
Assignment 1
Υπεύθυνοι βοηθοί:

Ειρήνη Δέγκλερη (degleri@csd.uoc.gr)
Ηλίας Παπαδόπουλος (ppapadop@csd.uoc.gr)

mailto:degleri@csd.uoc.gr
mailto:ppapadop@csd.uoc.gr

System Calls
■ If a process is running a user program in user mode and needs a system service, such

as reading data from a file, it has to execute a trap instruction to transfer control to
the operating system.

Application – USER SPACE

KERNEL SPACE

System
Call

System Calls

A system call is a request for service that a program makes of the kernel. The
service is generally something that only the kernel has the privilege to do, such as doing
I/O.

Fork()
■ Fork creates a new process (child process).

– It creates an exact duplicate of the original process, including all the file
descriptors, registers—everything.

■ The fork is called once, but returns twice!
– After the fork, the original process and the copy (the parent and child) go their

separate ways.
– The fork call returns a value, which is zero in the child and equal to the child's

process identifier or PID in the parent.

■ Now consider how fork is used by the shell. When a command is typed, the shell forks
off a new process. This child process must execute the user command.

Fork() – PID (Process IDentity)
■ pid < 0 → the creation of a child process was unsuccessful.

■ pid == 0 → the newly created child.

■ pid > 0 → the process ID of the child process passes to the parent.

Consider a piece of program:
#include <unistd.h>

pid_t pid = fork();
printf(“PID: %d\n”, pid);
….
The parent will print:
PID: 34
And the child will always print:
PID: 0

P1
PID:28

C1
PID:34

fork()

Fork()
#define TRUE 1
while (TRUE) { /* repeat forever */

type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() != 0) { /* fork off child process */

/* Parent code. */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */

}
}

Exec (binary_path)
■ The exec() call replaces/overwrites a current process’ image with a new one (i.e.

loads a new program within current process).

■ The file descriptor table remains the same as that of original process.

■ Arguments passed via exec() appear in the argv[] of the main() function.

■ Upon success, exec() never returns to the caller.
– It replaces the current process image, so it cannot return anything to the

program that made the call.
– If it does return, it means the call failed.

exec(“/bin/ls”) : overwrites the memory code image with binary from /bin/ls and execute.

P1
PID:28

P1
PID:28

exec()

Old program New program

Exec (binary_path)
■ There ’s not a syscall under the name exec().

■ By exec() we usually refer to a family of calls:
– int execl(char *path, char *arg, ...);
– int execv(char *path, char *argv[]);
– int execle(char *path, char *arg, ..., char *envp[]);
– int execve(char *path, char *argv[], char *envp[]);
– int execlp(char *file, char *arg, ...);
– int execvp(char *file, char *argv[]);

Where: l = argument list
v = argument vector
e = environmental vector
p = search path

Fork and exec
■ Often after doing fork() we want to load a new program into the child. E.g.: a shell

Fork ()

wait

exec exit()

parent

child

resumes

wait ()
■ Forces the parent to suspend execution, i.e. wait for its children or a specific child to

die (terminate).

■ When the child process dies, it returns an exit status to the operating system, which is
then returned to the waiting parent process. The parent process then resumes
execution.

■ A child process that dies but is never waited on by its parent becomes a zombie
process. Such a process continues to exist as an entry in the system process table
even though it is no longer an actively executing program.

exit ()
■ This call gracefully terminates process execution.

Gracefully means it does clean up and release of resources, and puts the process into
the zombie state.

■ By calling wait(), the parent cleans up all its zombie children.

■ When the child process dies, an exit status is returned to the operating system and a
signal is sent to the parent process.
The exit status can then be retrieved by the parent process via the wait system call.

Fork, exec and wait

while (1) { /* repeat forever */

type_prompt(); /* display prompt on the screen */

read_command(command, parameters); /* read input from terminal */

if (fork() != 0) { /* fork off child process */

/* Parent code. */

waitpid(-1, &status, 0); /* wait for child to exit */

} else {

/* Child code. */

execve(command, parameters, 0); /* execute command */

}

}

States of a process
In computing, a process is an instance of a computer program that is being executed. It
contains the program code and its current activity.

