
Assignment 4:
Modify the Linux Scheduler to limit
the CPU usage of a process family

HY345 – Operating Systems
Course

1

Outline
• Background: The Linux Scheduler
• Modifying the Linux Scheduler
• Limiting the CPU usage of a process

– Filter out the processes that their process
family CPU time exceed the given limit at
the last interval

● Compute process’s execution time for the
current time interval

● Exclude processes from runqueue list so they
cannot be chosen for execution

• Testing the new scheduler
2

Process Scheduling

• Switching from one process to
another in a very short time frame

• Scheduler
– When to switch processes
– Which process to choose next
– Major part of the operating system

kernel

3

Linux Scheduler (in theory)

• Preemptive
– Higher priority processes evict

lower-priority running processes

• Quantum duration
– Variable
– Keep it as long as possible, while

keeping good response time

4

Linux Scheduling Algorithm

• Dividing CPU time into epochs
– In each epoch, every process has a specified

quantum
● Varies per process
● Its duration is computed when the epoch begins

– Quantum value is the maximum CPU time portion
for this process in one epoch

● When this quantum passes, the process is replaced

• Process priorities
– Defines process’s quantum

5

How it works

• At the beginning of each epoch
– Each process is assigned a quantum

● Based on its priority, previous epoch, etc

• During each epoch
– Each epoch runs until its quantum

ends, then replaced
● If a process blocks (e.g., for I/O) before the

end of its quantum, it can be scheduled for
execution again in the same epoch

6

Linux Scheduler (in
practice)

• Implemented in
linux-source-2.6.38.1/ kernel/sched.c

• Main scheduler’s routine is
schedule()

• Data structures
– policy (SCHED_FIFO, SCHED_RR,

SCHED_RR)
– priority (base time quantum of the

process)
– counter (number of CPU ticks left)

• update_process_times() decrements
counter

7

What happens in fork()

• The counter value is split in two
halves

– Half of the remaining clock ticks for the
father

– Half of the remaining clock ticks for the
child

8

Runqeueue list

• A list with all runnable process
– Process that are not blocked for I/O
– Candidates to be selected by schedule()

for execution

• struct rq
– Defined in sched.h

9

The schedule() function

• Implements the Linux scheduler
• Find a process in the runqueue list for execution

• Invoked when a process is blocked
• Invoked when a process quantum ends

– Done by update_process_times()

• Invoked when a process with higher priority than
the current process wakes up

• Invoked when sched_yield() is called

10

schedule() in sched.c

/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
……….
……….
}

11

Actions performed by
schedule()

• First it runs kernel functions that
have been queued (drivers, etc)

– run_task_queue(&tq_scheduler);

• Current process becomes prev
– prev=current

• Next will point to the process that will
be executed when schedule() returns

12

Round-robin policy

• If prev has exchausted its quantum,
it is assigned a new quantum and
moved to the bottom of the
runqueue list

if (!prev->counter && prev->policy ==
SCHED_RR) { prev->counter =
prev->priority; move_last_runqueue(prev);

}

13

State of prev

• Wake up a process

if (prev->state == TASK_INTERRUPTIBLE
&& signal_pending(prev))
prev->state = TASK_RUNNING;

• Remove from runqueue is not
TASK_RUNNING

if (prev->state != TASK_RUNNING)
del_from_runqueue(prev);

14

Select next process for
execution

• Scan the runqueue list starting from
init_task.next_run and select as next the process
with higher priority

p = init_task.next_run;
while (p != &init_task) {

weight = goodness(prev, p);
if (weight > c) {
c = weight;
next = p;
}
p = p->next_run;

}

15

Goodness
• Find the best candidate process

– c=-1000 must never be selected
– c=0 exhausted quantum
– 0<c<1000 not exhausted quantum
– c>=1000 real time process

if (p->policy != SCHED_OTHER)
return 1000 + p->rt_priority;

if (p->counter == 0)
return 0;

if (p->mm == prev->mm)
return p->counter + p->priority + 1;

return p->counter + p->priority;
16

Empty runqueue or no context
switch

• If the runqeue list is empty
– No runnable process exists
– Next points to the init_task

• If all processes in the runqueue list
has lower priority than the current
process prev

– No context switch
– prev will continue its execution

17

New epoch

• When c is 0 all processes in the runqueue list
have exhausted their quantum

– All of them have zero counter field
– Then a new epoch begins

if (!c) {
for_each_task(p)
p->counter = (p->counter >> 1) + p->priority;

}

18

Context Switch

if (prev != next) {
kstat.context_swtch++;
switch_to(prev,next);

}
return;

19

Modifying the Linux
Scheduler

• Schedule() function in sched.c
• Definitions in sched.h
• Add new fields in task_struct if needed

• struct rq
– The main per-CPU runqueue data structure
– Add fields in this struct for the scheduler

20

schedule() in 2.6.38.1

asmlinkage void __sched schedule(void)
{

struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;

…………
………….

