
Introduction to Scala

Computer Science Department, University of Crete

Parallel Programming

Based on slides by D. Malayeri, S.D. Vick, P. Haller, M. Madsen, J. Bonér

Pratikakis (CSD) Scala CS342, 2025 1 /67

Introduction

1ο Μέρος: Εισαγωγή στη γλώσσα Scala
2ο Μέρος: Παράλληλος προγραμματισμός σε Scala

Pratikakis (CSD) Scala CS342, 2025 2 /67

What is Scala?

Scala is a statically typed language
Combines Object-Oriented Programming and Functional
Programming
Developed in EPFL, lead by Martin Odersky
Influenced by Java, ML, Haskell, Erlang, and other
languages

Many high-level language abstractions
Uniform object model
Higher-order functions, pattern matching
Novel ways to compose and abstract expressions

Managed language runtime
Runs on the Java Virtual Machine
Runs on the .NET Virtual Machine

Pratikakis (CSD) Scala CS342, 2025 3 /67

Goals of Scala

Create a language with better support for component
software
Hypotheses:

Programming language for component software should be
scalable

The same concepts describe small and large parts
Rather than adding lots of primitives, focus on abstraction,
composition, decomposition

Language that unifies OOP and functional programming
can provide scalable support for components

Pratikakis (CSD) Scala CS342, 2025 4 /67

Why use Scala?

Runs on the JVM
Can use any Java code in Scala
Almost as fast as Java

Much shorter code
Odersky reports 50% reduction in most code
Local type inference

Fewer errors
No NullPointer errors

More flexibility
As many public classes per source file as you want
Operator overloading

All of the above, for .NET too

Pratikakis (CSD) Scala CS342, 2025 5 /67

Why learn Scala?

Creating a trend in web service programming
LinkedIn
Twitter
Ebay
Foursquare
List is growing

Pratikakis (CSD) Scala CS342, 2025 6 /67

Features of Scala (1)

Both functional and object-oriented
Every value is an object
Every function is a value (including methods)

Scala is statically typed
Includes local type inference system

Java 1.5
Pair p = new Pair<Integer, String>(1, ”Scala”);

Scala
val p = new Pair(1, ”Scala”);

Pratikakis (CSD) Scala CS342, 2025 7 /67

Features of Scala (2)

Supports lightweight syntax for anonymous functions,
higher-order functions, nested functions, currying
ML-style pattern matching
Integration with XML

Can write XML directly in Scala program
Can convert XML DTD into Scala class definitions

Support for regular expression patterns
Allows defining new control structures without using
macros, and while maintaining static typing
Any function can be used as an infix or postfix operator
Can define methods named +, <= or ::

Pratikakis (CSD) Scala CS342, 2025 8 /67

Features of Scala (3)

Actor-based programming, distributed, concurrent
Embedded DSLs, usable as scripting language
Higher-kinded types, first class functions, closures
Delimited continuations
Abstract Types, Generics
Warning: Scala is the gateway drug to ML, Haskell, ...

Pratikakis (CSD) Scala CS342, 2025 9 /67

An Example Class ...

Java
public class Person {
public final String name;
public final int age;
Person(String name, int age) {
this.name = name;
this.age = age;

}
}

Scala
class Person(val name: String, val age: Int) {}

Pratikakis (CSD) Scala CS342, 2025 10 /67

... and its use
Java
import java.util.ArrayList;
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (int i = 0; i < people.length; i++)
(people[i].age < 18 ? minorsList : adultsList).add(people[i]);

minors = minorsList.toArray(people);
adults = adultsList.toArray(people);

}

Scala
val people: Array[Person] = Array(
new Person(”Joe”, 24),
new Person(”William”, 23),
new Person(”Jack”, 22),
new Person(”Averell”, 21))

val (minors, adults) = people partition(_.age < 18)

