
CS345

Operating Systems

Threads

Inter-Process Communication (IPC)

• Exchange data among processes

• Methods

- pipes

- signals

- sockets

- shared memory

1

Communications Models

2

Assignment overview

3

uoc_desc

math_students csd_students

– Three distinct programs

– These programs are communicating with sockets

– uoc_desc starts first, and create a “server-side” socket

Sockets

• How two processes with no common ancestor can

communicate? Ans: sockets

• Socket is an abstraction for an endpoint communication
that can be manipulated with a file descriptor.

• It is an abstract object from which messages are sent and
received.

• Sockets are created within a communication domain just as
files are created within a file system.

• A communication endpoint for two processes

– Both must create their own socket.

– Two sockets must be connected before they can transfer

data.
4

Sockets

• Communication link between two programs running

on the network (eg client-server)

• Communication between processes on the same

Unix system (UNIX domain sockets).

Socket Types

- Stream sockets: connection-oriented, reliable,

bidirectional, preserve sequence.

- Datagram sockets: connectionless, unidirectional.
5

Socket creation

Socket system call creates sockets on demand.

s = socket (af, type, protocol); // where s is an int,

•af - address family, AF_INET, AF_UNIX, AF_AAPLETALK etc.

•type - communication type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
etc.

•protocol - some domains have multiple protocol, usually use a 0.

Example:

unsigned int s;

struct sockaddr_un localsocket;

s = socket(AF_UNIX, SOCK_STREAM,0);

Returns -1 on error  Do error checking! 6

bind socket

• Socket binding: A socket is created without any association to
local or destination address.

bind(s, localaddr, addrlength)

localaddr - struct of specific format for each address domain;

addrlength - length of this struct; obtained usually by sizeof.

sockaddr_un defines localaddr format for unix family (it is in un.h file).

struct sockaddr_un {

short sun_family;

char sun_path[108];

}; 7

bind socket and connect

Example:

#define SocketName “test_socket”

unsigned int s, s2;

sockaddr_un localsocket, remotesocket;

s = socket(AF_UNIX, SOCK_STREAM,0);

localsocket.sun_family = AF_UNIX;

strcpy(localsocket.sun_path, SocketName);

//Bind to address (a special file on your system)

bind(s, &localsocket, sizeof(localsocket));

listen (s, 5) // listen for incoming connections

s2 = accept(s, &remotesocket, sizeof(remotesocket)); 8

Client sockets

• socket() -- to create unix socket

• struct sockaddr_un -- the remote address where the

server is listening (address of client creating the

socket).

• connect() -- to server’s sockaddr_un address

• send() and recv() for communication

• no need for listen() and accept() !!

9

Assignment overview

10

uoc_desc

math_students csd_students

– Synchronization between math_students and csd_students

– Use of shared memory (created by uoc_desc)

Shared Memory

• A shared memory segment is a portion of physical

memory that is virtually shared between multiple

processes.

• Processes connect to the shared memory segment

and get a pointer to the memory

• A process can read and write to this pointer, and all

changes are visible to every process connected to

the shared memory segment.

• The form of IPC because data does not need to be

copied between processes. 11

Shared Memory

+ Fast bidirectional communication among any number

of processes

+ Saves resources (in comparison to other IPC forms).

+ No kernel involvement.

- Needs concurrency control/synchronization

(data inconsistencies are possible)

Processes should be informed if it’s safe to read

and write data to the shared resource. 12

Shared Memory - creation

- SHMGET allocates a shared memory segment

int shmget(key_t key, int size, int shmflg);

returns the segment memory id created (shmid).

key : unique id for memory identification

size : size of memory allocation

shmflg : flags for creation and permissions (IPC_CREATE)

IPC_CREATE : if no segment is found with same key/size, it will

create the memory segment.

(If we try to create a memory segment with different size but

same key, it will return an error.)
13

Shared Memory - attachment

- SHMAT attach the shared memory segment to the process

void *shmat(int shmid, const void *shmaddr, int shmflg);

returns the pointer of the shared memory segment, or -1 if failed

shmid : shared memory identifier returned by SGMGET

*shmaddr : defines where the process is situated in the segment.

