evict lower-priority running processes

e Quantum duration
o Variable
o Keep it as long as possible, while keeping good response time

History of schedulers in Linux

e V1.2 : circular queue, round robin (RR) policy

e V2.2 :scheduling classes, categorizing tasks as non/real-time,
non-preemptible

e Vv2.4:0(n)scheduler,

o each task could run a quantum of time, each epoch

o epoch advances after all runnable tasks have used their quantum
o At the beginning of each epoch, all processes get a new quantum
o BUT lacked scalability (O(n)) and was weak for real-time tasks

e V2.6 : Completely Fair Scheduler (CFS)

ssignment version

CFS

e Time-ordered red-black tree “timeline” of future task execution
e Runnable tasks are sorted using “vruntime”

e At each scheduling invocation:

o the vruntime of the current task is incremented (time it spent using the CPU)
o the scheduler chooses the leftmost leaf in the tree (i.e the task with the smallest vruntime)

e Leftmost node is cached (O(1)),
reinsertion of a preempted task takes O(logn)

MNodes represeant
sched_entity(s)
indexed by their
virtual runtime

Virtual runtime

-~

Most need of CPU Least need of CPU

CFS scheduling classes

Modular design in order to easily support different scheduling policies

Each task belongs to a scheduling class

The scheduling class defines the scheduling policy

fair sched class: the CFS policy

rt sched class: implements SCHED FIFO (queue) SCHED RR policies

o priority run queues for each RT priority level
o 100ms time slice for RR tasks

Files in Linux source

e Actual context switch, runqueue struct definition (rq, cfs_rq, rt_rq)
o kernel/sched.c

e Completely Fair Scheduler, implementation of CFS
o kernel/sched_fair.c

e Real Time Scheduling, rt implementation
o kernel/sched rt.c

e Tasks are abstracted as struct sched _entity and struct sched_rt_entity (for rt

class), also sched_class struct
o include/linux/sched.h

Some code (sched.c)

3934 asmlinkage void __ sched schedule (void)

3935 {
3936
3937
3938

3942
3943
3944
3945
3946
3986
3987
3991

3999

struct task_struct *prev, *next;
unsigned long *switch count;
struct rq *rq;

preempt _disable() ;

cpu = smp_processor_id() ;

rq = cpu_rq(cpu) ;

rcu note_context_switch (cpu) ;
prev = rqg->curr;

put_prev_task(rq, prev);
next = pick next task(rq);

if (likely(prev !'= next)) {

context_switch(rq, prev, next);

previous and next (new) tasks
statistics
the processor’s runqueue (1 in this assignment)

disable preemption (avoid schedule inside
schedule)

previous is the current task running

put prev task in the runqueue, in

this functions the appropriate put/pick
function is called depending the

scheduling class

the actual context switch

http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3934
http://lxr.free-electrons.com/ident?v=2.6.38;i=asmlinkage
http://lxr.free-electrons.com/ident?v=2.6.38;i=asmlinkage
http://lxr.free-electrons.com/ident?v=2.6.38;i=__sched
http://lxr.free-electrons.com/ident?v=2.6.38;i=__sched
http://lxr.free-electrons.com/ident?v=2.6.38;i=schedule
http://lxr.free-electrons.com/ident?v=2.6.38;i=schedule
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3934
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3935
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3935
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/ident?v=2.6.38;i=task_struct
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3936
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3937
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3938
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/ident?v=2.6.38;i=preempt_disable
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3942
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/ident?v=2.6.38;i=smp_processor_id
http://lxr.free-electrons.com/ident?v=2.6.38;i=smp_processor_id
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3943
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3944
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu_rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu_rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3944
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3945
http://lxr.free-electrons.com/ident?v=2.6.38;i=rcu_note_context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=rcu_note_context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=cpu
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3945
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3946
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3986
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3987
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/ident?v=2.6.38;i=likely
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3991
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=rq
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/ident?v=2.6.38;i=context_switch
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.38#L3999

also Iin sched.c....