Pratikakis (CSD) Scala CS342, 2025 11 /67

Class Hierarchies and Abstract Data Types

Scala unifies class hierarchies and abstract data types
(ADTs)
Introduces pattern matching for objects
Uses concise manipulation of immutable data structures

Pratikakis (CSD) Scala CS342, 2025 12 /67

Example: Pattern matching

Class hierarchy for binary trees
abstract class Tree[T]
case object Empty extends Tree[Nothing]
case class Binary[T](elem: T, left: Tree[T], right: Tree[T]) extends Tree[T]

In-order traversal
def inOrder[T](t: Tree[T]): List[T] = t match {
case Empty =>
List()

case Binary(e, l, r) =>
inOrder(l) ::: List(e) ::: inOrder(r)

}

Extensibility
Encapsulation: only constructor params exposed
Representation independence

Pratikakis (CSD) Scala CS342, 2025 13 /67

Functions and Collections

First-class functions make collections more powerful
Especially immutable ones

Container operations
people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

Pratikakis (CSD) Scala CS342, 2025 14 /67

The Scala Object System

Class-based
Single Inheritance
Can define singleton objects easily
Subtyping is nominal: it is a subtype if declared to be a
subtype
Traits, compound types, views

Flexible abstractions

Pratikakis (CSD) Scala CS342, 2025 15 /67

Classes and Objects

Classes and Objects
trait Nat;

object Zero extends Nat {
def isZero: Boolean = true;
def pred: Nat =
throw new Error(”Zero.pred”);

}

class Succ(n: Nat) extends Nat {
def isZero: Boolean = false;
def pred: Nat = n;

}

Pratikakis (CSD) Scala CS342, 2025 16 /67

Traits

Similar to interfaces in Java
They may have implementations of methods
And can contain state!
Can have multiple inheritance

Pratikakis (CSD) Scala CS342, 2025 17 /67

Example: Traits

trait Similarity {
def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

class Point(xc: Int, yc: Int) extends Similarity {
var x: Int = xc;
var y: Int = yc;
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x;

}

Pratikakis (CSD) Scala CS342, 2025 18 /67

Mixin Class Composition (1)
Mixin: “A class which contains a combination of methods
from other classes. ”
Basic inheritance model is single inheritance
But mixin classes allow more flexibility
class Point2D(xc: Int, yc: Int) {
val x = xc;
val y = yc;
// methods for manipulating Point2Ds

}
class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) {
var color = c;
def setColor(newCol: String): Unit = color = newCol;

}
class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

}
class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)

extends Point3D(xc, yc, zc) with ColoredPoint2D(xc, yc, col);

// ERROR: cannot mixin classes with classes, only traits

Pratikakis (CSD) Scala CS342, 2025 19 /67

Mixin Class Composition (2)
Fix: extract the code to be added, into a trait
Mixin the trait selectively into subclasses

class Point2D(xc: Int, yc: Int) {
val x = xc;
val y = yc;
// methods for manipulating Point2Ds

}
trait Color {
var color: String = null;
def setColor(c: String) : Unit = color = c;

}
class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) with Color {
color = c;

}
class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

}
class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)

extends Point3D(xc, yc, zc) with Color;

Pratikakis (CSD) Scala CS342, 2025 20 /67

Mixin Class Composition (3)

Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)
Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.
i.e., D must inherit at least everything that C inherited
Why?

Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited
So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) Scala CS342, 2025 21 /67

Mixin Class Composition (3)

Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)
Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C’s superclass.
i.e., D must inherit at least everything that C inherited
Why?
Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited
So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) Scala CS342, 2025 21 /67

Views (1)

Defines an implicit coercion from one type to another
Similar to conversion operators in C++ and C#

trait Set[T] {
def extend(x: T): Set[T]
def contains(x: T): Boolean

}

// ...
implicit def list2set[T](list : List[T]) : Set[T] = new Set[T] {
def extend(x: T): Set[T] = list2set(x :: list)
def contains(x: T): Boolean =
! list .isEmpty && ((list.head == x) || (list.tail contains x))

}

Pratikakis (CSD) Scala CS342, 2025 22 /67

Views (2)

Implicit views are inserted automatically by the Scala
compiler
If e is of type T then a view is applied to e if:

Expected type of e is not T (or a supertype)
A member selected from e is not a member of T

Compiler uses only views in scope

Pratikakis (CSD) Scala CS342, 2025 23 /67

Lazy Views

Many containers have lazy views
Do not compute until absolutely necessary
Different meaning but same name with implicit views (!)

scala> (1 to 1000000000).filter(_%2 ==0).take(10).toList
java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.lang.Integer.valueOf(Integer.java:832)
at scala.runtime.BoxesRunTime.boxToInteger(BoxesRunTime.java:69)
at scala.collection.immutable.Range.foreach(Range.scala:166)
at scala.collection.TraversableLikeclass.filterImpl(TraversableLike.scala : 258)atscala.collection.TraversableLikeclass.filter(TraversableLike.scala:270)
at scala.collection.AbstractTraversable.filter(Traversable.scala:104)
... 26 elided

scala> (1 to 1000000000).view.filter(_%2 ==0).take(10).toList
res19: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Pratikakis (CSD) Scala CS342, 2025 24 /67

Variance Annotations (1)

class Array[A] {
def get(index: Int): A
def set(index: Int, elem: A): Unit

}

Array[String] is not a subtype of Array[Any]
If it were, we could do the following:

val x = new Array[String](1);
val y : Array[Any] = x;
y.set(0, new FooBar());
// just stored a FooBar in a String array!

Pratikakis (CSD) Scala CS342, 2025 25 /67

Variance Annotations (2)

Covariance is OK with functional data structures
... because they are immutable

trait GenList[+T] {
def isEmpty: Boolean;
def head: T;
def tail : GenList[T]

}
object Empty extends GenList[Any] {
def isEmpty: Boolean = true;
def head: Any = throw new Error(”Empty.head”);
def tail : GenList[Any] = throw new Error(”Empty.tail”);

}
class Cons[+T](x: T, xs: GenList[T]) extends GenList[T] {
def isEmpty: Boolean = false;
def head: T = x;
def tail : GenList[T] = xs

}

Pratikakis (CSD) Scala CS342, 2025 26 /67

Variance Annotations (3)

Can also have contravariant type parameters
Useful for an object that can only be written to

Scala checks that variance annotations are sound
Covariant positions: Immutable field types, method results
Contravariant: method argument types
Type system ensures that covariant parameters are only
used covariant positions
(similar for contravariant)

If no variance specified, then Invariant
Neither superclass, nor subclass

Pratikakis (CSD) Scala CS342, 2025 27 /67

Functions are Objects
Every function is a value

Values are objects, so functions are also objects
The function type S => T is equivalent to the class type
scala.Function1[S, T]

trait Function1[-S, +T] {
def apply(x: S): T

}

For example, the anonymous successor function (x:
Int) => x + 1 or in shorter code (_ + 1) expands to

new Function1[Int, Int] {
def apply(x: Int): Int = x + 1

}

Pratikakis (CSD) Scala CS342, 2025 28 /67

Arrays are Objects

Arrays (mathematically): Mutable functions over integer
ranges

Syntactic Sugar
a(i) = a(i) + 2 for a.update(i, a.apply(i) + 2)

Example
final class Array[T](_length: Int)

extends java.io.Serializable
with java.lang.Cloneable {

def length: Int = ...
def apply(i: Int): T = ...
def update(i: Int, x: T): Unit = ...
override def clone: Array[T] = ...

