
Panagiotis Papadopoulos
panpap@csd.uoc.gr

Implementation of the Least Slack Time
scheduling algorithm for Linux

Process Scheduling

• Switching from one process to another in a very short
time frame

• Scheduler:
When to switch processes
Which process to choose next
Major part of the operating system kernel

Linux Scheduler
• The scheduler makes it possible to execute multiple programs at the same time,

thus sharing the CPU with users of varying needs.
 minimizing response time
 maximizing overall CPU utilization

• Preemptive:

 Higher priority processes evict lower-priority running processes

• Quantum duration
 Variable
 Keep it as long as possible, while keeping good response time

Linux Scheduling Algorithm

• Dividing CPU time into epochs
 In each epoch, every process has a specified quantum

a. Varies per process
b. Its duration is computed when the epoch begins

 Quantum value is the maximum CPU time portion for this process in one

epoch
When this quantum passes, the process is replaced

• Process priorities

 Defines process’s quantum

How it works

• At the beginning of each epoch:
 Each process is assigned a quantum (Based on its priority, previous epoch,

etc)

• During each epoch:

 Each epoch runs until its quantum ends, then replaced
 If a process blocks (e.g., for I/O) before the end of its quantum, it can

be scheduled for execution again in the same epoch

Linux Scheduler (in practice)

• Implemented in linux-source-2.6.38.1/kernel/sched.c
• Main scheduler’s routine is schedule()

• Data structures:
 policy (SCHED_FIFO, SCHED_RR, SCHED_RR)
 priority (base time quantum of the process)
 counter (number of CPU ticks left)

Runqeueue list

• A list with all runnable processes
• Processes that are not blocked for I/O
• Candidates to be selected by schedule() for execution

• struct rq: (Defined in sched.h)

The schedule() function

• Implements the Linux scheduler
• Finds a process in the runqueue list for execution
• Invoked when a process is blocked
• Invoked when a process quantum ends
 Done by update_process_times()

• Invoked when a process with higher priority than the current
process wakes up

• Invoked when sched_yield() is called

Actions performed by schedule()

• First it runs kernel functions that have been queued (drivers, etc)
 run_task_queue(&tq_scheduler);

• Current process becomes prev
 prev=current

• Next will point to the process that will be executed when

schedule() returns

Round-robin policy

If prev has exchausted its quantum, it is assigned a new quantum
and moved to the bottom of the runqueue list

if (!prev->counter && prev->policy == SCHED_RR)
{
prev->counter = prev->priority; move_last_runqueue(prev);
}

State of prev

• Wake up a process:
if (prev->state == TASK_INTERRUPTIBLE && signal_pending(prev))
 prev->state = TASK_RUNNING;

• Remove from runqueue if not TASK_RUNNING:
if (prev->state != TASK_RUNNING)
 del_from_runqueue(prev);

Select next process for execution

Scan the runqueue list starting from init_task.next_run and select as next the
process with higher priority:

p = init_task.next_run;
while (p != &init_task) {

weight = goodness(prev, p);
if (weight > c) {

c = weight;
next = p;

}
p = p->next_run;

}

Goodness function

 Find the best candidate process
• c=-1000 must never be selected
• c=0 exhausted quantum
• 0<c<1000 not exhausted quantum
• c>=1000 real time process

if (p -> policy != SCHED_OTHER)
 return 1000 + p -> rt_priority;
if (p -> counter == 0)
 return 0;
if (p -> mm == prev -> mm)
 return p -> counter + p -> priority + 1;
return p -> counter + p -> priority;

Empty runqueue or no context switch

• If the runqeue list is empty
 No runnable process exists
 Next points to the init_task

• If all processes in the runqueue list has lower priority than the

current process prev
 No context switch
 prev will continue its execution

New epoch

When all processes in the runqueue list have exhausted their
quantum
• All of them have zero counter field
• Then a new epoch begins

if (!c) {

for_each_task(p)
P -> counter = (p -> counter >> 1) + p -> priority;

}

Context Switch

if (prev != next) {

kstat.context_swtch++;
switch_to(prev,next);

}
return;

schedule() in 2.6.38.1 (1/2)

asmlinkage void __sched schedule(void)
{

struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;
........

raw_spin_lock_irq(&rq->lock);
pre_schedule(rq, prev);
if (unlikely(!rq->nr_running))

idle_balance(cpu, rq);
put_prev_task(rq, prev);
next = pick_next_task(rq);
clear_tsk_need_resched(prev);
rq->skip_clock_update = 0;
if (likely(prev != next)) {

sched_info_switch(prev, next);
rq->nr_switches++;

rq->curr = next;
++*switch_count;
context_switch(rq, prev, next);

}
raw_spin_unlock_irq(&rq->lock);
post_schedule(rq);

schedule() in 2.6.38.1 (2/2)

Pick up the next task

static inline struct task_struct * pick_next_task(struct rq *rq) {
const struct sched_class *class;
struct task_struct *p;
if (likely(rq->nr_running == rq->cfs.nr_running)) {

p = fair_sched_class.pick_next_task(rq);
if (likely(p)) return p;

}
for_each_class(class) {

p = class->pick_next_task(rq);
if (p) return p;

}
}

Assignment 4

Continue from assignment 3

Copy your code from assignment 3 and start with the new fields in
task struct and the two new system calls
 You will use the set_lst_parameters() for your tests

Use qemu and same process to compile Linux kernel and boot with
the new kernel image

Real-Time Systems

Definition:
– Systems whose correctness depends on their temporal aspects as
 well as their functional aspects

Performance measure:
– Timeliness on timing constraints (deadlines)
– Speed/average case performance are less significant.

Key property:
– Predictability on timing constraints

Real-time systems (examples)

• Real-time monitoring systems
• Signal processing systems (e.g., radar)
• On-line transaction systems
• Multimedia (e.g., live video multicasting)
• Embedded control systems:
 Automotives
 Robots
 Aircrafts
 Medical devices ...

In this assignement
Implementation of a Real-time scheduling algorithm named Least Slack
Time algorithm which assigns priority based on the slack time of a process.
Slack time is the amount of time left after a job if the job was started now.

So:
• Filter out processes that have exceeded their deadlines
From the rest, execute the process with the least slack time Slack time:
 slack = deadline – [remaining_computation_time – (utime+stime)]
warning! Deadline's type is time_t when remaining_computation_time's is
int...

LST Example

A: Arrival time, C: Estimated Calculation Time, D: Deadline

Pre-process and filtering in runqeue list
• Before schedule() selects the next process
• (You may clone the runqueue list rq localy for convenience to rq’)
• Scan all processes in the runqueue list and find if there is any process that has

a deadline (deadline!=-1).
 If so, calculate its slack time. If this process has exceeded the given

deadline.
 If so, remove this process from the runqueue list so it'll never be

executed
 If not, iterate the runqueue list rq. For each process p, check if p has

less slack value.
 If so execute process p first.

Demonstrating the modified scheduler
A demo program that:
1. will create 10 child processes.
2. for each child process "i" the parent process will set its remaining computation

time to "i" and its deadline to "100".
3. each daughter process will sleep for i seconds and then it will print "i".

What to submit
1. bzImage
2. Only modified or created by you source files of the Linux kernel 2.6.38.1 (both

C and header files)
3. Demo program and header files used in the guest OS for testing the modified

scheduler
4. README with implementation details

Gather these files in a single directory and send them using the submit program as
usual (by using turnin tool)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

