
CS-345 | ASSIGNMENT 1

Implementation of simple C shell : "cs345sh"

System Calls

Application
User Space

Kernel Space

System call

save the process
execution context

(for resuming later)

Check if the request is
valid and the process
invoking the system

call has enough
privilege

Process in Kernel
Mode. Can access the

device drivers in
charge of controlling

the hardware

read and modify the
data of the calling
process (as it has

access to User-Space
memory)

Restore the process
execution context

control returns to the
calling program

all

e the

d m

Sy

The “fork()” system call

A process calling fork()spawns a child process.
The child is almost an identical clone of the parent:

Program Text (segment .text)
Stack (ss)
PCB (eg. registers)
Data (segment .data)

The fork() is called once, but returns twice!
After fork()both the parent and the child are
executing the same program.

The “fork()” system call - PID

pid<0: the creation of a child process was
unsuccessful.
pid==0: the newly created child.
pid>0: the process ID of the child process passes to
the parent.

P1
PID:28

C1
PID:34

P1
PID:28

P

Fork()

Consider a piece of program

...
pid_t pid = fork();
printf(“PID: %d\n”, pid);
...

The parent will print:
PID: 34
And the child will always print:
PID: 0

“fork()” Example

When simpfork is executed, it
has a pid of 914. Next it calls
fork() creating a duplicate
process with a pid of 915.
The parent gains control of
the CPU, and returns from
fork() with a return value of
the 915 -- this is the child's
pid. It prints out this return
value, its own pid, and the pid
of C shell, which is 381.
Note: there is no guarantee
which process gains control of
the CPU first after a fork(). It
could be the parent, and it could
be the child.

void main() {
int i;
printf("simpfork: pid = %d\n", getpid());
i = fork();
printf("Did a fork. It returned %d.

getpid = %d. getppid = %d\n“
, i, getpid(), getppid());

}

Returns:

simpfork: pid = 914

Did a fork.It returned 915. getpid=914. getppid=381

Did a fork. It returned 0. getpid=915. getppid=914

The “exec()” System Call

The exec()call replaces a current process’ image with a
new one (i.e. loads a new program within current process).

The new image is either regular executable binary file or a
shell script.

There’s not a syscall under the name exec(). By exec()we usually refer to a family of calls:
int execl(char *path, char *arg, ...);
int execv(char *path, char *argv[]);
int execle(char *path, char *arg, ..., char *envp[]);
int execve(char *path, char *argv[], char *envp[]);
int execlp(char *file, char *arg, ...);
int execvp(char *file, char *argv[]);

Where l=argument list, v=argument vector, e=environmental
vector, and p=search path.

The “exec()” System Call

Upon success, exec()never returns to the caller. It replaces the current
process image, so it cannot return anything to the program that made the
call. If it does return, it means the call failed. Typical reasons are: non-
existent file (bad path) or bad permissions.
Arguments passed via exec()appear in the argv[] of the main()
function.
As a new process is not created, the process identifier (PID) does not
change, but the machine code, data, heap, and stack of the process are
replaced by those of the new program.
For more info: man 3 exec;

P1
PID:28

P1
PID:28

Exec()
P

Exec()

Old Program New Program

“fork()” and “exec()” combined

Often after doing fork() we want to load a new
program into the child. E.g.: a shell

C1
PID:34

C1
PID:34

exec(ls)
P

exec(ls)

Old Program New Program

P1
PID:28

C1
PID:34P

fork()

The “wait()” system call

Forces the parent to suspend execution, i.e. wait for its
children or a specific child to die (terminate).

When the child process dies, it returns an exit status to
the operating system, which is then returned to the
waiting parent process. The parent process then
resumes execution.

A child process that dies but is never waited on by its
parent becomes a zombie process. Such a process
continues to exist as an entry in the system process
table even though it is no longer an actively executing
program.

The “wait()” system call

The wait() causes the parent
to wait for any child process.
The waitpid() waits for the
child with specific PID.

pid: pid of (child) process that
the calling process waits for.
status: a pointer to the location
where status information for
the terminating process is to be
stored.
options: specifies optional
actions.

The return value is:
PID of the exited process, if no
error
(-1) if an error has happened

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid,

int *status,
int options);

The “exit()” system call

This call gracefully terminates process execution.
Gracefully means it does clean up and release of
resources, and puts the process into the zombie state.

By calling wait(), the parent cleans up all its zombie
children.

When the child process dies, an exit status is returned to
the operating system and a signal is sent to the parent
process. The exit status can then be retrieved by the
parent process via the wait system call.

The process states

Zombie: has completed execution, still has an entry in the process
table
Orphan: parent has finished or terminated while this process is still
running
Daemon: runs as a background process, not under the direct control
of an interactive user

A zombie process

Pipes

Pipes and FIFOs (also known as named pipes) provide a
unidirectional interprocess communication channel
“|” (pipe) operator between two commands directs the stdout of
the first to the stdin of the second. Any of the commands may
have options or arguments. Many commands use a hyphen (-) in
place of a filename as an argument to indicate when the input
should come from stdin rather than a file.

e.g of pipelines:
command1 | command2 paramater1 | command3
parameter1 - parameter2 | command4
ls -l | grep key | more

Programming Pipelines

Pipelines can be created under program control.
The Unix pipe() system call asks the operating
system to construct a unidirectional data channel
that can be used for interprocess communication (a
new anonymous pipe object).

