
Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 1 / 30

Programming with network Sockets
Computer Science Department, University of Crete

Manolis Surligas surligas@csd.uoc.gr

October 20, 2016

mailto:surligas@csd.uoc.gr

Goal of this lab

• Learn to create programs that communicate over a network

• Create TCP and UDP sockets using the POSIX Socket API

• Handle properly data

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 2 / 30

The POSIX Socket API

What is POSIX?

Portable Operating System Interface, is a family of standards
specified by the IEEE for maintaining compatibility between operating
systems.

• There are several Sockets implementations (e.g Berkeley, BSD)

• POSIX Socket API, provides a cross-platform and reliable way for
network and inter-process communication

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 3 / 30

What is a Socket?

• Socket is an endpoint of communication between two processes

• Two basic types of sockets:

- UNIX sockets
- Network sockets

• Processes read and write data to the sockets in order to
communicate

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 4 / 30

What is a Socket?

Socket

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 5 / 30

Transport Layer

• Transport layer is responsible for providing end-to-end data
transfer between two hosts

• Two main protocols are used:

- TCP
- UDP

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 6 / 30

Transport Layer: TCP

• Connection-oriented communication

• Reliable, in-order and error free data delivery

• Flow-control, congestion avoidance

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 7 / 30

Transport Layer: UDP

• Connection-less communication

• Packets may be lost

• Packets may arrive in wrong order

• Packets may contain wrong data

• There is no guaranty that packets sent will reach their destination

• Used when low latency is critical (e.g VoIP, streaming, e.t.c.)

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 8 / 30

Creating a Socket

Prototype

#inc l u d e <s y s / t yp e s . h>
#inc l u d e <s y s / s o ck e t . h>
i n t s o ck e t (i n t domain , i n t type , i n t p r o t o c o l) ;

• socket() creates a socket of a certain domain, type and protocol
specified by the parameters

• Possible domains:

- AF INET for IPv4 internet protocols
- AF INET6 for IPv6 internet protocols

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 9 / 30

Creating a Socket

Prototype

#inc l u d e <s y s / t yp e s . h>
#inc l u d e <s y s / s o ck e t . h>
i n t s o ck e t (i n t domain , i n t type , i n t p r o t o c o l) ;

• socket() creates a socket of a certain domain, type and protocol
specified by the parameters

• Possible types:

- SOCK STREAM provides reliable two way connection-oriented
byte streams (TCP)

- SOCK DGRAM provides connection-less, unreliable messages of
fixed size (UDP)

• protocol depends on the domain and type parameters. In most
cases 0 can be passed

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 10 / 30

Creating a Socket

SOCK STREAM

Sockets of this type are full-dublex data streams that do not rely on a
known data length. Before sending or receiving the socket must be in
a connected state. To send and receive data, send() and recv()
system calls may be used. By default, socket of this type are blocking,
meaning that a call of recv() may block until data arrive from the
other side. At the end, close() should be used to properly indicate
the end of the communication session.

SOCK DGRAM

This kind of sockets allowing to send messages of a specific size
without the guarantee that they will be received from the other side.
To send and receive messages sendto() and recvfrom() calls may be
used.

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 11 / 30

TCP: Creating the socket

• Lets try to create our first TCP socket!

i n t sock ;
i f ((sock = sock e t (AF INET , SOCK STREAM, IPPROTO TCP)) == −1){

p e r r o r (” open ing TCP l i s t e n i n g s o ck e t ”) ;
e x i t (EXIT FAILURE) ;

}

• Always check for errors! Using perror() printing a useful and
meaningful message is very easy!

• Opening a TCP socket is exactly the same for both server and
client side

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 12 / 30

Bind a Socket

Prototype

#inc l u d e <s y s / s o ck e t . h>

i n t b ind (i n t socket , const s t r u c t sockaddr ∗ addre s s ,
s o c k l e n t a d d r e s s l e n) ;

• bind() assigns an open socket to a specific network interface and
port

• bind() is very common in TCP servers because they should
waiting for client connections at specific ports

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 13 / 30

TCP: Bind the socket

s t r u c t s o c k a dd r i n s i n ;
memset(& s i n , 0 , s i z e o f (s t r u c t s o c k a dd r i n)) ;
s i n . s i n f am i l y = AF INET ;
s i n . s i n p o r t = htons (l i s t e n i n g p o r t) ;
s i n . s i n a d d r . s a dd r = h t on l (INADDR ANY) ;

i f (b ind (sock , (s t r u c t sockaddr ∗)& s i n ,
s i z e o f (s t r u c t s o c k a dd r i n)) == −1){

p e r r o r (”TCP b ind ”) ;
e x i t (EXIT FAILURE) ;