(NULL  beginning)

shmflg : flags, eg SHM_RDONLY for read only access

- SHMDT detach the shared memory segment of the process

int shmdt(const void *shmaddr);

returns 0 if success, -1 if failed 14

Shared Memory - control

- SHMCTL is used to free the shared memory segment

•shmctl can also be used to execute different commands on the shared

memory segment

•With the command IPC_RMID we can remove the shared memory segment.

int shmctl(int shmid, int cmd, struct shmid_ds *buff);

returns 0 if success, -1 if failed

shmid : shared memory identifier returned by shmget

cmd : command to operate : IPC_RMID for removal

*buff : pointer to shared memory data structure

15

Assignment overview

16

uoc_desc

math_students csd_students

– Use CTRL+C to stop the running programs.

– CTRL+C  terminal sends an interrupt, signal (SIGINT)

– Memory leakage? Programs run a cleanup function and die

Signals

• Software generated interrupts that are sent to a

process when an event happens.

– Synchronously generated by an application error, eg.

SIGFPE, SIGSEGV

– Most signals are asynchronous.

• Each signal has a default action, one of the

following:

– The signal is discarded after being received

– The process is terminated after the signal is received

– Stop the process after the signal is received

– A core file is written, then the process is terminated 17

Signals

Defined in <signal.h> for common signals

SIGHUP 1 /*hangup*/

SIGINT 2 /*interrupt*/

SIGQUIT 3 /*quit*/

SIGILL 4 /*illegal instruction*/

SIGABRT 6 /*used by abort*/

SIGKILL 9 /*hard kill*/

SIGALRM 14 /*alarm clock*/

SIGCONT 18 /*continue a stopped process*/

SIGSTOP 19 /*process is paused, its state is preserved*/

Signals can be numbered from 0 to 31 18

#include<stdio.h>

#include<signal.h>

#include<unistd.h>

void sig_handler(int signo)

{

if (signo == SIGINT)

printf("received SIGINT\n");

}

int main(void)

{

if (signal(SIGINT, sig_handler) == SIG_ERR)

printf("\ncan't catch SIGINT\n");

// A long wait so that we can easily issue a signal to this process

while(1)

sleep(1);

return 0;

}

Catching a Signal - Example

int send_signal (int pid)

{

kill(pid, SIGINT)

printf(“SIGINT sent\n“);

}

19

Process vs. Thread

• process:

• an address space with 1 or more threads

executing within that address space, and the

required system resources for those threads

• a program that is running

• thread:

• a sequence of control within a process

• shares the resources in that process

20

Advantages of Threads

• The overhead for creating a thread is significantly
less than that for creating a process

• Multitasking, i.e., one process serves multiple
clients

• Switching between threads requires the OS to do
much less work than switching between processes

21

Drawbacks of Threads

• Not as widely available as longer established

features

• Writing multithreaded programs require more

careful thought

• More difficult to debug than single threaded

programs

• For single processor machines, creating several

threads may not necessarily increase performance
22

main thread

• initial thread created when main() is invoked by the
process loader

• once in the main(), the application has the ability to
create daughter threads

• if the main thread returns, the process terminates
even if there are running threads in that process,
unless special precautions are taken

• to explicitly avoid terminating the entire process,
use pthread_exit()

23

Create thread

• int pthread_create(

pthread_t * thread,

pthread_attr_t *attr,

void * (*func)(void *),

void *arg

);

• 1st arg (*thread) – pointer to the identifier of the created thread.

(save the identifier, it is used for pthread_join)

• 2nd arg (*attr) – thread attributes. If NULL, then the thread is

created with default attributes

• 3rd arg (*func) – pointer to the function the thread will execute

• 4th arg (*arg) – the argument of the executed function

• Returns 0 for success, (>0) for error.
24

Waiting threads

int pthread_join(pthread_t thread, void **thread_return)

• main thread will wait for daughter thread to finish

• 1st arg (thread) – the thread to wait for

• 2nd arg (**thread_return) – pointer to a pointer to the

return value from the thread

• returns 0 for success

• threads should always be joined; otherwise, a thread

might keep on running even when the main thread has

already terminated

25

Sample Pthreads Program in C

• The program in C calls the pthread.h header file.
Pthreads related statements are preceded by the
pthread_ prefix (except for semaphores).

