Introduction to Scala

Computer Science Department, University of Crete

Parallel Programming

Based on slides by D. Malayeri, S.D. Vick, P. Haller, M. Madsen, J. Bonér

Pratikakis (CSD) CS342, 2025

Introduction

@ 1lo Mépog: Eloaywyr otn yAwooa Scala
@ 20 Mépog: MapdAANAOG MPOYPAUPATIONOG o€ Scala

Pratikakis (CSD) CS342, 2025

What is Scala?

@ Scala is a statically typed language
@ Combines Object-Oriented Programming and Functional
Programming
o Developed in EPFL, lead by Martin Odersky
o Influenced by Java, ML, Haskell, Erlang, and other
languages
@ Many high-level language abstractions
e Uniform object model
e Higher-order functions, pattern matching
@ Novel ways to compose and abstract expressions
@ Managed language runtime

@ Runs on the Java Virtual Machine
@ Runs on the .NET Virtual Machine

Pratikakis (CSD) CS342, 2025

Goals of Scala

@ Create a language with better support for component
software

@ Hypotheses:
@ Programming language for component software should be
scalable
@ The same concepts describe small and large parts
@ Rather than adding lots of primitives, focus on abstraction,
composition, decomposition
o Language that unifies OOP and functional programming
can provide scalable support for components

Pratikakis (CSD) CS342, 2025

Why use Scala?

@ Runs on the JVM

e Can use any Java code in Scala
@ Almost as fast as Java

@ Much shorter code

@ Odersky reports 50% reduction in most code
e Local type inference

@ Fewer errors
@ No NullPointer errors
@ More flexibility

@ As many public classes per source file as you want
@ Operator overloading

@ All of the above, for .NET too

Pratikakis (CSD) CS342, 2025

Why learn Scala?

@ Creating a trend in web service programming
o LinkedIn
o Twitter
o Ebay
e Foursquare
o List is growing

Pratikakis (CSD) CS342, 2025

Features of Scala (1)

@ Both functional and object-oriented

e Every value is an object
e Every function is a value (including methods)

@ Scala is statically typed
@ Includes local type inference system

Pair p = new Pair<Integer, String>(1, "Scala”);

val p = new Pair(1, "Scala”);

Pratikakis (CSD) CS342, 2025

Features of Scala (2)

@ Supports lightweight syntax for anonymous functions,
higher-order functions, nested functions, currying

@ ML-style pattern matching
@ Integration with XML

o Can write XML directly in Scala program
@ Can convert XML DTD into Scala class definitions

@ Support for regular expression patterns

@ Allows defining new control structures without using
macros, and while maintaining static typing

@ Any function can be used as an infix or postfix operator
@ Can define methods named +, <=or ::

Pratikakis (CSD) CS342, 2025

Features of Scala (3)

Actor-based programming, distributed, concurrent
Embedded DSLs, usable as scripting language
Higher-kinded types, first class functions, closures
Delimited continuations

Abstract Types, Generics

Warning: Scala is the gateway drug to ML, Haskell, ...

Pratikakis (CSD) CS342, 2025

An Example Class ...

public class Person {
public final String name;
public final int age;
Person(String name, int age) {
this.name = name;
this.age = age;
}
}
v

class Person(val name: String, val age: Int) {}

Pratikakis (CSD) CS342, 2025 10/67

... and its use

import java.util. ArrayList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();
for (inti = 0; i < people.length; i++)

(peopleli]l.age < 18 ? minorsList : adultsList).add(peopleli]);
minors = minorsList.toArray(people);
adults = adultsList.toArray(people);
}

val people: Array[Person] = Array(
new Person(”Joe”, 24),
new Person("William”, 23),
new Person(”Jack”, 22),
new Person(”Averell”, 21))
val (minors, adults) = people partition(_.age < 18)

Pratikakis (CSD) Scala CS342, 2025 11/67

Class Hierarchies and Abstract Data Types

@ Scala unifies class hierarchies and abstract data types
(ADTs)

