System Calls (Φροντιστήριο για την 3η σειρά)

Dimitris Deyannis deyannis@csd.uoc.gr

What is a System Call?

 The system call is the fundamental interface
 between an application
 and the Linux kernel

Why we need System Calls?

- System calls provide an essential interface between a process and the operating system
- A system call is how a program requests a service from an operating system's kernel

What can System Calls do?

- File management
 - o create, open, delete..
- Process control
 - exec, kill, wait...
- Device management
 - request, release...
- Information maintenance
 - get time, set time...
- Communication
 - sockets, send, receive...

How do we use System Calls?

- sys/syscall.h is a small library that implements long syscall(long number, ...);
- This function invokes the system call that corresponds to the "number" while "..." corresponds to the rest of the arguments

Implementing a new System Call

- 1. Define a system call number
- 2. Define a function pointer
- 3. Define a function
- 4. Implement the system call

Using Qemu

• Load the image and start the guest OS

\$ qemu-system-i386 -hda hy345-linux.img

• Load the image and start the guest OS with the new kernel

\$ qemu-system-i386 -hda hy345-linux.img -append "
root=/dev/hda" -kernel linux-2.6.38.1
/arch/x86/boot/bzImage

Define a System Call number

- Every system call has an invocation number
- Edit: linux-2.6.38.1/arch/x86/include/asm/unistd_32.h
 - Define the new system call number at the bottom of the list
 - e.g. #define __NR_dummy_sys 341
 - Update the number of system calls
 - #define NR_syscalls 342

Define a function pointer

- The Kernel needs to have a function pointer pointing to the new system call
- Edit: linux-2.6.38.1/arch/x86/kernel/syscall_table_32.S
- Define the function pointer at the bottom of the list
 - e.g. .long sys_dummy_sys /* 341 */

Define a function

- We have to define the function signature in syscalls.h file
- Edit: linux-2.6.38.1/include/asm-generic/syscalls.h
- At the bottom of the file add:

Implement the System Call part 1

• Touch and edit: linux-2.6.38.1/kernel/dummy_sys.c as such:

#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <asm/uaccess.h>

```
asmlinkage long sys_dummy_sys(int arg0)
{
    printk("Called system call dummy_sys with argument: %d\n", arg0);
    return ((long)arg0 * 2);
}
```

Implement the System Call part 2

- Edit: linux-source-2.6.38.1/kernel/Makefile
- Add: obj-y += dummy_sys.o

• Now you are ready to compile the Kernel with your new system call!

Compile the Linux Kernel

\$ cp ~hy345/qemu-linux/linux-2.6.38.1.tar.bz2 /spare/[username]/
\$ tar -jxvf linux-2.6.38.1.tar.bz2
\$ cd linux-2.6.38.1

Edit kernel source code to implement the new system calls

\$ cp ~hy345/qemu-linux/.config

Edit .config, find CONFIG_LOCALVERSION="-hy345", and append to the kernel's version name your username and a revision number

\$ make ARCH=i386 bzImage

Periodic processes

- A periodic process "i" has a period p_i and a computation time c_i
- Every p_i milliseconds the process needs to run for c_i milliseconds.
- The process may run at the beginning of the period i, at the end of the period (i.e. time p_i-c_i) or anywhere in between

Periodic processes

- Once the counting of the period starts, we would like the process to receive c_i milliseconds of CPU time (neither more nor less) in each period
- If a process does not receive c_i milliseconds of CPU time in a period it is said to have missed a deadline

Implementation

- For this assignment you have to implement the following system calls
 - set_period_parameters(int pid, unsigned int p_time, unsigned int c_time)
 - get_period_parameters(int pid, struct p_params *p_arguments)
 - get_missed_deadlines(int pid, struct d_params *d_argument)

Implementation

• Add 3 new fields in task struct

- unsigned int period time; Ο
- unsigned int computation time; // The CPU time Ο
- unsigned int missed_deadlines; // The missed deadlines Ο
- // The period duration
- Implement the p params and d params structs
 - struct p params
 - unsigned int period time;
 - unsigned int computation time;
 - struct d params \bigcirc
 - unsigned int missed deadlines;