CS345
Operating Systems

Dpovtiotriplto Acknong

Inter-process communication

* Exchange data among processes

* Methods
— Signals
— Pipes

— Sockets
— Shared Memory

Sockets

* Endpoint of communication link between two
programs running on the network

* |Inter-process communication flow across a
computer network

UNIX Domain sockets

 Sockets for communication between
processes on the same Unix system

* Imagine a “two-way” FIFO

Socket Types

e Stream sockets, also known as connection-
oriented sockets, provides sequenced,

reliable, two-way, connection-based byte
streams.

* Datagram sockets, also known as
connectionless sockets.

Simple file copy example

client server
write() ‘-—-A.._g;ead(), mg_receive(), write(), mg_send(), Aread()
. ormsgrev() ormsgsnd()
___________ e 7. _____.______ _proces
kernel
output IPC input
file (pipe, FIFO, or file

message queue)

Create server socket

unsigned ints, s2;

struct sockaddr _un local, remote;

int len;

s = socket(AF_UNIX, SOCK_STREAM, 0);

returns -1 on error
» Do your error checking!!!

bind() socket

local.sun_family = AF_UNIX;

strcpy(local.sun_path, “guess _socket");
unlink(local.sun_path); //remove if it already exists

len = strlen(local.sun_path) +sizeof(local.sun_family);
bind(s, (struct sockaddr *)&local, len);

Bind to an address
(basically a special file on your system)

listen()

listen(s, 5);

Listen for incoming connections from client programs

2"d argument: incoming connections that can be
gueued before being accepted

accept() connections

len = sizeof(struct sockaddr_un);
s2 = accept(s, &remote, &len);

Accepts connection
remote filled with the remote side’s sockaddr_un

len will be set to its length

simple echo communication

done = 0;
do{
n = recv(s2, str, 100, 0);
if (n <=0)
{
if (n < 0) perror("recv");
done = 1;
}
if ('done)
if (send(s2, str, n, 0) < 0)
{
perror("send");
done = 1;
}

} while (!done);

Client socket

socket() to create unix socket

struct sockaddr _un with the remote address
(where the server is listening)

connect() to sockaddr un
send() and recv() for communication

No need for listen(), accept() !!!

Shared Memory

* Memory mapped into the address space of the
processes that are sharing the memory region

 One program creates the segment, the other can
access it (if permitted)

* Efficient means of passing data between processes
— Avoid redundant copies
— No kernel involvement

» Requires some form of synchronization

Simple file copy example

client

client address space

shared memory

server

server address space

— - — o — o o — g = o - o e - o o e - - o o - e o e o g o o e o — e — — e — — —

kernel

input
file

Obtain Access to memory

key t key; /* unique ID */

int shmflg; /* access permissions and create*/

int shmid; /* return value */

int size; /* size */

struct shmid_ds shmbuf; /* needed for detachment

/* ... assign values*/

shmid = shmget(key, 1024, 0644 | IPC_CREAT);
shml1=shmat(shmid, NULL, 0);,...//attach segment
(if (shm1==(char *)-1) //Always do error-checking!!

Detach and delete segment

shmctl(shmidl, IPC_RMID, &shmbuf);
shmdt(shm1); //address returned from shmat

shmctl(): alter permissions and other characteristics of
shared memory..only by creator process

IPC_RMID: Remove the shared memory segment
shmbuf needed for other actions
shmdt(): detach from segment, all processes

Process vs. Thread

®* process:

e an address space with 1 or more threads
executing within that address space, and the
required system resources for those threads

e a program that is running

 thread:

e a sequence of control within a process
e shares the resources in that process

Advantages of Threads

* The overhead for creating a thread is significantly
less than that for creating a process

 Multitasking, i.e., one process serves multiple
clients

* Switching between threads requires the OS to do

much less work than switching between
processes

Drawbacks of Threads

* Writing multithreaded programs require more
careful thought

* More difficult to debug than single threaded
programs

* For single processor machines, creating several
threads in a program may not necessarily produce an
increase in performance

main thread

initial thread created when main() is invoked by the
process loader

once in the main(), the application has the ability to
create daughter threads

if the main thread returns, the process terminates
even if there are running threads in that process,
unless special precautions are taken

to explicitly avoid terminating the entire process, use
pthread exit()

Create thread

int pthread_create(pthread t *thread, pthread_attr t *attr,
void *(*thread_function)(void *), void *arg);

* 1st arg — pointer to the identifier of the created thread

 2nd arg —thread attributes. If null, then the thread is created
with default attributes

* 3rd arg — pointer to the function the thread will execute
e 4th arg — the argument of the executed function
e returns O for success

Waiting threads

int pthread_join(pthread_t thread, void **thread_return)

* main thread will wait for daughter thread thread to finish

* 1starg—the thread to wait for

 2nd arg — pointer to a pointer to the return value from the thread
* returns O for success

* threads should always be joined; otherwise, a thread might keep
on running even when the main thread has already terminated

Threads Programming Model

* pipeline model — threads are run one after the
other

* master-slave model — master (main) thread
doesn't do any work, it just waits for the slave

threads to finish working
e equal-worker model — all threads work

Sample Pthreads Program in C

* The program in C calls the pthread.h header file.
Pthreads related statements are preceded by the
pthread_ prefix (except for semaphores).

