
CS345
Operating Systems

Loadable Modules – Library
Interposition

Assignment 4

14/11/2012

Loadable Modules

• Loadable modules: what and why?
– Loadable modules are compiled code which can be

injected into an already executed program.

– The main program source is not altered. Thus,
there is no need of any kind of recompilation of the
original main code.

– When a module is loaded into a main program, it
can provide extra data and functions to the
program.

CS345:Assignment4:Loadable Modules

Example applications

• Linux kernel (Loadable Kernel Modules)
– There is no need to recompile whole Linux kernel

source to provide extra functionality or support for
a new hardware device.

• Browsers
– Numerous plugins exist, that provide various extra

functionality to modern browsers, without the need
to recompile whole browser code.

• Lots of modern applications use Loadable
Modules

CS345:Assignment4:Applications

C Libraries: static vs shared

CS345:Assignment4:Loadable Modules

• Static libraries
– Library functions and variables are resolved during

compilation and copied into target application by
the linker , resulting into one executable.

– Usual extension on Unix : .a

• Shared libraries
– Modules are loaded from shared objects during

load/run time rather than statically compiled inside.

– Usual extension on Unix : .so

Shared libraries : Linking

CS345:Assignment4:Loadable Modules

• Static Linking
– References to the library modules are resolved

during linking procedure.

• Dynamic Linking
– Linking is performed on demand during load/run

time.

Note: Do not confuse static linking of a shared
library with static libraries!

Shared libraries : Example

CS345:Assignment4:Loadable Modules

This example applies for statically linked, shared libraries.
main.c:
#include<stdio.h>
void helloworld();

void main() {
 helloworld();
}

libhelloworld.c:
#include<stdio.h>
void helloworld()
{
 printf("Hello World!\n");

}

Creating the shared library:
>gcc -Wall -fPIC -c libhelloworld.c

>gcc -shared -Wl,-soname,libhelloworld.so -o libhelloworld.so libhelloworld.o

Creating main executable:
>gcc main.c -L. -lhelloworld -o main

Shared libraries : Example (2)

CS345:Assignment4:Loadable Modules

By default, linux only looks up for a library in predefined standard directories. Set
enviroment variable LD_LIBRARY_PATH which contains directories that should be
searched first, before the standard set.
Include Working Directory in LD_LIBRARY_PATH (bash shell):

> export LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH"

Testing your application:
>ldd main

linux-gate.so.1 => (0xb7769000)
libhelloworld.so => ./libhelloworld.so (0xb7764000)
libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7596000)
/lib/ld-linux.so.2 (0xb776a000)

>./main
Hello World!

If libhelloworld.so is not available, main program cannot start execution!

Shared libraries : Dynamic
Linking (1)

CS345:Assignment4:Loadable Modules

• Linking is performed on demand during load/run
time.

• Program is linked to dynamic loader library,
libdl.so.

• In the previous example, if the program used
dynamic linking with libdl.so, it could startup in
the absence of libhelloword.so and ,if available,
load it on demand and gain its functionality.

Shared libraries : Dynamic
Linking (2)

CS345:Assignment4:Loadable Modules

• The interface to the dynamic linking loader
consists of 4 functions (defined in dlfcn.h):

– void *dlopen(const char *filename, int flag);

Loads the dynamic library included in *filename. Returns an opaque “handle”
for the dynamic library. Flag can be one of the following:

• RTLD_LAZY

Resolve symbols as the code that references them is executed.

• RTLD_NOW

Resolve all symbols before dlopen() returns. If this cannot be done, error
is returned.

Consult man pages for more flag options.

– int dlclose(void *handle);

Decrements the reference count on the dynamic library handle, handle. If this
count equals zero, no other loaded libraries are used and the dynamic library
is unloaded.

Shared libraries : Dynamic
Linking (3)

CS345:Assignment4:Loadable Modules

• The interface to the dynamic linking loader
consists of 4 functions (defined in dlfcn.h):

– void *dlsym(void *handle, const char *symbol);

dlsym takes the handle which dlopen() returned and the NULL terminated
symbol name and returns the address where that symbol is loaded into
memory. Returns NULL if the symbol is not found.

– char *dlerror(void);

Returns a human readable string describing the most recent error that
occurred from dlopen(), dlsym() or dlclose() , or NULL if no error occurred.

Shared libraries : Dynamic
Linking (4)

CS345:Assignment4:Loadable Modules

• Modifying previous example with Dynamic
Linking

main.c: include:
#define _GNU_SOURCE
#include <dlfcn.h>
void main(){
void *handle;

double (*fn)();
char *error;
...
handle=dlopen("./libhelloworld.so", RTLD_LAZY);

…
fn=dlsym(handle, "helloworld");
…
dlclose(handle);
}

Shared libraries : Dynamic
Linking (5)

CS345:Assignment4:Loadable Modules

• Modifying previous example with Dynamic
Linking

Compile with:
>gcc -rdynamic -o main2 main2.c -ldl

Testing:
>ldd main2

linux-gate.so.1 => (0xb776e000)
libdl.so.2 => /lib/i386-linux-gnu/libdl.so.2 (0xb773e000)
libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7599000)
/lib/ld-linux.so.2 (0xb776f000)

>./main2
Hello World!

Library Interposition

CS345:Assignment4:Library Interposition

• Library Interposition: what and why?
– Library Interposition is a technique that takes

advantage of shared libraries and dynamic linking.

– Its possible to intercept function calls that a
program makes to any shared libraries.

– When intercepted, its possible to modify the
functionality of the real function.

– Useful for tuning performance, debugging
applications, collect statistics, when source is not
provided.

Library Interposition (2)

CS345:Assignment4:Library Interposition

• How?
– Dynamic linker/loader provides enviroment

variable LD_PRELOAD, which can be used for
setting a list of shared libraries to be loaded before
all others, during load time.

– No need to recompile original source code.

Intercept function calls

CS345:Assignment4:Library Interposition

• Idea:
– Create a function pointer to hold the value of the

target function.

– Create a replacement function with the real name
of the target function.

– In the replacement function, do stuff, and then call
the real target function.

Intercept function calls (2)

CS345:Assignment4:Library Interposition

• Previous example:
Create a new shared library which will intercept function calls to helloworld().
…

void helloworld()
{
 printf("Shouting:\n");
...
 _helloworld = (void (*)()) dlsym(RTLD_NEXT, "helloworld");

...
 return _helloworld();
}

Testing:
>LD_PRELOAD=./preload.so ./main
Shouting:
Hello World!

Disadvantages

CS345:Assignment4:Library Interposition

• For security reasons, LD_PRELOAD is ignored
for programs with SUID permissions.

• Internal function calls are resolved before runtime,
hence its not possible to interpose them.

References/Further reading

CS345:Assignment4

• Program Library HOWTO:
http://www.tldp.org/HOWTO/Program-Library-HOWTO/

• Man pages

dlopen(3), dlsym(3), dlclose(3), dlerror(3), ldd(1),

ld(1), ld.so(8)

http://www.tldp.org/HOWTO/Program-Library-HOWTO/

