Lab 6

CS-335a
Fall 2012
Computer Science Department

Manolis Surligas
surligas@csd.uoc.gr

Summary

= What is a thread?

Parallel ecexution

Creating threads

Passing parameters to threads with pthread create()

A multithreaded TCP server

Avoiding race conditions

1

What is a thread?

= A thread is a lightweight process that is handled by
the sheduler of the OS

A process may own several threads

A process may share with its threads resources, like
a common memory address space

Threads can communicate with other threads

One thread may perform a task, while another
performs another, in parallel

1

Parallel ecexution

But how threads allow parallelism?

In a single processor machine, the processor
switches between different threads

This transition is very fast, so the user has the
feeling that threads run in parralel

Thread C
Time Thread C

‘
|

Parallel ecexution

= The same it is done in multi-core systems

= The difference is that every core may run a different
thread at the same time

— =R e
Thread A inzzills

Thread A
HME Thread Thread C
Thread A
Thread C Thread B

Creating threads

= For creating and manipulating threads, we are going
to use the POSIX standard, usually known as
pthreads

= Pthreads are implemented in all modern Linux
distributions

= They come with very discriptive man pages
= A list with all available pthread functions, can be

found by typing:
+ man pthread.h

1

Creating threads

= Lets create our first simple threads

= Each thread will execute a simple function, that
prints a different message

10 w|void *print_msg 1(p{
11 »| while(1){

12 printf{"Printing from thread 1°.n");
13 sleep(1l]);

14 +

15 pthread exit(MULL);

16 I

17

18 w |void *print_msg 2(){
19 | while(1){

20 printf{"Printing from thread 2.n");
21 sleep(2);

22 +

23 pthread exi1t(NULL);

24 Iy

Creating threads

26
27
28
29
30
21
32
33
34
35
36
37
38
38
40
4l
42
43
44
45
465
47
48
49
=1
=11
=

int
main(int argc, char **argv){

int param;

pthread t threadl;
pthread t thread2;

pthread attr t thread 1 attributes;
|thrwal attr t thread 2 attributes;

. = 5
f¥ Ten +13
L Pl L LD L;.a_-

pthread attr_init(&thread 1 attrlbutesj
pthread attr_init(&thread 2 attributes);

i """l--'. £ + -. o i
(=] L ':.-\.:-ll.'.la.a.-ll.ll.':. o7 Lie l. ez ds ¥

-~ "--. -. TFITAUAS .
k! 28T The l.'_'l.-\.:'- (=] ."'L-\.:I'.':' L':l NN o '_I'

pthread attr_setdetachstate(&thread 1 attributes, PTHREAD CREATE JOINABLE):
pthread _attr setdetachstate(&thread 2 attributes, PTHREAD CREATE JOINABLE)

if(pthread create(&threadl, &thread 1 attributes, &print_msg 1, NULL) != 0){
perror("create thread 1");
ex1t (EXIT FAILURE);

+

if(pthread create(&thread2, &thread 2 attributes, &print _msg 2, NULL) != 0){
perror("create thread 2");
ex1t (EXIT FAILURE):

I

pause (] ;

return 1;

Creating threads

Lines 36,37: Initialize the variables that will hold the
attributes of each thread

Lines 39,40: Set the detached state to JOINABLE

Lines 42,46: Create the thread by running the
corresponding functions

Line 50: Without pause() the process would
terminate. Another solution may be the use of
pthread join() for every thread

Passing parameters to threads with
pthread create()

= At the previous example, the threads were not have
any parameters

= This is not the general case, as we frequently pass
many parameters to our functions

= The problem is that pthread create(), restrict us to
use only one parameter

= Not a problem! Declare an appropriate struct and
perfom the necessary type casts

1

10

Passing parameters to threads with

pthread create()

= Assume that we want our threads to take as
parameters an integer and a string

= We create the appropriate struct and perfom the
cast at the functions, that are taking only a void *
parameter

12
13
14
15
16
17
18
19
20
21
22
23
24
23
26
27
28

29
30
31
32

L ¥

11 # |struct thread param {

int num:
char *str:

vold *prinmt_msg_1(void *param){
struct thread param *cast = (struct

T

while(1){
printf ("%s %d
sleep(1);

pthread exit(MULL):

", cast-=str, cast-

vold *primt_msg_2(volid *param){
struct thread param *cast = (struct

T

while(1){
printf ("%s %d
sleep (2);

pthread exit(MULL);