* How to compile:
» gcc hello.c —pthread —o hello

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

int main(int argc, char **argv){
pthread_t t1;
int thread_id = 1;
if ((pthread_create(&t1, NULL, (void *)&worker, (void *)&thread_id)) != 0) {
printf("Error creating thread\n");
exit(1);
pthread_join(t1, NULL);
return O;
void worker(void *a) {
int *cnt = (int *)a;

printf("This is thread %d\n", *cnt);
pthread_exit(0);

Thread Synchronization Mechanisms

 Mutual exclusion (mutex):

e guard against multiple threads modifying the
same shared data simultaneously

e provides locking/unlocking critical code sections
where shared data is modified

e each thread waits for the mutex to be unlocked
(by the thread who locked it) before performing
the code section

Basic Mutex Functions

int pthread_mutex_init(pthread _mutex_t *mutex, const
pthread _mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread _mutex_t *mutex);

int pthread_mutex_unlock(pthread _mutex_t *mutex);

int pthread_mutex_destroy(pthread _mutex_t *mutex);

a new data type named pthread_mutex_t is designated for
mutexes

a mutex is like a key (to access the code section) that is handed
to only one thread at a time

the attribute of a mutex can be controlled by using the
pthread_mutex_init() function

the lock/unlock functions work in tandem

#include <pthread.h>

pthread _mutex_t my_ mutex;

int main()

{
int tmp;

// initialize the mutex
tmp = pthread_mutex_init(&my_mutex, NULL);

// create threads
pthread_mutex_lock(&my_mutex);
do_something_private();

pthread_mutex_unlock(&my_mutex);

pthread_mutex_destroy(&my_ mutex);
return O;

Whenever a thread reaches the lock/unlock block, it first determines if
the mutex is locked. If so, it waits until it is unlocked. Otherwise, it takes
the mutex, locks the succeeding code, then frees the mutex and unlocks
the code when it's done.

Semaphores

Restricts number of simultaneous users of a shared
resource up to a maximum number

Threads can request access (decrement)

Signal they have finished using the resource
(increment)
Counting Semaphores:

e permit a limited number of threads to execute a section of
the code

e similar to mutexes
¢ should include the semaphore.h header file

e semaphore functions do not have pthread_ prefixes; instead,
they have sem_prefixes

Basic Semaphore Functions

e creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int value);

— initializes a semaphore object pointed to by sem

— pshared is a sharing option; a value of O means the
semaphore is local to the calling process. We will use 1.

— gives an initial value value to the semaphore

* terminating a semaphore:

int sem_destroy(sem _t *sem);
— frees the resources allocated to the semaphore sem
— usually called after pthread_join()

— an error will occur if a semaphore is destroyed for which a
thread is waiting

Basic Semaphore Functions

 semaphore control:
int sem_post(sem _t *sem);
int sem_wait(sem_t *sem);

— sem_post (unlock) atomically increases the value of a
semaphore by 1, i.e., when 2 threads call sem_post
simultaneously, the semaphore's value will also be
increased by 2 (there are 2 atoms calling)

— sem_wait (lock) atomically decreases the value of a
semaphore by 1; but always waits until the semaphore has
a non-zero value first

#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);

sem_t semaphore;

|nt main()

{

int tmp;

/[initialize the semaphore
tmp = sem_init(&semaphore, 0, 0);

/I create threads

/[also a global variable just like mutexes

pthread_create(&thread]i], NULL, thread_function, NULL);

while (still_has_something_to_do())

{

sem_post(&semaphore);

}

pthread_join(thread[i], NULL);
sem_destroy(&semaphore);
return O;

void *thread_function(void *arg)

{

sem_wait(&semaphore);
perform_task_when_sem_open();

pthread_exit(NULL);

The main thread increments the semaphore's count value
in the while loop.

The threads wait until the semaphore's count value is
non-zero before performing perform_task _when_sem_open().

Daughter thread activities stop only when pthread_join() is
called.

Server structure

Setup Unix socket ()

Receive M from client

Send N to client

Create secret

Create shared memory segments
Send mem keys to client

Create M threads, which run validation code

— Each thread validates “guessing tries” for specific segment of
secret

— Be careful when synchronizing access to the critical region
— Remember to time the execution

Clean up for exit (handle signal, release mem, close socket)

Client structure

Connect to socket

Send M to server

Read N from server

Receive memory keys

Attach to memory segments

Create M threads which run guessing code

Clean up for exit (handle signal, detach mem,
close socket)

Guessing code

for (i=0; i<N; i++) {
for(j="A; j<=2'; j++) {
choiceli]=j;
//sync with server to check whether this choice

//is correct and wait for server’s response in valid[i]
if (valid[i]==1) break; //found it

You have to synchronize actions performed on the critical region
DO NOT use 1 semaphore for the whole critical region!!!

Each (N/M) chunk of the region must be separately handled