}

• Always reset the struct sockaddr in before use

• Addresses and ports must be assigned in Network Byte Order

• INADDR ANY tells the OS to bind the socket at all the
available network interfaces

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 14 / 30

Listening for incoming connections

Prototype

i n t l i s t e n (i n t socket , i n t back l og) ;

• After binding to a specific port a TCP server can listen at this
port for incoming connections

• backlog parameter specifies the maximum possible outstanding
connections

• Clients can connect using the connect() call

Hint! (Old Linux distributions)

For debugging you can use the netstat utility! Try:

bash$ n e t s t a t − l t p n

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 15 / 30

Listening for incoming connections

Prototype

i n t l i s t e n (i n t socket , i n t back l og) ;

• After binding to a specific port a TCP server can listen at this
port for incoming connections

• backlog parameter specifies the maximum possible outstanding
connections

• Clients can connect using the connect() call

Hint! (Recent Linux distributions)

For debugging you can use the ss utility! Try:

bash$ s s − l t p n

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 15 / 30

Trivia

Think!

Which of the calls of the previous slides cause data to be transmitted
or received over the network?

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 16 / 30

Trivia

Think!

Which of the calls of the previous slides cause data to be transmitted
or received over the network? NONE!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 17 / 30

TCP: Accepting connections

Prototype

#inc l u d e <s y s / s o ck e t . h>
i n t accep t (i n t socket , s t r u c t sockaddr ∗ r e s t r i c t add re s s ,

s o c k l e n t ∗ r e s t r i c t a d d r e s s l e n) ;

• accept() is by default a blocking call
• It blocks until a connection arrives to the listening socket
• On success a new socket descriptor is returned, allowing the

listening socket to handle the next available incoming connection
• The returned socket is used for sending and receiving data
• If address is not NULL, several information about the remote

client are returned
• address len before the call should contain the size of the
address struct. After the call should contain the size of the
returned structure

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 18 / 30

TCP: Connecting

Prototype

#inc l u d e <s y s / s o ck e t . h>
i n t connect (i n t socket , const s t r u c t sockaddr ∗ addre s s ,

s o c k l e n t a d d r e s s l e n) ;

• Connects a socket with a remote host

• Like bind(), zero the contains of address before use and assign
remote address and port in Network Byte Order

• If bind() was not used, the OS assigns the socket to all the
available interfaces and to a random available port

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 19 / 30

TCP: Sending Data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t send (i n t socket ,

const vo id ∗ bu f f e r ,
s i z e t l eng th , i n t f l a g s) ;

• send() is used to send data using a connection oriented protocol
like TCP

• Returns the actual number of bytes sent

• Always check the return value for possible errors or to handle
situations where the requested buffer did not sent completely

Question!

Does this call block?

YES!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 20 / 30

TCP: Sending Data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t send (i n t socket ,

const vo id ∗ bu f f e r ,
s i z e t l eng th , i n t f l a g s) ;

• send() is used to send data using a connection oriented protocol
like TCP

• Returns the actual number of bytes sent

• Always check the return value for possible errors or to handle
situations where the requested buffer did not sent completely

Question!

Does this call block? YES!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 20 / 30

TCP: Receiving Data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t r e c v (i n t socket , vo id ∗ bu f f e r ,

s i z e t l eng th , i n t f l a g s) ;

• recv() is by default a blocking call that receives data from a
connection-oriented opened socket

• length specifies the size of the buffer and the maximum allowed
received data chunk

• Returns the number of bytes received from the network

• recv() may read less bytes than length parameter specified, so
use only the return value for your logic

• If you do not want to block if no data are available, use
non-blocking sockets (hard!) or poll()

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 21 / 30

TCP Overview

In high society, TCP is more welcome than UDP. At least it knows a
proper handshake.

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 22 / 30

TCP Overview

In high society, TCP is more welcome than UDP. At least it knows a
proper handshake.

