
1

System calls & Signals

Panagiotis Papadopoulos

panpap@csd.uoc.gr

CS345

OPERATING SYSTEMS

SYSTEM CALL

2

When a program invokes a system call, it is interrupted and the system switches to Kernel

space. The Kernel then saves the process execution context (so that it can resume the

program later) and determines what is being requested. The Kernel carefully checks that the

request is valid and that the process invoking the system call has enough privilege. For

instance some system calls can only be called by a user with superuser privilege (often

referred to as root).

If everything is good, the Kernel processes the

request in Kernel Mode and can access the device

drivers in charge of controlling the hardware (e.g.

reading a character inputted from the keyboard). The

Kernel can read and modify the data of the calling

process as it has access to memory in User Space (e.g. it can copy the keyboard character

into a buffer that the calling process has access to)

When the Kernel is done processing the request, it restores the process execution context

that was saved when the system call was invoked, and control returns to the calling program

which continues executing.

3

SYSTEM CALLS
FORK()

THE FORK() SYSTEM CALL (1/2)

4

• A process calling fork()spawns a child process.

• The child is almost an identical clone of the parent:

• Program Text (segment .text)

• Stack (ss)

• PCB (eg. registers)

• Data (segment .data)

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

THE FORK() SYSTEM CALL (2/2)

5

• The fork()is one of the those system calls, which

is called once, but returns twice!

• After fork()both the parent and the child are

executing the same program.

• pid<0: the creation of a child process was

unsuccessful.

• pid==0: to the newly created child process.

• pid>0: the process ID of the child process, to the

parent.

PID=28

p1

PID=28

p1

PID=34

c1

fork()

Consider a piece of program

...

pid_t pid = fork();

printf(“PID: %d\n”, pid);
...

The parent will print:
PID: 34

And the child will always print:
PID: 0

EXAMPLE

6

• Look at simpfork.c:

void main() {

 int i;

 printf("simpfork: pid = %d\n", getpid());

 i = fork();

 printf("Did a fork. It returned %d. getpid = %d. getppid = %d\n", i, getpid(), getppid());

}

• When it is run, the following happens:
simpfork: pid = 914
Did a fork. It returned 915. getpid = 914. getppid = 381
Did a fork. It returned 0. getpid = 915. getppid = 914

When simpfork is executed, it has a pid of 914. Next it calls fork() creating a duplicate process with a pid

of 915. The parent gains control of the CPU, and returns from fork() with a return value of the 915 -- this

is the child's pid. It prints out this return value, its own pid, and the pid of C shell, which is still 381.

Note, there is no guarantee which process gains control of the CPU first after a fork(). It could be the

parent, and it could be the child.

7

SYSTEM CALLS
EXEC()

THE EXEC()SYSTEM CALL (1/2)

8

• The exec()call replaces a current process’ image with a new one (i.e. loads a new
program within current process).

• The new image is either regular executable binary file or a shell script.

• There’s not a syscall under the name exec(). By exec()we usually refer to a
family of calls:

• int execl(char *path, char *arg, ...);

• int execv(char *path, char *argv[]);

• int execle(char *path, char *arg, ..., char *envp[]);

• int execve(char *path, char *argv[], char *envp[]);

• int execlp(char *file, char *arg, ...);

• int execvp(char *file, char *argv[]);

• Here's what l, v, e, and p mean:

• l means an argument list,

• v means an argument vector,

• e means an environment vector, and

• p means a search path.

THE EXEC()SYSTEM CALL (2/2)

9

• Upon success, exec()never returns to the caller. A successful exec replaces
the current process image, so it cannot return anything to the program that made
the call. If it does return, it means the call failed. Typical reasons are: non-existent
file (bad path) or bad permissions.

• Arguments passed via exec() appear in the argv[] of the main() function.

• As a new process is not created, the process identifier (PID) does not change, but
the machine code, data, heap, and stack of the process are replaced by those of
the new program.

• For more info: man 3 exec;

PID=28

p1

PID=28

p1

exec() Old Program

New Program

Legend:

FORK() AND EXEC() COMBINED (1/2)

10

• Often after doing fork() we want to load a new program into the child. E.g.: a shell.

PID=28

p1

PID=34

c1

fork()

PID=34

c1

PID=34

c1

exec(ls)

FORK() AND EXEC() COMBINED (2/2)

11

12

SYSTEM CALLS
WAIT(), PAUSE(), EXIT()

THE SYSTEM WAIT() CALL (1)

13

• Forces the parent to suspend execution, i.e. wait for its children or a

specific child to die (terminate is more appropriate terminology, but a bit

less common).

