
CS 345 – Operating
Systems

Tutorial 2: Game of Life

Threads, Shared Memory, Synchronization

Threads

• A thread is a light - weight process.

• A thread exists within a process, and uses the
process resources.

• It is asynchronous.

• The program in C calls the pthread.h header file.

• How to compile:

 gcc hello.c –pthread –o hello

Create thread

int pthread_create(pthread_t * thread,

 pthread_attr_t *attr,

 void * (*func)(void *),

 void *arg);

Returns 0 for success, (>0) for error.

• 1st arg (*thread) – pointer to the identifier of the created thread.

• 2nd arg (*attr) – thread attributes. If NULL, then the thread is
created with default attributes

• 3rd arg (*func) – pointer to the function the thread will execute

• 4th arg (*arg) – the argument of the executed function

Shared memory
Shared memory is memory that may be

simultaneously accessed by multiple programs with
an intent to provide communication among them or

avoid redundant copies. Shared memory is an
efficient means of passing data between programs

Shared memory

• A shared memory segment is a portion of physical
memory that is virtually shared between multiple
processes.

• Processes connect to the shared memory segment and
get a pointer to the memory

• A process can read and write to this pointer, and all
changes are visible to every process connected to the
shared memory segment.

Shared memory - concerns

• Needs concurrency control/synchronization (data
inconsistencies are possible)

• Processes should be informed if it’s safe to read
and write data to the shared resource.

Shared memory – creation

• SHMGET allocates a shared memory segment

 int shmget(key_t key, int size, int shmflg);

 returns the segment memory id created (shmid).

 key: unique id for memory identification

 size: size of memory allocation

 shmflg: flags for creation and permissions (IPC_CREATE)

IPC_CREATE : if no segment is found with same key/size, it will
create the memory segment.

(If we try to create a memory segment with different size but
same key, it will return an error.)

Shared memory - attachment

• SHMAT attach the shared memory segment to the process
 void *shmat(int shmid, const void *shmaddr, int shmflg);

 returns the pointer of the shared memory segment, or -1 if failed

 shmid: shared memory identifier returned by SGMGET

 *shmaddr : defines where the process is situated in the segment.

 shmflg: flags,

 eg: shm = shmat(shmid, NULL, 0))

• SHMDT detach the shared memory segment of the process

 int shmdt(const void *shmaddr);

 returns 0 if success, -1 if failed

Shared memory - control

-SHMCTL is used to free the shared memory segment

• shmctl can also be used to execute different commands on
the shared memory segment

• With the command IPC_RMID we can remove the shared
memory segment.

 int shmctl(int shmid, int cmd, struct shmid_ds *buff);

 returns 0 if success, -1 if failed

 shmid: shared memory identifier returned by shmget

 cmd: command to operate : IPC_RMID for removal

 *buff : pointer to shared memory data structure

Thread synchronization
mechanisms
• Mutual exclusion (mutex)

• Semaphores

Mutexes

• guard against multiple threads modifying the same
shared data simultaneously

• provide locking/unlocking critical code sections
where shared data is modified

• each thread waits for the mutex to be unlocked (by
the thread who locked it) before performing the
code section

Mutexes -
create and initialize
Mutex variables are declared with type pthread_mutex_t, and must be initialized

before they can be used.

There are two ways to initialize a mutex variable:

 1. Statically, when it is declared. For example:

 pthread_mutex_t mut= PTHREAD_MUTEX_INITIALIZER;

 2. Dynamically, with the pthread_mutex_init()routine. This method permits
setting mutex object attributes, attr.

The mutex is initially unlocked.

Routines :

 pthread_mutex_init (mutex, attr)

 pthread_mutex_destroy (mutex)

Mutexes – basic functions

int pthread_mutex_lock(pthread_mutex_t*mutex);

int pthread_mutex_trylock(pthread_mutex_t*mutex);

int pthread_mutex_unlock(pthread_mutex_t*mutex);

• a mutex is like a key (to access the code section) that is
handed to only one thread at a time

• the lock/unlock functions work together

• a mutex is unlocked only by the thread that has locked it.

Whenever a thread reaches the lock/unlock block, it first determines if the
mutex is locked. If so, it waits until it is unlocked. Otherwise, it takes the mutex,
locks the succeeding code, then frees the mutex and unlocks the code when
it's done.

#include <pthread.h>
...
pthread_mutex_t my_mutex;
...
int main()
{
 int tmp;
 ...
 // initialize the mutex
 tmp= pthread_mutex_init(&my_mutex, NULL);
 ...
 // create threads
 ...
 pthread_mutex_lock(&my_mutex);
 do_something_private();
 pthread_mutex_unlock(&my_mutex);
 …
 pthread_mutex_destroy(&my_mutex);
 return 0;
}

Semaphores

Counting Semaphores:

• permit a limited number of threads to execute a
section of the code

• similar to mutexes (if we use binary semaphores it’s the
same)

• should include the semaphore.h header file

• semaphore functions do not have
pthread_prefixes; instead, they have sem_prefixes

Semaphores – basic functions

• Creating a semaphore:

 int sem_init (sem_t*sem, int pshared, unsigned int value);

 – initializes a semaphore object pointed to by sem

 – pshared is a sharing option; a value of 0 means the
semaphore is local to the calling process

 – gives an initial value value to the semaphore

• Terminating a semaphore:

 int sem_destroy (sem_t*sem);

 – frees the resources allocated to the semaphore sem

 – an error will occur if a semaphore is destroyed for which a
thread is waiting

Semaphores – basic functions

• Semaphore control:

 int sem_post(sem_t*sem);

 – atomically increases the value of a semaphore by 1, i.e.,
when 2 threads call sem_post simultaneously, the
semaphore's value will also be increased by 2 (there are 2
atoms calling)

 int sem_wait(sem_t*sem);

 – atomically decreases the value of a semaphore by 1; but
always waits until the semaphore has a non-zero value first

#include <pthread.h>
#include <semaphore.h>
...
void *thread_function(void *arg);
...
sem_t semaphore; // also a global variable just like mutexes
...
int main()
{
 int tmp;
 ...
 // initialize the semaphore
 tmp = sem_init(&semaphore, 0, 0);
 ...
 // create threads
 pthread_create(&thread[i], NULL, thread_function, NULL);
 ...
 while (still_has_something_to_do())
 {
 sem_post(&semaphore);
 ...
 }
 ...
 pthread_join(thread[i], NULL);
 sem_destroy(&semaphore);
 return 0;
}

the main thread increments the semaphore's count value in the
while loop

the threads wait until the semaphore's count value is non-zero
before performing perform_task_when_sem_open() and further

void *thread_function(void *arg)
{
 sem_wait(&semaphore);
 perform_task_when_sem_open();
 ...
 pthread_exit(NULL);
}

Assignment 2

• We have the Game of Life grid, a 2D array.

• We need to change each cell’s state according to its
own and neighbors state.

• Print the whole grid for each generation
completed.

• The game never ends.

Assignment 2

Init:

- Read initial 100x100 grid

- Spawn 100 threads
- Each one handles a 10x10 sub-grid

Loop:

- Cells transform on to the next generation

- When all cells of the grid have moved on to the
next generation, print the whole grid.

- Repeat forever