@ Introduces pattern matching for objects
@ Uses concise manipulation of immutable data structures

Pratikakis (CSD) CS342, 2025 12/67

Example: Pattern matching

abstract class Tree[T]
case object Empty extends Tree[Nothing]
case class Binary[T]l(elem: T, left: Tree[T], right: Tree[T]) extends Tree[T]

v
In-order traversal

def inOrder[T](t: Tree[T]): List[T] = t match {
case Empty =>
List()
case Binary(e, I, r) =>
inOrder(l) ::: List(e) ::: inOrder(r)
}

@ Extensibility
@ Encapsulation: only constructor params exposed
@ Representation independence

Pratikakis (CSD) CS342, 2025 13/67

Functions and Collections

@ First-class functions make collections more powerful
@ Especially immutable ones

Container operations

people.filter(_.age >= 18)
.groupBy(_.surname)
.values
.count(_.length >= 2)

Pratikakis (CSD) CS342, 2025 14/67

The Scala Object System

@ Class-based
@ Single Inheritance
@ Can define singleton objects easily

@ Subtyping is nominal: it is a subtype if declared to be a
subtype
@ Traits, compound types, views
o Flexible abstractions

Pratikakis (CSD) CS342, 2025 15/67

Classes and Objects

Classes and Objects

trait Nat;

object Zero extends Nat {
def isZero: Boolean = true;
def pred: Nat =
throw new Error(”"Zero.pred”);

}

class Succ(n: Nat) extends Nat {
def isZero: Boolean = false;
def pred: Nat = n;

}

Pratikakis (CSD) CS342, 2025 16/67

@ Similar to interfaces in Java

@ They may have implementations of methods
@ And can contain state!

@ Can have multiple inheritance

Pratikakis (CSD) CS342, 2025 17/67

Example: Traits

trait Similarity {
def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = lisSimilar(x);

}

class Point(xc: Int, yc: Int) extends Similarity {
var x: Int = xc;
vary: Int = yc;
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.aslnstanceOf[Point].x == Xx;

}

Pratikakis (CSD) CS342, 2025 18/67

Mixin Class Composition (1)

@ Mixin: “A class which contains a combination of methods
from other classes. ”
@ Basic inheritance model is single inheritance
@ But mixin classes allow more flexibility
class Point2D(xc: Int, yc: Int) {
val x = xc;

valy = yc;
// methods for manipulating Point2Ds

class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) {
var color = ¢;
def setColor(newCol: String): Unit = color = newCol;

class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)
extends Point3D(xc, yc, zc) with ColoredPoint2D(xc, yc, col);

// ERROR: cannot mixin classes with classes, only traits

Pratikakis (CSD) Scala CS342, 2025 19/67

Mixin Class Composition (2)

@ Fix: extract the code to be added, into a trait
@ Mixin the trait selectively into subclasses

class Point2D(xc: Int, yc: Int) {
val x = xc;
valy = yc;
// methods for manipulating Point2Ds
}
trait Color {
var color: String = null;
def setColor(c: String) : Unit = color = ¢;

class ColoredPoint2D(u: Int, v: Int, c: String) extends Point2D(u, v) with Color {
color = ¢;

class Point3D(xc: Int, yc: Int, zc: Int) extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)
extends Point3D(xc, yc, zc) with Color;

Pratikakis (CSD) CS342, 2025 20/67

Mixin Class Composition (3)

@ Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)

@ Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C's superclass.

@ i.e., D must inherit at least everything that C inherited
@ Why?

Pratikakis (CSD) CS342, 2025 21/67

Mixin Class Composition (3)

@ Mixin composition adds members explicitly defined in
ColoredPoint2D (members that were not inherited)

@ Mixing a class C into another class D is legal only as long
as D’s superclass is a subclass of C's superclass.

@ i.e., D must inherit at least everything that C inherited

@ Why?

@ Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited

@ So, if those members refer to definitions that were
inherited from Point2D, they had better exist in
ColoredPoint3D

e They do, since ColoredPoint3D extends Point3D which
extends Point2D

Pratikakis (CSD) CS342, 2025 21/67

@ Defines an implicit coercion from one type to another
@ Similar to conversion operators in C++ and C#

trait Set[T] {
def extend(x: T): Set[T]
def contains(x: T): Boolean

}

Y/
implicit def list2set[T](list: List[T]) : Set[T] = new Set[T] {
def extend(x: T): Set[T] = list2set(x :: list)
def contains(x: T): Boolean =
Ilist .isEmpty && ((list.head == x) || (list.tail contains x))
}

Pratikakis (CSD) CS342, 2025 22/67

@ Implicit views are inserted automatically by the Scala
compiler
@ If e is of type T then a view is applied to e if:
@ Expected type of e is not T (or a supertype)
@ A member selected from e is not a member of T

@ Compiler uses only views in scope

Pratikakis (CSD) CS342, 2025 23/67

@ Many containers have lazy views
@ Do not compute until absolutely necessary
@ Different meaning but same name with implicit views (!)

scala> (1 to 1000000000).filter(_%2 ==0).take(10).toList
java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.lang.Integer.valueOf(Integer.java:832)
at scala.runtime.BoxesRunTime.boxTolnteger(BoxesRunTime.java:69)
at scala.collection.immutable.Range.foreach(Range.scala:166)
at scala.collection.TraversablelLikeclass.filterimpl(TraversableLike.scala : 258)at:
at scala.collection.AbstractTraversable.filter(Traversable.scala:104)
. 26 elided

scala> (1 to 1000000000).view.filter(_%2 ==0).take(10).toList
resl9: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Pratikakis (CSD) CS342, 2025 24/67

Variance Annotations (1)

class Array[A] {
def get(index: Int): A
def set(index: Int, elem: A): Unit

}

@ Array[String] is not a subtype of Array[Any]
@ If it were, we could do the following:

val x = new Array[String](1);

val y : Array[Any] = Xx;

y.set(0, new FooBar());

// just stored a FooBar in a String array!

Pratikakis (CSD) CS342, 2025 25/67

Variance Annotations (2)

@ Covariance is OK with functional data structures
@ ... because they are immutable

trait GenList[+T] {
def isEmpty: Boolean;
def head: T;
def tail: GenList[T]
}
object Empty extends GenList[Any] {
def isEmpty: Boolean = true;
def head: Any = throw new Error("Empty.head”);
def tail: GenList[Any] = throw new Error(”"Empty.tail”);

}

class Cons[+TI1(x: T, xs: GenList[T]) extends GenList[T] {
def isEmpty: Boolean = false;
def head: T = x;
def tail: GenList[T] = xs

}

Pratikakis (CSD) CS342, 2025

26/67

Variance Annotations (3)

@ Can also have contravariant type parameters
o Useful for an object that can only be written to
@ Scala checks that variance annotations are sound

@ Covariant positions: Immutable field types, method results

e Contravariant: method argument types

o Type system ensures that covariant parameters are only
used covariant positions

@ (similar for contravariant)

@ If no variance specified, then Invariant
o Neither superclass, nor subclass

Pratikakis (CSD) CS342, 2025 27/67

Functions are Objects

@ Every function is a value
@ Values are objects, so functions are also objects

@ The function type S => T is equivalent to the class type
scala.Functionl[S, T]

trait Functionl[-S, +T] {
def apply(x: S): T
¥

@ For example, the anonymous successor function (x:
Int) => x + 1orinshortercode (+ 1) expandsto

new Functionl[Int, Int] {
def apply(x: Int): Int = x + 1

Pratikakis (CSD) CS342, 2025 28/67

Arrays are Objects

@ Arrays (mathematically): Mutable functions over integer
ranges

Syntactic Sugar

a(i) = a(i) + 2 for a.update(i, a.apply(i) + 2)

final class Array[T](_length: Int)
extends java.io.Serializable
with java.lang.Cloneable {
def length: Int = ...
def apply(i: Int): T= ...
def update(i: Int, x: T): Unit = ...
override def clone: Array[T] = ...

