
Assignment 5:
Adding and testing a new system call to Linux kernel

Antonis Papadogiannakis

HY345 – Operating Systems Course

1

Outline

• Introduction: system call and Linux kernel
• Emulators and Virtual Machines (demo with QEMU)
• Compile Linux kernel 2.6 (demo with linux-2.6.38.1)
• Load a new kernel with QEMU (demo)
• Basic steps to add a new system call to Linux kernel

(example)
• How to use the new system call (example)
• The new system call in this assingment: getproctimes
• Several hints

2

System call

• System call: an interface between a user-level
program and a service provided by kernel
– Implemented in kernel
– With a user-level interface
– Crossing the user-space/kernel-space boundaries

• Trap: switch to kernel mode
– e.g. when calling a system call

3

Linux kernel
• Popular
• Open source
• www.kernel.org

• Extending the Linux kernel
– Usually with loadable kernel modules

• Architecture: monolithic kernel
– A set of system calls implement all Operating System

services
– User space, kernel space boundaries

• Preemptive scheduling, virtual memory

4

http://www.kernel.org/�

Emulators

• Enable us to emulate an Operating System
(guest OS) using another Operating System
(host OS)
– e.g. running Windows from a Linux OS
– or running multiple OS in a single computer
– as a simple user, in user-level
– Guess OS can crash without affecting host OS
– thus very useful for kernel development and

debugging

5

The QEMU emulator
• Fast open source emulator
• You will use it in this assignment
• www.qemu.org
• Installed in CSD machines

$ qemu –hda disk.img

• Virtual disk image (disk.img)
– Like a common disk
– We can install an OS distribution into this image
– hy345-linux.img is the disk image you will use in this

assingment, with a minimal Linux installation and kernel 2.6.38.1
• Host OS: a CSD machine Quest OS: ttylinux

6

http://www.qemu.org/�

Demo

with QEMU

7

Linux kernel 2.6.38.1

• Get the code from ~hy345/qemu-linux/linux-
2.6.38.1.tar.bz2
– or from www.kernel.org

• View source
– Organized in kernel, mm, drivers, etc
– We are mostly interested in files in kernel folder
– Headers are in the include folder
– x86 32-bit architecture (i386)
– Use grep, find, ctags

8

http://www.kernel.org/�

Compile the Linux kernel
• 2 steps

– Configure
• make config, make menuconfig, etc
• produce .config file
• We give you directly the proper .config file, so no need for

configuring kernel
– Build

• $ make ARCH=i386 bzImage
• Builds Linux kernel image for i386 architecture
• linux-2.6.38.1/arch/x86/boot/bzImage
• bzImage used to boot with QEMU with the new kernel

– (we do not consider install in this assignment due to
emulator-based testing)

9

Demo

with linux-2.6.38.1 kernel source code and
compilation

10

Load the new kernel with QEMU
$ qemu –hda hy345-linux.img –append “root=/dev/hda”

–kernel linux-2.6.38.1/arch/x86/boot/bzImage

• Use the same disk image hy345-linux.img as /dev/hda
• This image contains the root filesystem
• Load OS with the new kernel image

$ uname –a
– To find the kernel version
– Append your username in the kernel version and use revision

numbers for your convenience

• Compile Linux kernel in host OS, boot with the
new kernel in guest OS

11

Demo

Loading QEMU with a new kernel image built in
the host OS

12

Control flow of a system call in Linux kernel

13

System call table

14

Three basic steps to add a new system call
in Linux kernel

1. Add a new system call number N
2. Add a new system call table entry for the

above system call number N with a function
pointer to function F

3. Implement the function F with system call’s
actual functionality.

– Also add proper header files for new types
– Copy arguments from user space to kernel and

results from kernel to user space

15

An example: dummy_sys

• The dummy_sys system call takes one integer
as single argument

• It prints this argument in kernel and returns
this integer multiplied by two

16

Step 1: Add new system call number

• Open linux-2.6.38.1/arch/x86/include/asm/unistd_32.h

• Find system call numbers
• Find last system call number (340)
• Define a new one with the next number (341)

#define __NR_dummy_sys 341

• Increase NR_syscalls by one (341 -> 342)

• dummy_sys has the 341 system call number

17

Step 2: Add new entry to system call table

• Open linux-2.6.38.1/arch/x86/kernel/syscall_table_32.S

• Add in the last line the name of the function
that implements the dummy_sys system call