", cast-=str, cast-

thread _param *)param;

=Mum) ;

thread _param *)param;

=rum) ;

11

Passing parameters to threads with
pthread create()

= An make the necessary changes to the thread
creators

0 Btruct thread param paraml;

51 struct thread param param2;

52

53 paraml.num = 1;

54 paranl.str = "Printing from thread ";

55 paramZ.num = 2;

56 paranZ.str = "Printing from thread ";

a7

58 w| if(pthread create(&threadl, &thread 1 attributes, &print_msg 1, (void *)¶nl) != 0){
59 perror("create thread 1");

60 exit(EXIT FAILURE);

Bl }

62 w| if(pthread create(&thread2, &thread 2 attributes, &print msg 2, (void *)¶m2) != 0){
63 perror("create thread 2");

64 exit(EXIT_FAILURE):

65 }

= With this trick you can pass whatever parameter

I you want!

12

A multithreaded TCP server

= Remeber the simple TCP server of the previous Lab?

= Lets make him multithreaded!

= This means that our server will be able to handle
multiple connections in parallel, as all modern
servers do

= Can you imagine where and when the threads
should be created?

1

13

A multithreaded TCP server

= Recall that accept() blocks until a new connection
arrives and returns a new socket discriptor with the
connected client

= Qur goal is to create a new thread for every
connection and pass the socket discriptor of this
connection to the thread

= With this way the server is able to listen for new
connections and we can serve all the established
connections in parallel

14

A multithreaded TCP server

= We move all the code that hanldes the TCP
connection with a client at a new thread that takes
as parameter the socket discriptor

vold *handle tcp connection(void *param){

char buffer[512];

int received;

int sock = (int Jparam;

printf("New connection accepted!'n");
recelved = recv(sock, buffer, 511, 0);
buffer[received] = 0;
printf("Received from client: %s'n");

}

1

15

oy
61
62
63
64
B3
ils
67
68
69
70
71
72
73
74
[E
76
77
78

A multithreaded TCP server

= And after every accept() we create a thread...

¥

i |||,-' 3 :"_u'lll:'h-' 'I.:l-\.:-ll-t -.'_,ll_, '_,._, Man arc ..-l'l I-':I £

client_addr len = 51zeuf{struct sockaddr)
pthread t *new thread = (pthread t *)malloc(sizeof (pthread t));
|thr~a| attr_t “thread ﬂttllhutEE

|
ror L'-".:-la.'.

Tr +1 [T _'|""I [+F Fhe Arc kS
e bk L '-a.a.'-. '. e aLLlh LG '-'-. '- LIS '- '-.'\-'I-I-l\'

pthread attr 1n1t{£thr~a| attribute 5]'

[45 "". '.-"" L"".:' -"T' :' e '.l.-I 'I 'H_‘._ZI

thread_attr_setdetachstateE&threaJ_attrihuteS, FTHREAD CREATE JOINABLE);

while((accepted = accept(sock, &client addr, &client addr len)) =0){
new thread = (pthread t *)nalloc(sizeof (pthread t)):
'¥Create the thread and pass the socket discriptor*/
if(pthread create(new thread &thread HTTF1|UTH5 &handle_tcp connection,
perror("create thread"):
ex1t(EXIT FAILURE);
}

}

(vold *)accepted) != 0){

16

Avoiding race conditions

1

The sheduler stops a thread and enables the
execution of another in arbitary time slots

This causes many problems in variables that are
accesible by more than one threads

Assume the following simple scenario
« You have a variable i initialy 0 and two threads
that increment the variable by one.

17

Avoiding race conditions

= The desirible result would be the following:

Thread 1 Thread 2 Integer value
0
read value — 0
increase value 0
write back - 1
read value |« 1
increase value 1
write back |- 2

Avoiding race conditions

= But as we said before, the scheduler may stop a
thread and enable another in an unpredictable way

= So there is a possibility that the following execution
of the code happens

Thread 1 Thread 2 Integer value
0
read value — 0
read value |« 0
increase value 0
increase value 0
write back — 1
write back | — 1

I = Which is not what we want...

Avoiding race conditions

To avoid these situations we use locking

The programmer has to lock, those variables that
are accessed by more than a thread

Before accessing the variable a lock() should be
performed, in order to forbid other threads to access
it

After the variable access, the programmer should
call unlock() to allow other threads to access it

For locking pthread provides the pthread mutex t
type and many pthread mutex * functions

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