3906 static inline struct task_struct *

3907 pick_next task(struct rq *rq) The function that chooses next task
3908 {

3909 const struct sched class *class;

3910 struct task_struct *p;

3916 if (likely(rg->nr_running == rqg->cfs.nr_running)) { First check CFS rq

3917 p = fair sched class.pick next_ task(rq);

3918 if (likely(p))

3919 return p;

3920 }

3922 for each class(class) { Macro to traverse the list of sched
3923 P = class->pick next task(rq); classes

3924 if (p)

3925 return p;

3926 } Which sched class has our demo program?

printk function, can help.

...then in sched_fair.c

4169 static const struct sched class

4170
4171
4172
4173
4175
4177
4178

.next

.enqueue_task
.dequeue_task
.yield task

.check preempt curr
.pick_next task
.put_prev_task

fair sched class = {

= &idle_sched class,

= enqueue_task fair,

= dequeue_task_ fair,

= yield task fair,

= check preempt wakeup,
= pick_next_task_fair,
= put _prev_task fair,

next sched class in the sched class list
the class specific functions

all fair functions are implemented in
this file.

http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4169
http://lxr.free-electrons.com/ident?v=2.6.38;i=sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=fair_sched_class
http://lxr.free-electrons.com/ident?v=2.6.38;i=fair_sched_class
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4169
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/ident?v=2.6.38;i=idle_sched_class
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/ident?v=2.6.38;i=next
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4170
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/ident?v=2.6.38;i=enqueue_task
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4171
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/ident?v=2.6.38;i=dequeue_task
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4172
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/ident?v=2.6.38;i=yield_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=yield_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4173
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4175
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_curr
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_wakeup
http://lxr.free-electrons.com/ident?v=2.6.38;i=check_preempt_wakeup
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4175
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=pick_next_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4177
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4178
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task_fair
http://lxr.free-electrons.com/ident?v=2.6.38;i=put_prev_task_fair
http://lxr.free-electrons.com/source/kernel/sched_fair.c?v=2.6.38#L4178

For this assignment

e Implement Least Time Remaining scheduling algorithm
e At each scheduling interval, decrement the remaining time of the current
(preempted) task, if the updated remaining time is negative, set infinite flag

e Choose as next, the task with the least remaining time of completion
o lterate the processes in the runqueue and find the minimum

e If the next is the same with the preempted, no need for preemption
e If all processes have the infinite flag set, use the default Linux Scheduler
behaviour

Continue from assignment 3

e Use your code from assignment 3 to start

o You will use set_total _computational time system call to set the remaining time for a process

e Use the guidelines from previous assignment in order to compile Linux kernel
and run your kernel image

How to test

e Create simple programs that initialy set their total computation_time
o total _computational time should be different for each
o (10 - 20 seconds difference should be good)

e Then, each will spin for some time (don’t use sleep, a large while maybe...),
the spin should be the same for each program

e After spinning, each program should print a unique identifier

e What is the expected behaviour??

Guidelines 1/2

e Familiarize with http://Ixr.free-electrons.com/source/?v=2.6.38
o You can find function implementation, struct definition, etc... within clicks

e Another way to map source code is by using ctags
o http://www.tutorialspoint.com/unix_commands/ctags.htm

e Use printk function, its syntax is quite the same as printf and it's an easy way
to observe the kernel behaviour from user level (with dmesg command)
e Kernel data structures implementation is quite different from what you have

learned till now
o https://isis.poly.edu/kulesh/stuff/src/klist/ Jists examples
o Search for examples for other data structures also
o Also check the APIs for each data structure in include/linux folder

http://lxr.free-electrons.com/source/?v=2.6.38
http://www.tutorialspoint.com/unix_commands/ctags.htm
http://www.tutorialspoint.com/unix_commands/ctags.htm
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/
https://isis.poly.edu/kulesh/stuff/src/klist/

Guidelines 2/2

e Understand how the scheduler works
o start with printing things inside schedule function

e Follow the function call path from schedule in order to find out how the next
task is picked
o Also printing
e Reuse existing code snippets within the kernel source in order to do what you
want
o e.g.reuse code snippets for accessing members in struct nodes, traversing data structures...

e Compile often with small changes in the source from the previous compilation
o Massively helps with debugging

e Submit anything you can to show your effort!

