Delays, throughput, packet and circuit switching

Katerina Lionta (klionta@csd.uoc.gr)

Outline

- Packet and Circuit Switching
- Delays
- Throughput

Packet and Circuit Switching

Packet Switching

- The hosts send messages
- The messages are separated into smaller parts, the **packets**
- The packets passes through routers and switches to reach their destination
- Store-and-forward transmission
 - routing table
- The packets are transmitted via communication links
 - packet size= L bits, link's data rate= R
 - time for transmission= L/R seconds

Circuit Switching (1/2)

- Traditional phone networks
- Resource allocation throughout the duration of communication
- **Circuit**: establishment and maintenance of the connection
- Stable and guaranteed data rate

Circuit Switching (1/2)

- Each link has 4 circuits => 4 simultaneous connections
- End-to-end connection
 - 2nd circuit of the 1st link
 - 1st circuit of the 2nd link
- Each circuit has ¼ of the link's bandwidth
 - 1 Mbps link -> 250 kbps each circuit

Circuit Switching: FMD

- The frequency spectrum is shared between the connections (circuits)
- Each connection uses one frequency band throughout the entire communication
 - Radio stations are shared the frequency spectrum 88-108 MHz
 - Each station transmits to a specified smaller band (e.g. 87.2 MHz)

Circuit Switching: TDM

- The time is divided into frames of equal durations
- Each frame is divided into timeslots (slots)
- Each connection gets one slot per frame
- **Date rate**= frames' data rate* bits per slot
 - frames' data rate= 8.000 frames/sec, bits
 per slot= 8 bits
 - **data rate**= 8.000*8= 64 kbps

Packet vs Circuit Switching

<u>Packet</u>

- Resources are reserved on demand
- Not suitable for real time application, due to unexpected delays
- Better bandwidth sharing
- Simpler, more efficient
- Best effort

<u>Circuit</u>

- Resource allocation throughout the duration of communication
- The link is allocated during idle times
- Increased overhead and cost
- Bandwidth guarantees

Example 1 (1/2)

- link's data rate= 1 Mbps
- Each user send data only 10% of the time with rate 100 kbps
- Circuit switching, TDM, 1 frame/sec, 10 slots of 100ms
- Each user uses 1 slot per frame
 - Max number of users?
 - Answer
 - link's data rate/user's data rate= 1Mbps/100kbps= 10 users
 - What is the probability that a user is active?
 - Answer
 - p=0,1

Example 1 (2/2)

- link's data rate= 1 Mbps
- Each user send data only 10% of the time with rate 100 kbps
- Circuit switching, TDM, 1 frame/sec, 10 slots of 100ms
- Each user uses 1 slot per frame
 - If there are 35 users (N=35), what is the probability that 11 users transmit simultaneously? (hint binomial distribution)
 - Answer
 - $P(X=k)=(N k)*p^{k}*(1-p)^{N-k}$, where (N k)=N!/k!*(N-K)
 - P(X=11)= (35 11)*0.1¹¹*0.9⁽³⁵⁻¹¹⁾= 35!/11!*(35-11)!*0.1¹¹*0.9²⁴= 35!/11!*24!*0.1¹¹*0.9²⁴= 0,00033

Example 2 (1/2)

- 10 users (1 active 9 idle)
- The active user sends 1000 packets of 1000 bits
- link's data rate= 1 Mbps
- Each user send data only 10% of the time with rate 100 kbps
- Circuit switching, TDM, 1 frame/sec, 10 slots/frame, 1000 bits/slot, 10 slots of 100ms
 - How much time is needed for a user to send all its data, using the TDM set up above?
 - Answer
 - It sends 1000 packets* 1000 bits= 10⁶ bits=1 Mbits, sends 1000 bits per slot, one slot per frame
 - $(data)/(bits per slot) = 10^{6}/1000 = 1000 slots are needed$
 - (time per slot)*(number of slots)=10.000ms= 100s

Example 2 (2/2)

- 10 users (1 active 9 idle)
- The active user sends 1000 packets of 1000 bits
- link's data rate= 1 Mbps
- Each user send data only 10% of the time with rate 100 kbps
- Circuit switching, TDM, 1 frame/sec, 10 slots/frame, 1000 bits/slot
 - How much time is needed for a user to send all its data, using packet switching?
 - Answer
 - It sends 1000 packets* 1000 bits= 10⁶ bits=1 Mbits
 - The active user can send data with data rate 1Mbps since no one uses the link the same time

Types of Delays

- Processing delay
- Queue delay
- Transmission delay
- Propagation delay

Types of Delays: Processing delay

- The time required to:
 - Examine the header of the packet
 - Determine the output interface

Types of Delays: Queue delay

- The buffer that the packets wait to transmit
- If the queue of a router is empty and any other packet is transmitted the same time then the queue delay is 0

Types of Delays: Transmission delay

• The time required for all the bits of the packet to be pushed to the link from the router

Types of Delays: Propagation delay

- The time required for one bit to reach the next router
- distance between two routers/speed of light

End to End delay

- Consider:
 - N-1 routers between source and destination host
 - No network congestion -> queue delay= 0
 - \circ d_{proc}: processing delay
 - d_{prop}: propagation delay
 - transmission rate= R bits/sec, L: packet size => d_{trans} = L/R
 - End-to-end delay:
 - $d_{end-end} = N(d_{proc} + d_{prop} + d_{trans})$

Throughput

Throughput

- Transfer a large file from host A to B
- The throughput is the speed in bits/sec that B receives the file

Throughput

- Consider that the data flow only from A to B
- The host A cannot transmit data with rate greater than R_A
- The router cannot transmit data with rate greater than R_B
- If $R_A < R_B$ then the bits that sends the host A via router, reach the host B with speed R_A so the end to end throughput is R_B
- If $R_A > R_B$ then the router will not be able to forward data as fast as it receives it and the end to end throughput is R_A

Example

- file size= 32 Mbits
- R_A= 2 Mbps, R_B= 1Mbps
 time= file size/throughput= 32 Mbits/min{R_A, R_B}= 32*10⁶ bits/1*10⁶ bits/sec= 32 sec

Thank You