
ASSIGNMENT 1

Implementation of Linux C shell : "csd_sh"

System Calls

Application
User Space

Kernel Space

System call

save the process

execution context

(for resuming later)

Check if the request is

valid and the process

invoking the system

call has enough

privilege

Process in Kernel

Mode. Can access the

device drivers in

charge of controlling

the hardware

read and modify the

data of the calling

process (as it has

access to User-Space

memory)

Restore the process

execution context

control returns to the

calling program

The “fork()” system call

 A process calling fork()spawns a child process.

 The child is almost an identical clone of the parent:

 Program Text (segment .text)

 Stack (ss)

 PCB (eg. registers)

 Data (segment .data)

 The fork() is called once, but returns twice!

 After fork()both the parent and the child are

executing the same program.

The “fork()” system call - PID

 pid<0: the creation of a child process was
unsuccessful.

 pid==0: the newly created child.

 pid>0: the process ID of the child process passes to
the parent.

P1

PID:28

C1

PID:34

P1

PID:28

Fork()

Consider a piece of program

...

pid_t pid = fork();

printf(“PID: %d\n”, pid);
...

The parent will print:

PID: 34

And the child will always print:

PID: 0

“fork()” Example

When simpfork is executed, it
has a pid of 914. Next it calls
fork() creating a duplicate
process with a pid of 915.
The parent gains control of
the CPU, and returns from
fork() with a return value of
the 915 -- this is the child's
pid. It prints out this return
value, its own pid, and the pid
of C shell, which is 381.

Note: there is no guarantee
which process gains control of
the CPU first after a fork(). It
could be the parent, and it could
be the child.

void main() {

int i;

printf("simpfork: pid = %d\n", getpid());

i = fork();

printf("Did a fork. It returned %d.

getpid = %d. getppid = %d\n“

, i, getpid(), getppid());

}

Returns:

simpfork: pid = 914

Did a fork.It returned 915. getpid=914. getppid=381

Did a fork. It returned 0. getpid=915. getppid=914

The “exec()” System Call

 The exec()call replaces a current process’ image with a
new one (i.e. loads a new program within current process).

 The new image is either regular executable binary file or a
shell script.

 There’s not a syscall under the name exec(). By
exec()we usually refer to a family of calls:
 int execl(char *path, char *arg, ...);
 int execv(char *path, char *argv[]);
 int execle(char *path, char *arg, ..., char *envp[]);
 int execve(char *path, char *argv[], char *envp[]);
 int execlp(char *file, char *arg, ...);
 int execvp(char *file, char *argv[]);

Where l=argument list, v=argument vector, e=environmental
vector, and p=search path.

The “exec()” System Call

 Upon success, exec()never returns to the caller. It replaces the current
process image, so it cannot return anything to the program that made the
call. If it does return, it means the call failed. Typical reasons are: non-
existent file (bad path) or bad permissions.

 Arguments passed via exec()appear in the argv[] of the main()
function.

 As a new process is not created, the process identifier (PID) does not
change, but the machine code, data, heap, and stack of the process are
replaced by those of the new program.

 For more info: man 3 exec;

P1

PID:28

P1

PID:28

Exec()

Old Program New Program

“fork()” and “exec()” combined

 Often after doing fork() we want to load a new

program into the child. E.g.: a shell

C1

PID:34

C1

PID:34

exec(ls)

Old Program New Program

P1

PID:28

C1

PID:34

fork()

The “wait()” system call

 Forces the parent to suspend execution, i.e. wait for its
children or a specific child to die (terminate).

 When the child process dies, it returns an exit status to
the operating system, which is then returned to the
waiting parent process. The parent process then
resumes execution.

 A child process that dies but is never waited on by its
parent becomes a zombie process. Such a process
continues to exist as an entry in the system process
table even though it is no longer an actively executing
program.

The “wait()” system call

 The wait() causes the parent
to wait for any child process.

 The waitpid() waits for the
child with specific PID.

 pid: pid of (child) process that
the calling process waits for.

 status: a pointer to the location
where status information for
the terminating process is to be
stored.

 options: specifies optional
actions.

 The return value is:

 PID of the exited process, if no
error

 (-1) if an error has happened

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid,

int *status,

int options);

The “exit()” system call

 This call gracefully terminates process execution.
Gracefully means it does clean up and release of
resources, and puts the process into the zombie state.

 By calling wait(), the parent cleans up all its zombie
children.

 When the child process dies, an exit status is returned to
the operating system and a signal is sent to the parent
process. The exit status can then be retrieved by the
parent process via the wait system call.

The process states

 Zombie: has completed execution, still has an entry in the process
table

 Orphan: parent has finished or terminated while this process is still
running

 Daemon: runs as a background process, not under the direct control
of an interactive user

A zombie process

Pipes

 Pipes and FIFOs (also known as named pipes) provide a
unidirectional interprocess communication channel

 “|” (pipe) operator between two commands directs the stdout of
the first to the stdin of the second. Any of the commands may
have options or arguments. Many commands use a hyphen (-) in
place of a filename as an argument to indicate when the input
should come from stdin rather than a file.

e.g of pipelines:

 command1 | command2 paramater1 | command3
parameter1 - parameter2 | command4

 ls -l | grep key | more

Programming Pipelines

 Pipelines can be created under program control.
The Unix pipe() system call asks the operating
system to construct a unidirectional data channel
that can be used for interprocess communication (a
new anonymous pipe object).

