

System Calls
(Φροντιστήριο για τη 3η σειρά)

cs-345
Vangelis Ladakis

ladakis@csd.uoc.gr

What is a System Call?

“The system call is the
fundamental interface
between an application and
the Linux kernel.”

Why we need System Calls?

● A system calls provide an essential interface between a
process and the operating system.

● A system call is how a program requests a service from an
operating system's kernel.

What system calls can do?

● Process Control
– exec, kill, wait...

● File management
– create, delete, open, load...

● Device Management
– request, release...

● Information Maintenance
– get time, set time...

● Communication
– Send/receive messages

– create/destroy communication
(sockets)...

Sounds Familiar?!

How we use them?

int syscall(int number, …)

– “man syscall” for details

● It's a small library which invokes the system call that
corresponds to the “number”.

– The symbol of “...” corresponds to the rest of the
arguments (just like printf).

Let's see an example...

Call a system call
Example

How can we write a
new system call?

1. Define system call number

2. Define function pointer

3. Define function

4. Implementation

Define System Call Number

● Every system call has an invocation number

● Edit: linux-2.6.38.1/arch/x86/include/asm/unistd_32.h

– Define at the bottom of the list your own system call
number

– Update the number of syscalls

 #define __NR_dummy_sys 341

Define function Pointer

● Kernel needs to have a function pointer pointing
to the new system call

● Edit: arch/x86/kernel/syscall_table_32.S
– Define at the bottom of the list the function pointer

 .long sys_dummy_sys /* 341 */

Define function

● At this point we have to define the function
signature at the syscalls.h

● Edit: include/asm-generic/syscalls.h

asmlinkage long sys_dummy_sys(int arg0);

Implement syscall 1/2

● Add the source code inside the kernel
– Add new file at: kernel/dummy_sys.c

– Edit the Makefile

The new system call may look as follow:

Implement syscall 2/2

● Notice that now you are programming in kernel
space
– No segmentation faults will occur, but Black screens

of Death

– Printf, malloc etc are for user-space instead you
have to use printk, kmalloc etc

● Messages of printk you may see them by typing dmesg
to command prompt or cat /var/log/messages

– Debugging may be a pain

Slack Time

● Every process will have
– Deadline

– Remaining time

● Slack comes from:
deadline – remaining time – current time

– It's the remaining spare time

Assignment 3

● You will have to implement two system calls that you will need
for the next assignment

/* set to the process with the given pid the remaining time and deadline time */

set_lst_parameters(int pid, int remaining_computation_time, time_t deadline);

/* fill the struct lst_parms with the remaining time and the deadline time for the process with the given
pid */

get_lst_parameters(int pid, struct lst_params *lst_arguments);

Assignment in detail:

http://www.csd.uoc.gr/~hy345/assignments/2014/assign3/assignment3.html

http://www.csd.uoc.gr/~hy345/assignments/2014/assign3/assignment3.html

● You will have to add some information to the task_struct
– Stores information for a process.

– Defined in include/linux/sched.h

For every process running you will have to add:

● The system calls will eventually set and get information for a process

● You will need them for the slack scheduler (next assignment)

Try to keep your code clean, you are messing with the kernel

Be careful with the memory space
● Arguments passed by value

● When you have memory references you have to
pass the data from user-space to kernel-space
– int access_ok(type, address, size)

– Unsigned long copy_from_user(void* to, const void_user* from, unsigned long n)

– Unsigned long copy_to_user(void_user* to, const void* from, unsigned long n)

 Functions are defined in: /linux/uaccess.h & /asm-generic/uaccess.h

Qemu & Linux OS

● Qemu is pre-installed on CSD machines
– Files are big!!! Work on spare directory. Details on the site

● Download from the course site the:
– Linux source code

– .config file for building the kernel

– linux image

Source code:

http://www.csd.uoc.gr/~hy345/qemu-linux/linux-2.6.38.1.tar.bz2

.config:

http://www.csd.uoc.gr/~hy345/qemu-linux/.config

Linux Image:

http://www.csd.uoc.gr/~hy345/qemu-linux/hy345-linux.img

http://www.csd.uoc.gr/~hy345/qemu-linux/linux-2.6.38.1.tar.bz2
http://www.csd.uoc.gr/~hy345/qemu-linux/.config
http://www.csd.uoc.gr/~hy345/qemu-linux/hy345-linux.img

Load Image to Qemu

● In order to load Image
– qemu -hda hy345-linux.img

● In order to compile the source code and load the new image

1) Download and place inside linux-2.6.38.1 the config file .config

2) Edit .config, find CONFIG_LOCALVERSION="-hy345", and
append to the kernel's version name your username and a
revision number

3) make ARCH=i386 bzImage

4) qemu -hda hy345-linux.img -append "root=/dev/hda" -kernel
linux-2.6.38.1/arch/x86/boot/bzImage

Useful Links

● Assignment 3:
http://www.csd.uoc.gr/~hy345/assignments/2014/assign3/assignme
nt3.html

● Qemu and Linux:

http://www.csd.uoc.gr/~hy345/assignments/quemu_notes.html
● Adding a System call:

http://www.csd.uoc.gr/~hy345/assignments/system_calls_notes.htm
l

● Adding a system call:

http://www.cs.rochester.edu/~sandhya/csc256/assignments/adding-
a-system-call.html

● Adding a System call video:

https://www.youtube.com/watch?v=5rr_VoQCOgE

http://www.csd.uoc.gr/~hy345/assignments/2014/assign3/assignment3.html
http://www.csd.uoc.gr/~hy345/assignments/2014/assign3/assignment3.html
http://www.csd.uoc.gr/~hy345/assignments/quemu_notes.html
http://www.csd.uoc.gr/~hy345/assignments/system_calls_notes.html
http://www.csd.uoc.gr/~hy345/assignments/system_calls_notes.html
http://www.cs.rochester.edu/~sandhya/csc256/assignments/adding-a-system-call.html
http://www.cs.rochester.edu/~sandhya/csc256/assignments/adding-a-system-call.html
https://www.youtube.com/watch?v=5rr_VoQCOgE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