Pratikakis (CSD) CS342, 2025 29/67

Partial Functions

@ Functions that are defined only for some objects
@ Test using isDefinedAt

trait PartialFunction[-A, +B] extends (A => B) {
def isDefinedAt(x: A): Boolean
def orElse[Al <: A, B1 >: B]

(that: PartialFunction[Al, B1]): PartialFunction[Al, B1]
}

@ Blocks of pattern-matching cases are instances of partial
functions

@ This lets programmers write control structures that are
not easy to express otherwise

Pratikakis (CSD) CS342, 2025 30/67

Automatic Closure Construction

@ Allows programmers to make their own control structures
@ Can tag the parameters of methods with the modifier =>

@ When method is called, the actual => parameters are not
evaluated and a no-argument function is passed

Pratikakis (CSD) CS342, 2025 31/67

Example: Custom loop construct

object TargetTestl {
def loopWhile(cond: => Boolean)(body: => Unit): Unit =
if (cond) {
body;
loopWhile(cond)(body);
}

def main(args: Array[String]) {
vari = 10;
loopWhile (i > 0) {
Console.printin(i);
i=i-1;
}
}
}

Pratikakis (CSD) CS342, 2025 32/67

Types as Class Members

abstract class AbsCell {
type T;
val init: T;
private var value: T = init;
def get: T = value;
def set(x: T): Unit = { value = x }

}
def createCell() : AbsCell =
new AbsCell { type T = Int; val init =1 }

v

@ Clients of createCell cannot rely on the fact that T is
Int, since this information is hidden from them

Pratikakis (CSD) CS342, 2025 33/67

Scala Parallel Collections

val list = (1 to 10000).toList
list .map(_ + 42)

@ Sequential map, addition

Pratikakis (CSD) CS342, 2025 34/67

Scala Parallel Collections

val list = (1 to 10000).toList
list .par.map(_ + 42)

@ Parallel list
@ Many data structures available

e ParArray

ParVector
mutable.ParHashMap
mutable.ParHashSet
immutable.ParHashMap
immutable.ParHashSet
ParRange

ParTrieMap

Pratikakis (CSD) CS342, 2025 35/67

Examples: Operators

val lastNames = List(
"Smith”,”Jones”,”Frankenstein”,”Bach”,”Jackson”,”Rodin”
).par

lastNames.map(_.toUpperCase)

val parArray = (1 to 10000).toArray.par
parArray.fold(0)(_ +)

val lastNames = List(
"Smith”,”Jones”,”Frankenstein”,”Bach”,”Jackson”,”Rodin”
).par

lastNames. filter(_.head >=")’)

Pratikakis (CSD) CS342, 2025 36/67

Examples: Create

import scala.collection.parallel.immutable.ParVector
val pvl = new ParVector[Int]

val pv2 = Vector(1,2,3,4,5,6,7,8,9).par

Pratikakis (CSD) CS342, 2025 37/67

Parallel Collections

@ Side-effecting operations can lead to non-determinism
o side effects are reordered or concurrent

@ Non-associative operations lead to non-determinism
e order of operations changes

Pratikakis (CSD) CS342, 2025 38/67

Example: Race!

varsum =0

val list = (1 to 1000).toList.par
list .foreach(sum +=_);

sum

// something

var sum = 0

list .foreach(sum +=_);
sum

// something else

Pratikakis (CSD) CS342, 2025 39/67

Example: Associativity

val list = (1 to 1000).toList.par
list .reduce(_-)

// some result

list .reduce(_-)

// some other result
list .reduce(_-)

// yet another result, depending on what subtraction runs first

Pratikakis (CSD)

CS342, 2025 40/67

The Actor Model

@ A model of concurrent computation

@ Introduced in 1973 (Lisp, Simula)
@ Main idea: Everything is an Actor
@ Similar to OO idea that Everything is an Object
@ An actor can:
@ Send messages to other actors
o Create new actors
o React to messages it receives
@ There is no constraint on order between these

e Can occur in parallel accross actors, also for any actor
e Parallel computation and communication