• When the child process terminates, it returns an exit status to the

operating system, which is then returned to the waiting parent process.

The parent process then resumes execution.

• A child process that terminates but is never waited on by its parent

becomes a zombie process. Such a process continues to exist as an entry

in the system process table even though it is no longer an actively

executing program.(Such situations are typically handled with a special "reaper"

process that locates zombies and retrieves their exit status, allowing the operating system

to then de-allocate their resources.)

THE SYSTEM WAIT() CALL (2)

14

• The wait() causes the parent to wait for any child process.

• The waitpid() waits for the child with specific PID.

• The return value is:

• PID of the exited process, if no error

• (-1) if an error has happened

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

THE PAUSE()SYSTEM CALL

15

• Used to suspend process until a signal arrives

• Signal action can be the execution of a handler function or

process termination

• only returns (-1) when a signal was caught and the signal-

catching function returned

 #include <unistd.h>

 int pause(void);

THE EXIT() SYSTEM CALL

16

• This call gracefully terminates process execution. Gracefully means it

does clean up and release of resources, and puts the process into

the zombie state.

• By calling wait(), the parent cleans up all its zombie children.

• exit()specifies a return value from the program, which a parent

process might want to examine as well as status of the dead process.

 #include <stdlib.h>

 void exit(int status);

PROCESS STATES

17

• Zombie: has completed execution, still has an entry in the

process table

• Orphan: parent has finished or terminated while this process is

still running

• Daemon: runs as a background process, not under the direct

control of an interactive user

ZOMBIE PROCESS

18

19

SIGNALS

PROCESS INTERACTION WITH SIGNALS

20

• A signal is an asynchronous event which is delivered to a process.

• Asynchronous means that the event can occur at any time

• may be unrelated to the execution of the process

• e.g. user types ctrl-C, or the modem hangs

• Unix supports a signal facility, looks like a software version of the interrupt subsystem of a
normal CPU

• Process can send a signal to another - Kernel can send signal to a process (like an
interrupt)

• A process can:

• ignore/discard the signal (not possible with SIGKILL or SIGSTOP)

• execute a signal handler function, and then possibly resume execution or terminate

• carry out the default action for that signal

THE SIGNAL()SYSTEM CALL

21

#include <signal.h>

void (*signal(int sig, void (*handler)(int))) (int);

• The signal()system call installs a new signal handler for the signal with number

signum. The signal handler is set to sighandler which may be a user specified function

EXAMPLE

22

int main()

{

 signal(SIGINT, foo);
 :

 /* do usual things until SIGINT */

 return 0;
}

void foo(int signo)
{
 : /* deal with SIGINT signal */
 return; /* return to program */
}

COMMON SIGNAL NAMES AND NUMBERS

23

Number Name Description Used for

0 SIGNULL Null Check access to pid

1 SIGHUP Hangup Terminate; can be trapped

2 SIGINT Interrupt Terminate; can be trapped

3 SIGQUIT Quit Terminate with core dump; can be

9 SIGKILL Kill Forced termination; cannot be trapped

15 SIGTERM Terminate Terminate; can be trapped

24 SIGSTOP Stop Pause the process; cannot be trapped

25 SIGTSTP Terminal stop Pause the process; can be

26 SIGCONT Continue Run a stopped process

SENDING A SIGNAL: KILL()SYSTEM CALL

24

• kill command is a command that is used to send a signal in order to request the
termination of the process. We typically use kill -SIGNAL PID, where you know the
PID of the process.

• The kill() system call can be used to send any signal to any process group or
process.

• int kill(pid_t pid, int signo);

• pid Meaning

• > 0 send signal to process pid

• == 0 send signal to all processes whose process group ID equals
 the sender’s pgid. e.g. parent kills all children

• -1 send signal to every process for which the calling process has
 permission to send signals

ALL TOGETHER NOW…

25

26

PIPES

OVERVIEW OF PIPES

27

• Pipes and FIFOs (also known as named pipes) provide a unidirectional
interprocess communication channel

• “|” (pipe) operator between two commands directs the stdout of the first to
the stdin of the second. Any of the commands may have options or
arguments. Many commands use a hyphen (-) in place of a filename as an
argument to indicate when the input should come from stdin rather than a
file.

 e.g of pipelines:

• command1 | command2 paramater1 | command3 parameter1 -
parameter2 | command4

• ls -l | grep key | more

CREATING PIPELINES PROGRAMMATICALLY

28

• Pipelines can be created under program control. The Unix pipe() system call

asks the operating system to construct a unidirectional data channel that can

be used for interprocess communication, a new anonymous pipe object. This

results in two new, opened file descriptors in the process: the read-only end

of the pipe, and the write-only end. The pipe ends appear to be normal,

anonymous file descriptors, except that they have no ability to seek.

