
Periodic scheduler for Linux OS
Mike Athanasakis – michath@csd.uoc.gr

Operating System TA – Winter 2015-2016

History
• Linux v1.2 – Round Robin
• Linux v2.2 – Scheduling Classes & Policies
• Linux v2.4 – Division in epochs, goodness of function
• Linux v2.6 – Runqueue O(1)
• Linux v2.6.21 – Completely Fair Scheduler (CFS)
� Virtual time concept
� Time-ordered red-black tree instead of queue
� Maintains balance in providing processor time to tasks

Scheduling classes
• Linux scheduler at kernel/sched.c
� It is modular, depending the type of task it changes

scheduling algorithm.
� It uses the idea of scheduling class.
� Each task belongs to a scheduling class, that changes

the way it gets scheduled.

• sched.c calls an “overloaded” function that depending the
scheduling class it calls different code

Task hierarchy in CFS

struct sched_entity {
…
struct rb_node run_node;
…

}

struct task_struct {
…
struct sched_entity se;
…

}

struct rb_node {
…
rb_node *right, left;
…

}

rb_root

struct ofs_rq

rb

rb rb

rb

rb rb

Red-black tree to hold tasks

Scheduler and policies
• Scheduling policy is set by sched_setscheduler()

• Available scheduling policies

� SCHED_FIFO – Special time-critical tasks
� SCHED_RR – Round robin scheduling
� SCHED_IDLE – Low priority tasks
� SCHED_OTHER – Default linux task (normal)
� SCHED_BATCH – CPU intensive tasks

Scheduling policies and their files

• Completely fair scheduler (SCHED_OTHER)
�kernel/sched_fair.c

• Real time processes (SCHED_FIFO & SCHED_RR)
�kernel/sched_rt.c

• Idle tasks (SCHED_IDLE)
�kernel/sched_idle.c

Scheduling state of task
• Defined at /include/linux/sched.h

� TASK_RUNNING 0
� TASK_INTERRUPTIBLE 1
� TASK_UNINTERRUPTIBLE 2
� TASK_ZOMBIE 3
� TASK_STOPPED 4

Maybe you can add a new task state?
Maybe TASK_PERIODIC?

Runqueue the magic starts here

• Defined at kernel/sched.c is the main scheduling struct of
Linux.

struct runqueue {
…
struct task_struct *curr; currently running task
struct prio_array *active; active priority array
struct prio_array *expired; expired priority array
struct prio_array arrays[2]; actual priority arrays
…

}

Runqueue functions
• Called inside main schedule at kernel/sched.c

� cpu_rq(processor) – returns CPU’s runqueue

� this_rq() – returns runqueue of current CPU

� task_rq(task) – returns the runqueue where the task is
in

void schedule(void); 1/2
• Located at kernel/sched.c it is the main scheduling function.
void asmlinkage __sched schedule (void) {

struct task_struct *prev, *next; previous & next task
struct rq *rq;
...
rq = cpu_rq(cpu);
prev = rq->curr; current task will become the

previous after the context switch

pre_schedule (rq, prev); depending the scheduling class
the code to run changes

void schedule(void); 2/2
put_prev_task(rq, prev); scheduling class dependent code

next = pick_next_task(rq); the function that chooses the next
task

...

context_switch(rq, prev, next); the actual context switch

…

post_schedule(rq); depending the scheduling class
the code to run changes

pick_next_task(rq)
if (likely(rq->nr_running == rq->cfs.nr_running)) {

p = fair_sched_class.pick_next_task(rq);
if (likely(p))

return p;
}

for_each_class(class) {
p = class->pick_next_task(rq);
if (p)

return p;
}

struct sched_class
• Located at include/linux/sched.h
• How to handle enqueue/dequeue of a specific sched_class
void (*enqueue_task) (struct rq, struct task_struct, int flags);
void (*dequeue_task) (struct rq, struct task_struct, int flags);

• During the context switch how to handle the sched_class

struct task_struct * (*pick_next_task) (struct rq *rq);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);

Assignment 4
A periodic scheduler with a short period first

• Each process has a period_time (p_i) and a computation
time (c_i) in milliseconds.
• Each task has to run exactly c_i time every p_i time.
• If a task doesn’t run c_i time every p_i then we say it

missed a deadline.
• We choose what periodic process to run first by choosing

the one with the smallest period time (shortest period first).

• Remember that normal Linux schedule quantum is 100ms.

Periodic tasks example

c_i 12

p_i: 40

p_i: 10 c_i: 3

Process 1

Process 2

c_i: 9 Missed deadline

Process 1: p_i: 40 seconds
c_i: 12 seconds

Process 2: p_i: 10 seconds
c_i: 3 seconds

How to test
• Create a simple test program that takes as argument the

p_i and c_i
• Run a 1st task test instance with p_i/c_i: 1000 / 200
• Run a 2nd task test instance with p_i/c_i: 2000 / 500
• Run a 3rd task test instance with p_i/c_i: 1500 / 400
• And so on… the tasks should start miss deadlines!

• Get creative on how to test it, it will score you points!

More help? Info? Deliverables?
• Just check the assignment pdf. It has much more text than it

shows.
• If you need more help read the links, they have a lot of info

that can make this assignment much easier.

• This task is like a real problem out there
� Study the problem and design the solution.
� Implement your solution and test it as much as you can.
� Submit even the smallest piece of code to show your effort!