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 22 / 30

UDP: Creating the socket

• Creating a UDP socket is quite the same as with TCP

i n t sock ;
i f ((sock = sock e t (AF INET , SOCK DGRAM, IPPROTO UDP)) == −1){

p e r r o r (” open ing UDP sock e t ”) ;
e x i t (EXIT FAILURE) ;

}

• Only type and protocol parameters are different

• bind() is also exactly the same for UDP too

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 23 / 30

UDP: Connection-less

UDP is connection-less!!!
No need to call accept() or connect()!!!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 24 / 30

UDP: Receiving data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t r e cv f r om (i n t socket , vo id ∗ r e s t r i c t b u f f e r ,

s i z e t l eng th , i n t f l a g s ,
s t r u c t sockaddr ∗ r e s t r i c t add re s s ,
s o c k l e n t ∗ r e s t r i c t a d d r e s s l e n) ;

• length specifies the length of the buffer in bytes

• address if not NULL, after the call should contain information
about the remote host

• address len is the size of the struct address

• Returns the number of bytes actually read. May be less that
length

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 25 / 30

UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

- Use poll()

• What if the message sent is greater that your buffer?

- Use recvfrom() in a loop with poll()

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 26 / 30

UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

- Use poll()

• What if the message sent is greater that your buffer?

- Use recvfrom() in a loop with poll()

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 26 / 30

UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

- Use poll()

• What if the message sent is greater that your buffer?

- Use recvfrom() in a loop with poll()

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 26 / 30

UDP: Problems at receiving

• Have in mind that recvfrom() is a blocking call

• How you can probe if data are available for receiving?

- Use poll()

• What if the message sent is greater that your buffer?

- Use recvfrom() in a loop with poll()

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 26 / 30

UDP: Sending data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t s endto (i n t socket , const vo id ∗message ,

s i z e t l eng th , i n t f l a g s ,
const s t r u c t sockaddr ∗ de s t add r ,
s o c k l e n t d e s t l e n) ;

• length is the number of the bytes that are going to be sent from
buffer message

• dest addr contains the address and port of the remote host
• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!

Does sendto() block? NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 27 / 30

UDP: Sending data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t s endto (i n t socket , const vo id ∗message ,

s i z e t l eng th , i n t f l a g s ,
const s t r u c t sockaddr ∗ de s t add r ,
s o c k l e n t d e s t l e n) ;

• length is the number of the bytes that are going to be sent from
buffer message

• dest addr contains the address and port of the remote host
• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!

Does sendto() block?

NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 27 / 30

UDP: Sending data

Prototype

#inc l u d e <s y s / s o ck e t . h>
s s i z e t s endto (i n t socket , const vo id ∗message ,

s i z e t l eng th , i n t f l a g s ,
const s t r u c t sockaddr ∗ de s t add r ,
s o c k l e n t d e s t l e n) ;

• length is the number of the bytes that are going to be sent from
buffer message

• dest addr contains the address and port of the remote host
• Returns the number of bytes sent. May be less that length so

the programmer should take care of it

Trivia!

Does sendto() block? NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 27 / 30

Endianness

• Networks are heterogeneous with many
different OS’s, architectures, etc

• Endianess is a serious problem when sending
data to other hosts

• When sending entities that are greater that a
byte, always convert them in Network Byte
Order

• By default Network Byte Order is Big-Endian

• Use htons(), ntohs(), htonl(), ntohl()

Trivia!

When sending large strings do we have to convert in
Network Byte Order? NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 28 / 30

Endianness

• Networks are heterogeneous with many
different OS’s, architectures, etc

• Endianess is a serious problem when sending
data to other hosts

• When sending entities that are greater that a
byte, always convert them in Network Byte
Order

• By default Network Byte Order is Big-Endian

• Use htons(), ntohs(), htonl(), ntohl()

Trivia!

When sending large strings do we have to convert in
Network Byte Order?

NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 28 / 30

Endianness

• Networks are heterogeneous with many
different OS’s, architectures, etc

• Endianess is a serious problem when sending
data to other hosts

• When sending entities that are greater that a
byte, always convert them in Network Byte
Order

• By default Network Byte Order is Big-Endian

• Use htons(), ntohs(), htonl(), ntohl()

Trivia!

When sending large strings do we have to convert in
Network Byte Order? NO!

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 28 / 30

Useful man pages

• socket(7)

• ip(7)

• setsockopt(3p)

• tcp(7)

• udp(7)

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 29 / 30

Questions??

Manolis Surligas (CSD, UoC) Programming with network Sockets October 20, 2016 30 / 30

	Transport Layer
	TCP
	UDP