■ Orphan process is a computer process whose parent process has finished or
terminated, though it remains running itself.

■ Daemon process runs as a background process, rather than being under the direct
control of an interactive user.

■ Zombie process, is a process that has completed execution but still has an entry in
the process table.

Pipes
■ Pipes provide a unidirectional interprocess communication channel.

■ “|” (pipe) operator between two commands directs the stdout of the first to the stdin
of the second. Any of the commands may have options or arguments.

■ e.g of pipelines:
– command1 | command2 paramater1
– ls -l | grep key

void main(int argc, char *argv[]){

int pipefd[2];

pid_t cpid;

char buf;

if (pipe(pipefd) == -1) {

perror("pipe");

exit(EXIT_FAILURE); }

cpid = fork();

if (cpid == -1) {

perror("fork");

exit(EXIT_FAILURE); }

if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */

while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);

write(STDOUT_FILENO, "\n", 1);

close(pipefd[0]);

exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */

close(pipefd[0]); /* Close unused read end */

write(pipefd[1], argv[1], strlen(argv[1]));

close(pipefd[1]); /* Reader will see EOF */

wait(NULL); /* Wait for child */

exit(EXIT_SUCCESS); }

}

Redirection
■ Use dup2()

– dup2(source_fd, destination_fd)

■ Standard Input “<“
– e.g. sort < file_list.txt

■ Standard Output “>“, “>>”
– e.g. ls > file_list.txt
– e.g. ls >> file_list.txt (append)

■ Use fopen()
• “r” for input “<“
• “w+” for output “>”
• “a” for append output “>>”

FILE *fp;
fp = fopen ("file.txt", "w+“);

Assignment 1
A C shell (command interpreter) that reads user commands and executes them.

– getlogin() (if dosen’t work try: struct passwd *pw = getpwuid(getuid());
printf("Username: %s\n", pw->pw_name);)

■ Simple commands such as:
– cd (see chdir())
– set var=”ls”, unset var and printlvars
– exit
– Also,

➢ ls, ls –l, ls -a -l, cat file.txt, sort -r -o output.txt file_to_sort.txt, ...

Assignment 1
A C shell (command interpreter) that reads user commands and executes them.

■ Complex commands such as:
– Redirection of input and output (see dup2())

■ ls –l > output
cat < input
cat < input > output

– Pipes (see pipe())
■ ps axl | grep zombie
■ ps axl | grep zombie > output
■ ls | grep “.c”

Assignment 1
1. Print prompt
2. Read command

a. Parse command // look for “-, | , >, >>, <, &”
if command == exit // terminate shell
else if command == set or unset //insert to/delete from local variable table

if command == unset // check if variable was previously set
else if command = printlvars // print local var table
else if command == cd // use chdir()
2.2 fork

go back to Step 1

child parent

if command has “|” // use pipe()
if command has “>, >> , < ” // use dup2()
exec(...)

if command has “&” // work in background
else // wait

Useful links
■ Shell: http://linuxcommand.org/learning_the_shell.php

■ fork(): https://linux.die.net/man/2/fork

■ exec(): https://linux.die.net/man/3/exec

■ wait(): https://linux.die.net/man/2/wait

■ pipe(): https://linux.die.net/man/2/pipe

■ dup2(): https://linux.die.net/man/2/dup2

■ fopen(): https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm

■ set, unset: http://sc.tamu.edu/help/general/unix/vars.html

http://linuxcommand.org/learning_the_shell.php
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/dup2
https://www.tutorialspoint.com/c_standard_library/c_function_fopen.htm
http://sc.tamu.edu/help/general/unix/vars.html

Reading material
■ Κλήσεις συστήματος (Κεφ. 1.6)

■ Διεργασίες (Κεφ. 2.1)