}

Pratikakis (CSD) Scala CS342, 2025 29 /67

Partial Functions

Functions that are defined only for some objects
Test using isDefinedAt

Example
trait PartialFunction[-A, +B] extends (A => B) {
def isDefinedAt(x: A): Boolean
def orElse[A1 <: A, B1 >: B]
(that: PartialFunction[A1, B1]): PartialFunction[A1, B1]

}

Blocks of pattern-matching cases are instances of partial
functions
This lets programmers write control structures that are
not easy to express otherwise

Pratikakis (CSD) Scala CS342, 2025 30 /67

Automatic Closure Construction

Allows programmers to make their own control structures
Can tag the parameters of methods with the modifier =>
When method is called, the actual => parameters are not
evaluated and a no-argument function is passed

Pratikakis (CSD) Scala CS342, 2025 31 /67

Example: Custom loop construct

object TargetTest1 {
def loopWhile(cond: => Boolean)(body: => Unit): Unit =
if (cond) {
body;
loopWhile(cond)(body);

}

def main(args: Array[String]) {
var i = 10;
loopWhile (i > 0) {
Console.println(i);
i = i - 1;

}
}

}

Pratikakis (CSD) Scala CS342, 2025 32 /67

Types as Class Members

abstract class AbsCell {
type T;
val init : T;
private var value: T = init;
def get: T = value;
def set(x: T): Unit = { value = x }

}
def createCell() : AbsCell =
new AbsCell { type T = Int; val init = 1 }

Clients of createCell cannot rely on the fact that T is
Int, since this information is hidden from them

Pratikakis (CSD) Scala CS342, 2025 33 /67

Scala Parallel Collections

val list = (1 to 10000).toList
list .map(_ + 42)

Sequential map, addition

Pratikakis (CSD) Scala CS342, 2025 34 /67

Scala Parallel Collections

val list = (1 to 10000).toList
list .par.map(_ + 42)

Parallel list
Many data structures available

ParArray
ParVector
mutable.ParHashMap
mutable.ParHashSet
immutable.ParHashMap
immutable.ParHashSet
ParRange
ParTrieMap

Pratikakis (CSD) Scala CS342, 2025 35 /67

Examples: Operators

val lastNames = List(
”Smith”,”Jones”,”Frankenstein”,”Bach”,”Jackson”,”Rodin”
).par

lastNames.map(_.toUpperCase)

val parArray = (1 to 10000).toArray.par
parArray.fold(0)(_ + _)

val lastNames = List(
”Smith”,”Jones”,”Frankenstein”,”Bach”,”Jackson”,”Rodin”
).par

lastNames.filter(_.head >= ’J’)

Pratikakis (CSD) Scala CS342, 2025 36 /67

Examples: Create

import scala.collection.parallel.immutable.ParVector
val pv1 = new ParVector[Int]

val pv2 = Vector(1,2,3,4,5,6,7,8,9).par

Pratikakis (CSD) Scala CS342, 2025 37 /67

Parallel Collections

Side-effecting operations can lead to non-determinism
side effects are reordered or concurrent

Non-associative operations lead to non-determinism
order of operations changes

Pratikakis (CSD) Scala CS342, 2025 38 /67

Example: Race!

var sum = 0
val list = (1 to 1000).toList.par
list .foreach(sum += _);
sum
// something

var sum = 0
list .foreach(sum += _);
sum
// something else

Pratikakis (CSD) Scala CS342, 2025 39 /67

Example: Associativity

val list = (1 to 1000).toList.par
list .reduce(_-_)
// some result
list .reduce(_-_)
// some other result
list .reduce(_-_)
// yet another result, depending on what subtraction runs first

Pratikakis (CSD) Scala CS342, 2025 40 /67

The Actor Model

A model of concurrent computation
Introduced in 1973 (Lisp, Simula)
Main idea: Everything is an Actor

Similar to OO idea that Everything is an Object
An actor can:

Send messages to other actors
Create new actors
React to messages it receives

There is no constraint on order between these
Can occur in parallel accross actors, also for any actor
Parallel computation and communication