Pratikakis (CSD) CS342, 2025 41/67

Actors in Scala

@ Initial built-in implementation
@ Language primitives
@ Built into the language
o Obsolete now
@ Integration with Akka library

o Akka: library with distributed actors
Concurrency

Scalability

Fault-tolerance

Single unified programming model

Managed runtime (contained into the library)
Open Source

Pratikakis (CSD) CS342, 2025 42/67

Actors in Akka

@ Goal: Program at very high level of abstraction

@ Do not think of shared state, threads, state visibility,
locks, collections, etc.

@ Only think how messages flow into the system
@ Runtime system does the rest

High CPU utilization

Low latency

Scalability

Built-in support for error detection and recovery

Pratikakis (CSD) CS342, 2025 43/67

Parallel and Distributed

@ Akka actors are distributable by design

e Designed to scale up (more threads) and scale out (more
nodes)
e Same program, different deployments
e Perfect for cloud deployment
@ Elastic, dynamic
@ Fault-tolerant, self-healing
@ Adaptive load-balancing, migration
@ Loosely coupled, allows dynamic changes at runtime

Pratikakis (CSD) CS342, 2025 44/67

What is an Actor

@ Unit of code organization in Akka

@ Actors help create concurrent, scalable and fault-tolerant
applications

@ Like Java-EE Servlets and session beans, Actors help
organize code to keep “policy” and “business logic”
separate

@ Used in telecom systems with “9 nines” uptimes

@ Abstraction intuitively: Virtual Machines in the Cloud (but
faster)

Encapsulated, decoupled, black boxes

Manage their own memory and behavior
Communicate asynchronously, non-blocking messages
Can grow and shrink on demand, add new actors, stop
some

Hot-deploy: change behavior at runtime, add new
components, new code

Actors are the same, but for a single application

Pratikakis (CSD) Scala CS342, 2025 45/67

Actor uses

@ May be alternative to:
e Thread
Object instance, component
Callback Listener
Singleton, service
Load-balancer, router, thread pool
Jave EE Session Bean, Message-Driven Bean
Out-of-process service
FSM

Pratikakis (CSD) CS342, 2025 46/67

Theoretical definition

@ Fundamental unit of computation that embodies:
@ Processing
e Storage
o Communication
@ 3 axioms - When an actor receives a message, it can:
o Create new actors
o Send messages to actors it knows
o Designate how it should handle the next message received

Pratikakis (CSD) CS342, 2025 47/67

Core Actor operations

@ Define

@ Create

@ Send

@ Become
@ Supervise

Pratikakis (CSD) CS342, 2025 48/67

Define an Actor

import akka.actor._

class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceleft((a, b) => (a+b) % 7)
case "print” => printIn("Sum:” + sum)
}
}

Pratikakis (CSD) CS342, 2025 49/67

Create an Actor

@ Create an instance of an Actor
@ Very lightweight in Akka: 2.7 million actors per GB RAM

@ Very strong encapsulation:

o state
@ behavior
@ message queue

@ State and behavior are indistinguishable
@ Only way to observe state: send a message, see reaction

Pratikakis (CSD) CS342, 2025 50/67

Create Actor

import akka.actor._
class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceleft((a, b) => (a+b) % 7)
case "print” => printIn("Sum:” + sum)
}
}

val system = ActorSystem(”SummerSystem”)
val summer = system.actorOf(Props[Summer], name = "summer”)

v

Pratikakis (CSD) CS342, 2025 51/67

Actors form Hierarchies

@ systemis “guardian actor”

@ Can create actors with context.actorof(), guarded by
creating actor

@ Hierarchies can be tall trees

@ Name resolution works like a file system: Actor
/summer/someother

Pratikakis (CSD) CS342, 2025 52/67

Send Messages

@ Asynchronous and non-blocking: “Fire and Forget”
@ Everything happens Reactively

@ An Actor is passive until a message is sent to it
@ Messages are “kinetic energy” in Actor System
e But light messages may trigger heavy reactions