29

void main(int argc, char *argv[]){
 int pipefd[2];
 pid_t cpid;
 char buf;
 if (pipe(pipefd) == -1) {
 perror("pipe");
 exit(EXIT_FAILURE);
 }
 cpid = fork();
 if (cpid == -1) {
 perror("fork");
 exit(EXIT_FAILURE);
 }
 if (cpid == 0) { /* Child reads from pipe */
 close(pipefd[1]); /* Close unused write end */
 while (read(pipefd[0], &buf, 1) > 0)
 write(STDOUT_FILENO, &buf, 1);
 write(STDOUT_FILENO, "\n", 1);
 close(pipefd[0]);
 exit(EXIT_SUCCESS);
 } else { /* Parent writes argv[1] to pipe */
 close(pipefd[0]); /* Close unused read end */
 write(pipefd[1], argv[1], strlen(argv[1]));
 close(pipefd[1]); /* Reader will see EOF */
 wait(NULL); /* Wait for child */
 exit(EXIT_SUCCESS);
 }

30

TIME

TIME

31

• time is a command that is used to determine the duration of execution of a particular

command. It writes a message to standard error that lists timing statistics. The message

includes the following information:

• The elapsed (real) time between invocation of command and its termination.

• The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields

returned by the times() function defined in the System Interfaces volume of POSIX.1-

2008 for the process in which command is executed.

• The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields

returned by the times() function for the process in which command is executed.

TIMES()

32

• times()gets process and waited-for child process times

• times()function shall fill the tms structure pointed to by buffer with time-accounting
information. The tms structure is defined in <sys/times.h>.
clock_t times(struct tms *buffer);

struct tms {
 clock_t tms_utime; /* user time */
 clock_t tms_stime; /* system time */
 clock_t tms_cutime; /* user time of children */
 clock_t tms_cstime; /* system time of children */
};
The tms_utime field contains the CPU time spent executing instructions of the calling
process. The tms_stime field contains the CPU time spent in the system while executing
tasks on behalf of the calling process. The tms_cutime field contains the sum of the
tms_utime and tms_cutime values for all waited-for terminated children. The tms_cstime
field contains the sum of the tms_stime and tms_cstime values for all waited-for
terminated children.

EXAMPLE

33

static clock_t st_time;

static clock_t en_time;

static struct tms st_cpu;

static struct tms en_cpu;

void start_clock(){

 st_time = times(&st_cpu);

}

void end_clock(char *msg){

 en_time = times(&en_cpu);

 fputs(msg,stdout);

 printf("Real Time: %jd, User Time %jd, System Time %jd\n", (intmax_t)(en_time - st_time),

 (intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

ASSIGNMENT 1 TIPS

34

1. First experiment with fork() and getpid(), getppid()

2. Use simple printf statements to distinguish parent from child (through pid)

3. Send simple signal to child

4. Create signal handlers

5. Create logic for alternating execution

6. Read the following man pages: fork(2), exec(3), execv(3),

wait(2), waitpid(2), pipe(2), dup2(2), times(2),

time(1), sh(1), bash(1), gettimeofday(2),

signal(2), chdir(2), getcwd(2), getlogin(2)

USEFUL LINKS

35

• http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html

• http://linuxprograms.wordpress.com/category/pipes/

• http://man7.org/linux/man-pages/man2/pipe.2.html

• http://man7.org/linux/man-pages/man7/signal.7.html

• http://www.cis.temple.edu/~giorgio/cis307/readings/signals.html

• http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls

• http://man7.org/linux/man-pages/man1/time.1.html

• http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2

• http://www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt

http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
http://web.eecs.utk.edu/~huangj/cs360/360/notes/Fork/lecture.html
http://linuxprograms.wordpress.com/category/pipes/
http://linuxprograms.wordpress.com/category/pipes/
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man2/pipe.2.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://www.cis.temple.edu/~giorgio/cis307/readings/signals.html
http://www.cis.temple.edu/~giorgio/cis307/readings/signals.html
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://ph7spot.com/musings/introduction-to-unix-signals-and-system-calls
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://man7.org/linux/man-pages/man1/time.1.html
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?times+2
http://www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt
http://www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt
http://www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt
http://www.cs.uga.edu/~eileen/1730/Notes/signals-UNIX.ppt

36

QUESTIONS?