Pratikakis (CSD) Scala CS342, 2025 41 /67

Actors in Scala

Initial built-in implementation
Language primitives
Built into the language

Obsolete now
Integration with Akka library

Akka: library with distributed actors
Concurrency
Scalability
Fault-tolerance
Single unified programming model
Managed runtime (contained into the library)
Open Source

Pratikakis (CSD) Scala CS342, 2025 42 /67

Actors in Akka

Goal: Program at very high level of abstraction
Do not think of shared state, threads, state visibility,
locks, collections, etc.
Only think how messages flow into the system
Runtime system does the rest

High CPU utilization
Low latency
Scalability
Built-in support for error detection and recovery

Pratikakis (CSD) Scala CS342, 2025 43 /67

Parallel and Distributed

Akka actors are distributable by design
Designed to scale up (more threads) and scale out (more
nodes)
Same program, different deployments
Perfect for cloud deployment

Elastic, dynamic
Fault-tolerant, self-healing
Adaptive load-balancing, migration
Loosely coupled, allows dynamic changes at runtime

Pratikakis (CSD) Scala CS342, 2025 44 /67

What is an Actor
Unit of code organization in Akka
Actors help create concurrent, scalable and fault-tolerant
applications
Like Java-EE Servlets and session beans, Actors help
organize code to keep “policy” and “business logic”
separate
Used in telecom systems with “9 nines” uptimes
Abstraction intuitively: Virtual Machines in the Cloud (but
faster)

Encapsulated, decoupled, black boxes
Manage their own memory and behavior
Communicate asynchronously, non-blocking messages
Can grow and shrink on demand, add new actors, stop
some
Hot-deploy: change behavior at runtime, add new
components, new code
Actors are the same, but for a single application

Pratikakis (CSD) Scala CS342, 2025 45 /67

Actor uses

May be alternative to:
Thread
Object instance, component
Callback Listener
Singleton, service
Load-balancer, router, thread pool
Jave EE Session Bean, Message-Driven Bean
Out-of-process service
FSM

Pratikakis (CSD) Scala CS342, 2025 46 /67

Theoretical definition

Fundamental unit of computation that embodies:
Processing
Storage
Communication

3 axioms - When an actor receives a message, it can:
Create new actors
Send messages to actors it knows
Designate how it should handle the next message received

Pratikakis (CSD) Scala CS342, 2025 47 /67

Core Actor operations

Define
Create
Send
Become
Supervise

Pratikakis (CSD) Scala CS342, 2025 48 /67

Define an Actor

import akka.actor._

class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceLeft((a, b) => (a+b) % 7)

case ”print” => println(”Sum:” + sum)
}

}

Pratikakis (CSD) Scala CS342, 2025 49 /67

Create an Actor

Create an instance of an Actor
Very lightweight in Akka: 2.7 million actors per GB RAM
Very strong encapsulation:

state
behavior
message queue

State and behavior are indistinguishable
Only way to observe state: send a message, see reaction

Pratikakis (CSD) Scala CS342, 2025 50 /67

Create Actor

import akka.actor._
class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceLeft((a, b) => (a+b) % 7)

case ”print” => println(”Sum:” + sum)
}

}

val system = ActorSystem(”SummerSystem”)
val summer = system.actorOf(Props[Summer], name = ”summer”)

Pratikakis (CSD) Scala CS342, 2025 51 /67

Actors form Hierarchies

system is “guardian actor”
Can create actors with context.actorof(), guarded by
creating actor
Hierarchies can be tall trees
Name resolution works like a file system: Actor
/summer/someother

Pratikakis (CSD) Scala CS342, 2025 52 /67

Send Messages

Asynchronous and non-blocking: “Fire and Forget”
Everything happens Reactively

An Actor is passive until a message is sent to it
Messages are “kinetic energy” in Actor System
But light messages may trigger heavy reactions