This results in two new, opened file descriptors in
the process: the read-only end of the pipe, and
the write-only end. The pipe ends appear to be
normal, anonymous file descriptors, except that
they have no ability to seek.

void main(int argc, char *argv[]){
int pipefd[2];
pid_t cpid;
char buf;
if (pipe(pipefd) == -1) {

perror("pipe");
exit(EXIT_FAILURE);}

cpid = fork();
if (cpid == -1) {

perror("fork");
exit(EXIT_FAILURE); }

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]); /* Close unused write end */
while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);
write(STDOUT_FILENO, "\n", 1);
close(pipefd[0]);
exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */
close(pipefd[0]); /* Close unused read end */
write(pipefd[1], argv[1], strlen(argv[1]));
close(pipefd[1]); /* Reader will see EOF */
wait(NULL); /* Wait for child */
exit(EXIT_SUCCESS);

}

SIGNALS

 A signal is an asynchronous event which is delivered to a process.
 Asynchronous means that the event can occur at any time

 may be unrelated to the execution of the process
 e.g. user types ctrl-C, or the modem hangs

 Unix supports a signal facility, looks like a software version of the interrupt
subsystem of a normal CPU

 Process can send a signal to another - Kernel can send signal to a process
(like an

 interrupt)
 A process can:

 ignore/discard the signal (not possible with SIGKILL or SIGSTOP)
 execute a signal handler function, and then possibly resume execution or

terminate
 carry out the default action for that signal

THE SIGNAL() SYSTEM CALL
 #include <signal.h>

void(*signal(intsig, void (*handler)(int))) (int);


The signal() system call installs a new signal handler for the signal
with number signum. The signal handler is set to sighandler which
may be a user specified function

EXAMPLE

int main()
{

signal(SIGINT, foo);
… /* do usual things until SIGINT */
return 0;

}

void foo(int signo)
{

… /* deal with SIGINT signal */
return; /* return to program */

}

SENDING A SIGNAL: KILL()
SYSTEM CALL
 kill command is a command that is used to send a signal in order to

request the termination of the process. We typically use kill -
SIGNAL PID, here you know the PID of the process.

 The kill() system call can be used to send any signal to any process
group or process.

 int kill (pid_t pid, int signo);

 pid Meaning
 >0 send signal to process pid
 ==0 send signal to all processes whose process group ID
 equals the sender’s pgid. e.g. parent kills all children
 -1 send signal to every process for which the calling
 process has permission to send signals

ALL TOGETHER NOW

JOB CONTROL

 Job control refers to the ability to selectively stop
(suspend) the execution of processes and continue
(resume) their execution at a later point.

 The shell keeps a table of currently executing jobs,
which may be listed with the jobs command.

ASSIGNMENT 1

 Το shell θα διαβάζει εντολές από τον χρήστη και θα τις εκτελεί.
 Η έξοδος μιας εντολής θα μπορεί να δίνεται σαν είσοδος σε μια άλλη

εντολή που υπάρχει στην ίδια γραμμή εντολών και διαχωρίζονται με το
σύμβολο ''|'' μεταξύ τους.

 Ο χρήστης θα μπορεί να κάνει έλεγχο διεργασιών αναστέλοντας
(suspend) και συνεχίζοντας (resume) την εκτέλεση της μιας διεργασίας
είτε στο προσκήνιο είτε στο παρασκήνιο.

TIPS

 First experiment with fork() and getpid(),
getppid()

 Use simple printf statements to distinguish
parent from child (through pid)

 Send simple signal to child
 Create signal handlers

Useful links

 http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork
/lecture.html

 https://linuxprograms.wordpress.com/category/pipes/
 http://man7.org/linux/man-pages/man2/pipe.2.html
 http://man7.org/linux/man-pages/man7/signal.7.html
 http://cis-

linux1.temple.edu/~giorgio/cis307/readings/signals.ht
ml

 http://ph7spot.com/musings/introduction-to-unix-
signals-and-system-calls

 www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt

http://web.eecs.utk.edu/%7Ehuangj/cs360/360/notes/Fork/lecture.html
http://web.eecs.utk.edu/%7Ehuangj/cs360/360/notes/Fork/lecture.html
https://linuxprograms.wordpress.com/category/pipes/
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://cis-linux1.temple.edu/%7Egiorgio/cis307/readings/signals.html
http://cis-linux1.temple.edu/%7Egiorgio/cis307/readings/signals.html
http://cis-linux1.temple.edu/%7Egiorgio/cis307/readings/signals.html
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://www.cs.uga.edu/%7Eeileen/1730/Notes/signals-UNIX.ppt

	CS-345 | Assignment 1�
	2.pdf
	SIGNALS
	THE SIGNAL() SYSTEM CALL
	EXAMPLE
	SENDING A SIGNAL: KILL() SYSTEM CALL
	ALL TOGETHER NOW
	JOB CONTROL
	ASSIGNMENT 1
	TIPS

	final.pdf
	Useful links