@ Everything is asynchronous and lockless

@ Lightweight: single machine can handle millions of
messages per second

Pratikakis (CSD) CS342, 2025 53/67

Sending Messages

import akka.actor._
class Summer extends Actor {
var sum = 0

def receive = {
case ints: Array[Int] =>
sum += ints.reduceleft((a, b) => (a+b) % 7)
case "print” => printIn("Sum:” + sum)
}
}

val system = ActorSystem(”SummerSystem”)

val summer = system.actorOf(Props[Summer], name = "summer”)
summer tell (1 to 10).toArray

summer ! (1 to 20).toArray

Pratikakis (CSD) CS342, 2025 54/67

Replying to Messages

import akka.actor._

class SomeActor extends Actor {
def receive = {
case User(name) =>
sender tell ("Hi ” + name)
}

}

Pratikakis (CSD) CS342, 2025 55/67

Remote Deployment

akka {
actor {
provider = akka.remote.RemoteActorRefProvider
deployment {
/Summer {
remote = akka:/SummerSystem@machine42:31337
}
}
}
3

Pratikakis (CSD) CS342, 2025 56/67

@ Dynamically redefine actor behavior
@ Triggered reactively by receiving a message

@ Type system analogy: Object changes type
e change interface, protocol, implementation

@ Actor will now react differently to messages
@ Behaviors are stacked, can be pushed and popped

Pratikakis (CSD) CS342, 2025 57/67

@ Let an actor with high contention become load-balancer,
distribute work “behind”

@ Implement FSM

@ Graceful degradation

@ Generic Worker easy spawn, becomes whatever is needed
@ etc.

@ Very useful once you get used to it

Pratikakis (CSD) CS342, 2025 58/67

Become: Example

context become {
case NewMessage =>

Pratikakis (CSD) CS342, 2025 59/67

Example: load balancing

val router =
system.actorOf(
Props[SomeActor].withRouter(
RoundRobinRouter(nrOflinstances = 5)
)
)

Pratikakis (CSD) CS342, 2025 60/67

Example: load balancing++

val resizer =
DefaultResizer(lowerBound = 2, upperBound = 15)

val router =
system.actorOf(
Props[SomeActor].withRouter(
RoundRobinRouter(resizer = Some(resizer))
)
)

Pratikakis (CSD) CS342, 2025 61/67

Failure Management, Traditionally

@ Single thread of control
@ If thread blows up, we're $#%@ed

@ Must do explicit error handling within thread
@ Errors do not propagate between threads

o No way to find out if something broke
@ Leads to defensive programming

o if(printf()) ...

e Error handling tangled with business logic

@ Error checking salted all over the code base

@ Things shouldn’t be that bad

Pratikakis (CSD) CS342, 2025 62/67

Supervise

@ Manage another Actor’s failures

@ Error handling in actors by letting Actors monitor
(supervise) each other for failure

@ If an Actor crashes, notification will be sent to supervisor
@ Clean separation of processing and error handling

@ Every actor has default supervisor strategy, usually
sufficient

Pratikakis (CSD) CS342, 2025 63/67

Example: Supervision

class Supervisor extends Actor {
override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute)

val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n
}
}
}

Pratikakis (CSD) CS342, 2025 64/67

Example: Supervision

class Supervisor extends Actor {
override val supervisorStrategy =
AllForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 mijnute)

val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n
}
}
}

Pratikakis (CSD) CS342, 2025 65/67

Manage Failure

class Worker extends Actor {

c;.\./erride def preRestart(reason: Throwable, message: Option[Any]) {
// Clean up before restart

}

override def postRestart(reason: Throwable) {
// Initialize after restart
}
}

Pratikakis (CSD) CS342, 2025 66/67

More Scala

@ A lot of resouces out there
@ More parallel programming
e Futures, asynchronous calls, threads, thread pools, ...

@ Interoperability with Java threads

Pratikakis (CSD) CS342, 2025 67/67

	Collections
	Akka
	Failure Management

