
1

Lab 6Lab 6

CS-335aCS-335a

Fall 2012Fall 2012
Computer Science DepartmentComputer Science Department

Manolis SurligasManolis Surligas
surligas@csd.uoc.grsurligas@csd.uoc.gr

2

SummarySummary

 What is a thread?What is a thread?

 Parallel ecexutionParallel ecexution

 Creating threadsCreating threads

 Passing parameters to threads with pthread_create()Passing parameters to threads with pthread_create()

 A multithreaded TCP serverA multithreaded TCP server

 Avoiding race conditionsAvoiding race conditions

3

What is a thread?What is a thread?

 A thread is a lightweight process that is handled by A thread is a lightweight process that is handled by
the sheduler of the OSthe sheduler of the OS

 A process may own several threadsA process may own several threads

 A process may share with its threads resources, like A process may share with its threads resources, like
a common memory address spacea common memory address space

 Threads can communicate with other threadsThreads can communicate with other threads

 One thread may perform a task, while another One thread may perform a task, while another
performs another, in performs another, in parallelparallel

4

Parallel ecexutionParallel ecexution

 But how threads allow parallelism?But how threads allow parallelism?
 In a single processor machine, the processor In a single processor machine, the processor

switches between different threadsswitches between different threads
 This transition is very fast, so the user has the This transition is very fast, so the user has the

feeling that threads run in parralelfeeling that threads run in parralel

Thread C

Thread B

Thread A

Thread A

Thread A

Thread B

Thread CTime

5

Parallel ecexutionParallel ecexution

 The same it is done in multi-core systemsThe same it is done in multi-core systems

 The difference is that every core may run a different The difference is that every core may run a different
thread at the same timethread at the same time

Thread C

Thread B

Thread A

Thread A

Thread A

Thread B Thread C

CPU 0 CPU 1

Thread B

Time

6

Creating threadsCreating threads

 For creating and manipulating threads, we are going For creating and manipulating threads, we are going
to use the POSIX standard, usually known as to use the POSIX standard, usually known as
pthreadspthreads

 Pthreads are implemented in all modern Linux Pthreads are implemented in all modern Linux
distributionsdistributions

 They come with very discriptive man pagesThey come with very discriptive man pages

 A list with all available pthread functions, can be A list with all available pthread functions, can be
found by typing:found by typing:

 man pthread.hman pthread.h

7

Creating threadsCreating threads

 Lets create our first simple threadsLets create our first simple threads

 Each thread will execute a simple function, that Each thread will execute a simple function, that
prints a different messageprints a different message

8

Creating threadsCreating threads

9

Creating threadsCreating threads

 Lines 36,37: Initialize the variables that will hold the Lines 36,37: Initialize the variables that will hold the
attributes of each threadattributes of each thread

 Lines 39,40: Set the detached state to JOINABLELines 39,40: Set the detached state to JOINABLE

 Lines 42,46: Create the thread by running the Lines 42,46: Create the thread by running the
corresponding functionscorresponding functions

 Line 50: Without Line 50: Without pause() pause() the process would the process would
terminate. Another solution may be the use of terminate. Another solution may be the use of
pthread_join()pthread_join() for every thread for every thread

10

Passing parameters to threads with Passing parameters to threads with
pthread_create()pthread_create()

 At the previous example, the threads were not have At the previous example, the threads were not have
any parametersany parameters

 This is not the general case, as we frequently pass This is not the general case, as we frequently pass
many parameters to our functionsmany parameters to our functions

 The problem is that pthread_create(), restrict us to The problem is that pthread_create(), restrict us to
use only one parameteruse only one parameter

 Not a problem! Declare an appropriate struct and Not a problem! Declare an appropriate struct and
perfom the necessary type castsperfom the necessary type casts

11

Passing parameters to threads with Passing parameters to threads with
pthread_create()pthread_create()

 Assume that we want our threads to take as Assume that we want our threads to take as
parameters an integer and a stringparameters an integer and a string

 We create the appropriate struct and perfom the We create the appropriate struct and perfom the
cast at the functions, that are taking only a cast at the functions, that are taking only a void * void *
parameterparameter

12

Passing parameters to threads with Passing parameters to threads with
pthread_create()pthread_create()

 An make the necessary changes to the thread An make the necessary changes to the thread
creatorscreators

 With this trick you can pass whatever parameter With this trick you can pass whatever parameter
you want!you want!

13

A multithreaded TCP serverA multithreaded TCP server

 Remeber the simple TCP server of the previous Lab?Remeber the simple TCP server of the previous Lab?

 Lets make him multithreaded!Lets make him multithreaded!

 This means that our server will be able to handle This means that our server will be able to handle
multiple connections in parallel, as all modern multiple connections in parallel, as all modern
servers doservers do

 Can you imagine where and when the threads Can you imagine where and when the threads
should be created?should be created?

14

A multithreaded TCP serverA multithreaded TCP server

 Recall that Recall that accept() accept() blocks until a new connection blocks until a new connection
arrives and returns a new socket discriptor with the arrives and returns a new socket discriptor with the
connected clientconnected client

 Our goal is to create a new thread for every Our goal is to create a new thread for every
connection and pass the socket discriptor of this connection and pass the socket discriptor of this
connection to the threadconnection to the thread

 With this way the server is able to listen for new With this way the server is able to listen for new
connections and we can serve all the established connections and we can serve all the established
connections in parallelconnections in parallel

15

A multithreaded TCP serverA multithreaded TCP server

 We move all the code that hanldes the TCP We move all the code that hanldes the TCP
connection with a client at a new thread that takes connection with a client at a new thread that takes
as parameter the socket discriptoras parameter the socket discriptor

16

A multithreaded TCP serverA multithreaded TCP server

 And after every accept() we create a thread...And after every accept() we create a thread...

17

Avoiding race conditionsAvoiding race conditions

 The sheduler stops a thread and enables the The sheduler stops a thread and enables the
execution of another in arbitary time slotsexecution of another in arbitary time slots

 This causes many problems in variables that are This causes many problems in variables that are
accesible by more than one threadsaccesible by more than one threads

 Assume the following simple scenarioAssume the following simple scenario
 You have a variable i initialy 0 and two threads You have a variable i initialy 0 and two threads

that increment the variable by one.that increment the variable by one.

18

Avoiding race conditionsAvoiding race conditions

 The desirible result would be the following:The desirible result would be the following:

19

Avoiding race conditionsAvoiding race conditions

 But as we said before, the scheduler may stop a But as we said before, the scheduler may stop a
thread and enable another in an unpredictable waythread and enable another in an unpredictable way

 So there is a possibility that the following execution So there is a possibility that the following execution
of the code happensof the code happens

 Which is not what we want...Which is not what we want...

20

Avoiding race conditionsAvoiding race conditions

 To avoid these situations we use lockingTo avoid these situations we use locking

 The programmer has to lock, those variables that The programmer has to lock, those variables that
are accessed by more than a threadare accessed by more than a thread

 Before accessing the variable a lock() should be Before accessing the variable a lock() should be
performed, in order to forbid other threads to access performed, in order to forbid other threads to access
itit

 After the variable access, the programmer should After the variable access, the programmer should
call unlock() to allow other threads to access itcall unlock() to allow other threads to access it

 For locking pthread provides the pthread_mutex_t For locking pthread provides the pthread_mutex_t
type and many pthread_mutex_* functionstype and many pthread_mutex_* functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

