Spectrum Analyzer, Routing Tables

Maria Plakia

Michalis Katsarakis

Tutorial: 335a

23 October 2012

plakia@csd.uoc.gr

katsarakis@csd.uoc.gr

http://www.csd.uoc.gr/~hy335a/

Outline

- Radio Frequency Wave Propagation
- Spectrum Analyzer Demonstration
- Routing Tables

RADIO FREQUENCY WAVE PROPAGATION

Fundamental aspects of wireless communications

Fading: the time variation of the channel strengths due to:

- •Small-scale effect of multipath fading
- •Larger-scale effects, such as
 - Path loss via <u>distance attenuation</u> and
 - Shadowing via obstacles

Interference:

Unlike the wired world where transmitter-receiver pair can often be though of as an isolated point-to-point link, wireless users communicate over the air & there is significant interference between them

Types of fading

Large-scale fading

due to path loss of signal as a function of distance and shadowing by large objects (hills, buildings)

This occurs as the mobile moves through a distance of the order of the cell size and is typically frequency independent

Small-scale fading

due to constructive & destructive interference of multiple_signal paths between the transmitter and receiver

This occurs at the **spatial scale of the order of the carrier** wavelength and is frequency dependent

Radio Frequency Wave Propagation

Multipath Fading

- caused by multiple reflections

Shadowing

- caused by physical obstructions

Different types of fading

- <u>@ 1</u>: free space loss likely to give an accurate estimate of path loss
- <u>@ 2</u>: strong line-of-sight but ground reflections can significantly influence path loss
- <u>@3</u>: significant diffraction losses caused by trees cutting into the direct line of sight
- <u>@ 4</u>: simple diffraction model for path loss
- @ 5: multiple diffraction, loss prediction fairly difficult & unreliable

Multipath Fading

What causes multipath fading?

- Transmitter radiates power in many directions
- Receiver collects power from many directions
- Signals are reflected by various objects
- Many different paths exists between transmitter & receiver

Results in

- Delay spreads
 - Signals along different paths arrive at different times
 - One "symbol" bit may overlap with another
- Time varying signal amplitudes at receiver

Types of Fading

- Fading can be fast or slow (rapid fluctuation of signal)
- Fading can be flat or frequency-selective
- All four combinations possible

Shadow Fading

- Obstacles and their absorption behavior
- Shadowing differs from multi-path fading:
 - Duration of shadow fade lasts for multiple seconds or minutes, and hence occurs at a much slower time-scale compared to multipath fading

Reflection

- Wave impinges upon a large object when compared to the wavelength of the propagating wave
- Reflections occur from the surface of
 - The earth
 - Buildings
 - Walls

Scattering

- Another type of reflection
- Can occur in the atmosphere or in reflections from very rough objects
- Very large number of individual paths
 - Received waveform is better modeled as an integral over paths with infinitesimally small differences in their lengths rather than as a sum

RF Communications

Radio Frequency (RF) waves are effected by

- Distance between the transmitter and receiver
 - Inverse power law
- Reflection (e.g. ground reflection)
- Diffraction (e.g. from building)
- Scattering (e.g. from trees)
- Links may not be bi-directional
 - A can hear B, but B can't hear A (e.g. because of receiver sensitivity)
- Radio waves may be blocked (absorbed) by objects
 - e.g by buildings, humans, rain, walls, glass windows

Path Loss

Multipath Fading

Shadowing

Degree of attenuation generally depends on frequency

Free-space propagation model

- Assumes a single direct path between the base station and the mobile
- Predicts received signal strength when the transmitter and receiver have a clear, unobstructed line-of-sight path between them
- Typically used in an open wide environment
 Examples: satellite, microwave line-of-sight radio links

Free space model

$$P_r(d)=P_tG_tG_r\lambda^2/[(4\pi)^2d^2L]$$

P_t,P_r: transmitter/receiver power

G_t, G_r: transmitter/receiver antenna gain

$$G = 4\pi A_e/\lambda^2$$

L: system loss factor (L=1 no loss)

A_{e:} related to the physical size of the antenna

 λ : wavelength in meters, f carrier frequency, c :speed of light

$$\lambda = c/f$$

SPECTRUM ANALYZER DEMONSTRATION

- Channel Bandwidth
 - 22 MHz (802.11b DSSA)
 - 20 MHz (802.11g OFDM)
- 13 Channels (14 in Japan)
 - 5MHz apart

Ch. 01: 2412 MHz
Ch. 02: 2417 MHz
Ch. 03: 2422 MHz
...
Ch. 13: 2472 MHz

- Channel Bandwidth
 - 22 MHz (802.11b DSSA)
 - 20 MHz (802.11g OFDM)
- 13 Channels (14 in Japan)
 - 5MHz apart

Ch. 01: 2412 MHz
Ch. 02: 2417 MHz
Ch. 03: 2422 MHz
...
Ch. 13: 2472 MHz

- Channel Bandwidth
 - 22 MHz (802.11b DSSA)
 - 20 MHz (802.11g OFDM)
- 13 Channels (14 in Japan)

CV/11- 000kt

Ch. 01: 2412 MHz
Ch. 02: 2417 MHz
Ch. 03: 2422 MHz
...
Ch. 13: 2472 MHz

Channel Center Frequencies (in GHz)

IEEE 802.11 RF Channelization Scheme

Non-Overlapping Channels for 2.4 GHz WLAN

802.11b (DSSS) channel width 22 MHz

802.11g/n (OFDM) 20 MHz ch. width - 16.25 MHz used by sub-carriers

802.11n (OFDM) 40 MHz ch. width - 33.75 MHz used by sub-carriers

ROUTING TABLES

The Network Layer

IP address

IP datagram

Version	IHL	Type of Service	Total Length					
Identification			Flags Fragment Offset					
Time	to Live	Protocol		Header Checksum				
Source IP Address								
Destination IP Address								
	Padding							
Data								

Routing Table

Destination	Netmask	Gateway	Interface	Metric
127.0.0.0	255.0.0.0	on-link	127.0.0.1	1
223.1.1.0	255.255.255.0	on-link	223.1.1.2	10
0.0.0.0	0.0.0.0	223.1.1.1	223.1.1.2	10