21

schedule() in 2.6.38.1
raw_spin_lock_irq(&rq->lock);
pre_schedule(rq, prev);
if (unlikely(!rq->nr_running))
idle_balance(cpu, rq);
put_prev_task(rq, prev);
next = pick_next_task(rq);
clear_tsk_need_resched(prev);
rq->skip_clock_update = 0;

if (likely(prev != next)) {
sched_info_switch(prev, next);
rq->nr_switches++;
rq->curr = next;
++*switch_count;
context_switch(rq, prev, next);

}
raw_spin_unlock_irq(&rq->lock);
post_schedule(rq);

22

Pick up the highest-prio task

static inline struct task_struct * pick_next_task(struct rq *rq) {
const struct sched_class *class;
struct task_struct *p;

if (likely(rq->nr_running == rq->cfs.nr_running)) {
p = fair_sched_class.pick_next_task(rq);
if (likely(p)) return p;
}

for_each_class(class) {
p = class->pick_next_task(rq);
if (p) return p;
}

}

23

In this assignement
• Limiting the execution time of a process

– Or a process family as defined in assignment 3

• First, find if a process has a process family and a time limit
– Scan all processes in the runqueue list

• If so, check if this process has a family that has exceeded the
given time limit in the current time interval

– So, also divide time in time intervals

• If so, remove this process from the runqueue list
– So it will not be executed
– Clone the runqueue list localy in this function for safety

24

Start from assignment 3

• Copy your code from assignement 3
and start with the new fields in tast
struct and the two new system calls

– You will use the setproclimit() for your
tests

• Use qemu and same process to
compile linux kernel and boot with
the new kernel image

25

Pre-process and filtering in runqeue
list

• Before schedule() selects the next process
• Clone the runqueue list rq for convenience to rq’
• Iterate the runqueue list rq. For each process p:

– Check for root_pid!=-1 AND time_limit!=-1
– If not, leave the process p into rq’
– Else compute user+system time for process_family(p)

● Only for the current time interval I
– If user+system time for process_faimly(p) < time_limit(p),

leave p into rq’
– Else exclude p from rq’

26

Time Interval

• Divide time in time intervals
• Measure execution times for each time inteval

• Start a new time interval every time_interval
milliseconds

• Add prev_time variable (you can add it wherever
you prefer, e.g., in rq)

• If current_time > prev_time + time_interval
– Start a new interval

27

At each new time interval

• Instead of zeroing user and system time per
process

• Keep prev_utime and prev_stime per process
• CPU time of a process in the current interval is

– (utime-prev_utime) + (stime-prev_stime)

• All the above are just hints
– Feel free to implement this assignment in any way

you prefer

28

Testing the modified scheduler (1/2)

• User-level programs that show the
desirable behavior

• Test1
– 1 billion multiplications, vary time limit
– measure the effect of time limit in real

time
– Multiple programs with different time

limit in parallel

29

Testing the modified scheduler (2/2)

• User-level programs that show the
desirable behavior

• Test2
– 1 billion multiplications per process,

vary time limit and number of processes
– measure the effect of time limit and

number of processes in real time
– Validate the process family limit

30

What to submit

1. bzImage
2. Only modified or created by you source files of

the Linux kernel 2.6.38.1 (both C and header
files)

3. Test programs and header files used in the guest
OS for testing the modified scheduler

4. README with implementation details and
experiences from testing

Gather these files in a single directory and send
them using the submit program as usual

31

Good luck

Deadline: 20/1/2014

32

	Slide 1
	Outline
	Process Scheduling
	Linux Scheduler (in theory)
	Linux Scheduling Algorithm
	How it works
	Linux Scheduler (in practice)
	What happens in fork()
	Runqeueue list
	The schedule() function
	schedule() in sched.c
	Actions performed by schedule()
	Round-robin policy
	State of prev
	Select next process for execution
	Goodness
	Empty runqueue or no context switch
	New epoch
	Context Switch
	Modifying the Linux Scheduler
	schedule() in 2.6.38.1
	schedule() in 2.6.38.1
	Pick up the highest-prio task
	In this assignement
	Start from assignment 3
	Pre-process and filtering in runqeue list
	Time Interval
	At each new time interval
	Testing the modified scheduler (1/2)
	Testing the modified scheduler (2/2)
	What to submit
	Good luck