Everything is asynchronous and lockless
Lightweight: single machine can handle millions of
messages per second

Pratikakis (CSD) Scala CS342, 2025 53 /67

Sending Messages

import akka.actor._
class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceLeft((a, b) => (a+b) % 7)

case ”print” => println(”Sum:” + sum)
}

}

val system = ActorSystem(”SummerSystem”)
val summer = system.actorOf(Props[Summer], name = ”summer”)
summer tell (1 to 10).toArray
summer ! (1 to 20).toArray

Pratikakis (CSD) Scala CS342, 2025 54 /67

Replying to Messages

import akka.actor._

class SomeActor extends Actor {
def receive = {
case User(name) =>
sender tell (”Hi ” + name)

}
}

Pratikakis (CSD) Scala CS342, 2025 55 /67

Remote Deployment

akka {
actor {
provider = akka.remote.RemoteActorRefProvider
deployment {
/Summer {
remote = akka://SummerSystem@machine42:31337

}
}

}
}

Pratikakis (CSD) Scala CS342, 2025 56 /67

Actor Become

Dynamically redefine actor behavior
Triggered reactively by receiving a message
Type system analogy: Object changes type

change interface, protocol, implementation
Actor will now react differently to messages
Behaviors are stacked, can be pushed and popped

Pratikakis (CSD) Scala CS342, 2025 57 /67

Why?

Let an actor with high contention become load-balancer,
distribute work “behind”
Implement FSM
Graceful degradation
Generic Worker easy spawn, becomes whatever is needed
etc.
Very useful once you get used to it

Pratikakis (CSD) Scala CS342, 2025 58 /67

Become: Example

context become {
case NewMessage =>
...

}

Pratikakis (CSD) Scala CS342, 2025 59 /67

Example: load balancing

val router =
system.actorOf(
Props[SomeActor].withRouter(
RoundRobinRouter(nrOfInstances = 5)

)
)

Pratikakis (CSD) Scala CS342, 2025 60 /67

Example: load balancing++

val resizer =
DefaultResizer(lowerBound = 2, upperBound = 15)

val router =
system.actorOf(
Props[SomeActor].withRouter(
RoundRobinRouter(resizer = Some(resizer))

)
)

Pratikakis (CSD) Scala CS342, 2025 61 /67

Failure Management, Traditionally

Single thread of control
If thread blows up, we’re $#%@ed
Must do explicit error handling within thread
Errors do not propagate between threads

No way to find out if something broke
Leads to defensive programming

if(printf()) ...
Error handling tangled with business logic
Error checking salted all over the code base

Things shouldn’t be that bad

Pratikakis (CSD) Scala CS342, 2025 62 /67

Supervise

Manage another Actor’s failures
Error handling in actors by letting Actors monitor
(supervise) each other for failure
If an Actor crashes, notification will be sent to supervisor
Clean separation of processing and error handling
Every actor has default supervisor strategy, usually
sufficient

Pratikakis (CSD) Scala CS342, 2025 63 /67

Example: Supervision

class Supervisor extends Actor {
override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute)

{
val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n

}
}

}

Pratikakis (CSD) Scala CS342, 2025 64 /67

Example: Supervision

class Supervisor extends Actor {
override val supervisorStrategy =
AllForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute)

{
val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n

}
}

}

Pratikakis (CSD) Scala CS342, 2025 65 /67

Manage Failure

class Worker extends Actor {
...
override def preRestart(reason: Throwable, message: Option[Any]) {
// Clean up before restart

}

override def postRestart(reason: Throwable) {
// Initialize after restart

}
}

Pratikakis (CSD) Scala CS342, 2025 66 /67

More Scala

A lot of resouces out there
More parallel programming

Futures, asynchronous calls, threads, thread pools, ...
Interoperability with Java threads

Pratikakis (CSD) Scala CS342, 2025 67 /67

	Collections
	Akka
	Failure Management