.long sys_dummy_sys /* 341 */

• sys_dummy_sys function will implement the
dummy_sys system call

18

Step 3: Implement the system call’s function

• Create linux-source-2.6.38.1/kernel/dummy_sys.c
• Write system call’s functionality

#include <linux/kernel.h>
#include <asm/uaccess.h>
#include <linux/syscalls.h>

asmlinkage long sys_dummy_sys(int arg0)
{

printk("Called dummy_sys with argument: %d\n",arg0);
return((long)arg0*2);

}

19

Arguments by reference

• Strings, pointers to structures, etc

int access_ok(type, address, size);

unsigned long copy_from_user(void *to, const void __user
*from, unsigned long n);

unsigned long copy_to_user(void *to, const void __user *from,
unsigned long n);

20

Using the new system call

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#define __NR_dummy_sys 341

int main() {
printf("Trap to kernel level\n");
syscall(__NR_dummy_sys, 42);
//you should check return value for errors
printf("Back to user level\n");

}
21

Wrapper function

• Define a macro
#define dummy_sys(arg1) syscall(341, arg1)

• Write a wrapper function
long dummy_sys(int arg1) {

syscall(341, arg1);
}

• So in the test program we just call
dummy_sys(42);

22

The getproctimes system call

int getproctimes(int pid, struct proctimes *pt);

• First argument: pid of a process, or the current
process if (pid==-1)

• Second argument: passed by referenced and
used by kernel to return the necessary info to
user space

• Return value: EINVAL on error or 0 on success

23

The struct proctimes

• Should be defined in a new file:
linux-2.6.38.1/include/proctimes.h

struct proctimes { //info and times about processes we need
struct proc_time proc; //process with pid or current process
struct proc_time parent_proc; //parent process
struct proc_time oldest_child_proc; //oldest child process
struct proc_time oldest_sibling_proc; //oldest sibling process

}

24

The struct proc_time

• Also defined in linux-2.6.38.1/include/proctimes.h

struct proc_time { //info and times about a single process
pid_t pid; //pid of the process
char name[16]; //file name of the program executed
unsigned long start_time; //start time of the process
unsigned long real_time; //real time of the process execution
unsigned long user_time; //user time of the process
unsigned long sys_time; //system time of the process

}

25

In every execution of getproctimes

• Every time the getproctimes is executed in
kernel you should print a message
– Using printk
– The message will include your full name and A.M.
– You can view these messages from user level upon

the execution of getproctimes with “dmesg” or
“cat /var/log/messages”

• printk is very useful for debugging messages

26

Testing getproctimes

• You should write several test programs in the
guest OS using getproctimes
– To validate its correct operation

• We require three test programs
1. Get the times of the current process with

getproctimes when it performs 1M multiplications
and sleep(5)

2. Compare info and times of all processes when
calling multiple fork()

3. Get pid from command line and call getproctimes
with this pid, and use pids from ps

• Any other test program you think useful
27

Hints
• To calculate real time you shoud read current time

– see linux-2.6.38.1/include/linux/time.h and gettimeofday
system call

• To find the current process
– see linux-2.6.38.1/include/asm/current.h

• To find info and times about each process
– see task_struct in linux-2.6.38.1/include/linux/sched.h

• In tast_struct you can also find
– the parent process
– child processes list (and find the oldest)
– sibling processes list (and find the oldest)

• See existing system calls: getpid, gettimeofday, times
28

What to submit

1. bzImage
2. Only modified or created by you source files of the

Linux kernel 2.6.38.1 (both C and header files)
3. Test programs and header files used in the guest OS

for testing the new system call
4. README with implementation details and experiences

from testing

Gather these files in a single directory and send them
using the submit program as usual

29

Good luck

Deadline: 14/12

30

	Assignment 5:�Adding and testing a new system call to Linux kernel
	Outline
	System call
	Linux kernel
	Emulators
	The QEMU emulator
	Demo
	Linux kernel 2.6.38.1
	Compile the Linux kernel
	Demo
	Load the new kernel with QEMU
	Demo
	Control flow of a system call in Linux kernel
	System call table
	Three basic steps to add a new system call in Linux kernel
	An example: dummy_sys
	Step 1: Add new system call number
	Step 2: Add new entry to system call table
	Step 3: Implement the system call’s function
	Arguments by reference
	Using the new system call
	Wrapper function
	The getproctimes system call
	The struct proctimes
	The struct proc_time
	In every execution of getproctimes
	Testing getproctimes
	Hints
	What to submit
	Good luck