 This results in two new, opened file descriptors in
the process: the read-only end of the pipe, and
the write-only end. The pipe ends appear to be
normal, anonymous file descriptors, except that
they have no ability to seek.

void main(int argc, char *argv[]){

int pipefd[2];

pid_t cpid;

char buf;

if (pipe(pipefd) == -1) {

perror("pipe");

exit(EXIT_FAILURE);}

cpid = fork();

if (cpid == -1) {

perror("fork");

exit(EXIT_FAILURE); }

if (cpid == 0) { /* Child reads from pipe */

close(pipefd[1]); /* Close unused write end */

while (read(pipefd[0], &buf, 1) > 0)

write(STDOUT_FILENO, &buf, 1);

write(STDOUT_FILENO, "\n", 1);

close(pipefd[0]);

exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */

close(pipefd[0]); /* Close unused read end */

write(pipefd[1], argv[1], strlen(argv[1]));

close(pipefd[1]); /* Reader will see EOF */

wait(NULL); /* Wait for child */

exit(EXIT_SUCCESS);

}

Time

 time is a command that is used to determine the
duration of execution of a particular command. It
writes a message to standard error that lists timing
statistics. The message includes the following
information:

 The elapsed (real) time between invocation of command
and its termination.

 The User CPU time, equivalent to the sum of the tms_utime
and tms_cutime fields returned by the times() function for the
process in which command is executed.

 The System CPU time, equivalent to the sum of the
tms_stime and tms_cstime fields returned by the times()
function for the process in which command is executed.

Times()

 times()gets process and waited-for child process times

 It fills the tms structure pointed to by buffer with time-
accounting information. The tms structure is defined in
<sys/times.h>.

clock_t times(struct tms *buffer);

struct tms {
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */
clock_t tms_cutime; /* user time of children */
clock_t tms_cstime; /* system time of children */

};

Times() example

static clock_t st_time;
static clock_t en_time;
static struct tms st_cpu;
static struct tms en_cpu;

void start_clock(){
st_time = times(&st_cpu);

}

void end_clock(char *msg){
en_time = times(&en_cpu);
fputs(msg,stdout);
printf("Real Time: %d, User Time %d, System Time %d\n",

(intmax_t)(en_time - st_time),

(intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),

(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

Assignment

 Το shell κα διαβάηει εντολζσ από τον χριςτθ και κα τισ εκτελεί.

 Ο χριςτθσ του csd_sh κα μπορεί να κατευκφνει τθν ζξοδο/είςοδο μιασ
εντολισ ςε ζνα αρχείο χρθςιμοποιώντασ το ςφμβολο ‘>’ ι αντίςτοιχα ‘<‘

(user@csd_sh /dir/# ls -l my_files/ > output_file) (see dup2()).

 Η ζξοδοσ μιασ εντολισ κα μπορεί να δίνεται ςαν είςοδοσ ςε μια άλλθ
εντολι που υπάρχει ςτθν ίδια γραμμι εντολών και διαχωρίηονται με το
ςφμβολο "|" . (user@csd_sh /dir/# ps axl | grep zombie) (see pipe()).

 cd (see chdir())

 setenv/unsetenv (see setenv() and unsetenv())

 csdTime (see gettimeofday() and times())

 exit

http://linux.die.net/man/2/dup2
http://linux.die.net/man/2/pipe
http://linux.die.net/man/2/chdir
http://linux.die.net/man/2/chdir
http://man7.org/linux/man-pages/man3/setenv.3.html
http://man7.org/linux/man-pages/man3/setenv.3.html
http://man7.org/linux/man-pages/man3/unsetenv.3.html
http://man7.org/linux/man-pages/man3/unsetenv.3.html
http://man7.org/linux/man-pages/man3/unsetenv.3.html
http://linux.die.net/man/2/gettimeofday
http://linux.die.net/man/2/gettimeofday
http://linux.die.net/man/2/times

Tips

1. First experiment with fork() and getpid(),
getppid()

2. Use simple printf statements to distinguish parent
from child (through pid)

3. Create logic for alternating execution

4. Read the following man pages: fork(2),
exec(3), execv(3), wait(2),

waitpid(2), pipe(2), dup2(2),

times(2), time(1), sh(1), bash(1),

gettimeofday(2), chdir(2),

getcwd(2), getlogin(2)

Useful links

 http://web.eecs.utk.edu/~huangj/cs360/360/note

s/Fork/lecture.html

 http://linuxprograms.wordpress.com/category/pip

es/

 http://man7.org/linux/man-

pages/man2/pipe.2.html

 http://man7.org/linux/man-

pages/man1/time.1.html

 http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2

http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
http://linuxprograms.wordpress.com/category/pipes/
http://linuxprograms.wordpress.com/category/pipes/
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2

24

close

print
prompt

Yes

Yes

Yes Yes

Change
env.

variables chdir()

fork()

No

No

No No Child

Parent

print pid

wait()
child

Yes

NoYes

print
times()

No

exec()

Yes

Yes

No

No

pipe(),

dup2()

dup2()

cd cmd?
setenv

unsetenv?
exit cmd?

exit()

is there „&‟?

redirect?

pipeline?

• parse input

• look for „<„,‟>‟,‟|‟,‟&‟

• consume

whitespaces: „\t‟,‟ „,

etc

fopen():

• “w+” for

“>”

• “a” for

“>>”

• “r” for “<“

Wait previous

process

before

starting new!

time

cmd?

command?

Try:
getcwd(),

getlogin()