• How to compile:
 gcc hello.c –pthread –o hello

26

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <unistd.h>

int main(int argc, char **argv){

pthread_t t1;

int thread_id = 1;

if ((pthread_create(&t1, NULL, (void *)&worker, (void *)&thread_id)) != 0) {

printf("Error creating thread\n");

exit(1);

}

pthread_join(t1, NULL);

return 0;

}

void worker(void *a) {

int *cnt = (int *)a;

printf("This is thread %d\n", *cnt);

pthread_exit(0);

}

26

Thread Synchronization

Mechanisms

• Mutual exclusion (mutex):

• guard against multiple threads modifying the

same shared data simultaneously

• provides locking/unlocking critical code

sections where shared data is modified

• each thread waits for the mutex to be

unlocked (by the thread who locked it) before

performing the code section

28

Mutex variables are declared with type pthread_mutex_t, and must

be initialized before they can be used.

There are two ways to initialize a mutex variable:

 Statically, when it is declared. For example:

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

 Dynamically, with the pthread_mutex_init() routine. This

method permits setting mutex object attributes, attr.

•The mutex is initially unlocked.

•Routines

pthread_mutex_init (mutex,attr)

pthread_mutex_destroy (mutex)

Create and initialize mutex

29

Basic Mutex Functions

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

• a mutex is like a key (to access the code section) that is

handed to only one thread at a time

• the lock/unlock functions work in tandem

• Mutex is unlocked only by the thread that has locked it.

• Threads wait for access a locked section of code
30

#include <pthread.h>

...

pthread_mutex_t my_mutex;

...

int main()

{

int tmp;

...

// initialize the mutex

tmp = pthread_mutex_init(&my_mutex, NULL);

...

// create threads

...

pthread_mutex_lock(&my_mutex);

do_something_private();

pthread_mutex_unlock(&my_mutex);

...

…

pthread_mutex_destroy(&my_mutex);

return 0;

}

• Whenever a thread reaches the lock/unlock block, it first
determines if the mutex is locked. If so, it waits until it is
unlocked. Otherwise, it takes the mutex, locks the succeeding
code, then frees the mutex and unlocks the code when it's done.

31

Semaphores

• Counting Semaphores:

• permit a limited number of threads to execute

a section of the code

• similar to mutexes

• should include the semaphore.h header file

• semaphore functions do not have pthread_

prefixes; instead, they have sem_ prefixes

32

Basic Semaphore Functions

• creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int value);

– initializes a semaphore object pointed to by sem

– pshared is a sharing option; a value of 0 means the
semaphore is local to the calling process

– gives an initial value value to the semaphore

• terminating a semaphore:
int sem_destroy(sem_t *sem);

– frees the resources allocated to the semaphore sem

– usually called after pthread_join()

– an error will occur if a semaphore is destroyed for which
a thread is waiting

33

Basic Semaphore Functions

• semaphore control:
int sem_post(sem_t *sem);

int sem_wait(sem_t *sem);

– sem_post atomically increases the value of a semaphore

by 1, i.e., when 2 threads call sem_post simultaneously,

the semaphore's value will also be increased by 2 (there

are 2 atoms calling)

– sem_wait atomically decreases the value of a semaphore

by 1; but always waits until the semaphore has a non-

zero value first
34

#include <pthread.h>

#include <semaphore.h>

...

void *thread_function(void *arg);

...

sem_t semaphore; // also a global variable just like mutexes

...

int main()

{

int tmp;

...

// initialize the semaphore

tmp = sem_init(&semaphore, 0, 0);

...

// create threads

pthread_create(&thread[i], NULL, thread_function, NULL);

...

while (still_has_something_to_do())

{

sem_post(&semaphore);

...

}

...

pthread_join(thread[i], NULL);

sem_destroy(&semaphore);

return 0;

}

35

void *thread_function(void *arg)

{

sem_wait(&semaphore);

perform_task_when_sem_open();

...

pthread_exit(NULL);

}

• the main thread increments the semaphore's

count value in the while loop

• the threads wait until the semaphore's count value

is non-zero before performing

perform_task_when_sem_open() and further

• daughter thread activities stop only when

pthread_join() is called

36

