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Summary
= Endianess - Network Byte Order
= Create UDP sockets

= Send and receive data from a UDP socket




Endianess and Network Byte Order

= A big-endian machine stores the most significant
byte

= A little-endian machine stores the least significant
byte first Register
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Endianess and Network Byte Order

= Why do we care about Endianess?

= |nternet is an heterogenous network with different
types of machines

= The architecture of the host at the other side, is not
known

= A lazy programmer sais: 'Ok | am sure that the other
host is Little-endian, so | do not care about
endianness'

= WRONG! The standard network byte order is big
endian and many Socket API functions follow that

I convension



Endianess and Network Byte Order

= To convert 16 and 32 bits numbers from host byte
order (little or big endian) to network byte order you
can use:
+ htons()
+ htonl()

= For the inverse operation, you can use:
+ ntohs()
+ ntohls()

= Note that you have to care about endianess when
you send entities with size greater than one byte,
like shorts, integers etc

I = Sending characters for example is not a problem



Create UDP sockets - Server Side

= Since UDP iIs connection-less, it has a little bit
different procedure to create a UDP socket

= However, it follows the client-server approach like
TCP

= To create an IPv4 UDP socket takes the following
code:
if( (sockfd = socket(AF INET, SOCK _DGRAM, IPPROTO UDP)) == -1){
perror("udp socket");

ex1t (EXIT FAILURE);
¥

= |s almost the same with TCP but with different

I socket parameters



Create UDP sockets - Server Side

= At the server side, Is a good practice to bind the
socket with a specific port, in which the client will
send its UDP packets

= The procedure for bind is the same with TCP

struct sockaddr 1n sin;
memset(&sin, 0, sizeof(struct sockaddr_inj);
sin.sin_family = AF INET:
sin, 51n pnrt = htnns(..--}
B able network i1nterfaces A

s1n.s1in_ addr 5 addr = INADDH AMT

if( bind(sockfd, (struct sockaddr *)&sin, sizeof(struct sockaddr)) !'= 0){
perror("udp bind"};
exit (EXIT FAILURE):

}
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Create UDP sockets - Server Side

= Now your server socket is ready to receive UDP
packets

= No need for listen()

= Accept() is useless since UDP is connectionless
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Create UDP sockets - Client Side

At the client side, thinks are also very easy

After creating a UDP socket, just use connect() in
order to be able to send and receive UDP packets
from the socket

struct sockaddr_in sin;
memset(&sin, 0, sizeof(struct sockaddr in));
51n 51n famlly = AF_INET;
at server listens at #
sin.sin pnrt = htnns{....)
|___. carver I'l F

s1n.sin_addr.s addr = 1net_addr("192.168.1.10");

if(connect(sock, (struct sockaddr #)&sin, sizeof(struct sockaddr in)) == -1){
perror("tcp connect");
ex1t (EXIT _FAILURE);

}
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Sending and receiving data with UDP

= Due to connectionless nature of UDP we can not use
the send(), recv() system calls

= Use the sendto(), read() instead

= Not that despite TCP in UDP only read() is a blocking
operation

= sendto() sends immediatly the UDP packet without
blocking

= Possible packets lost, due to the unreliable nature of
UDP, can not be recovered and is responsibility of
the programmer to take care this possibility
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Useful man pages

connect(3p)
bind(3p)
getaddrinfo(3p)
setsockopt(3p)
sendto(3p)
read(3p)
Inet_ntoa(3p)

* L 4 * L 4 * * *

= For every man page, take a look at the SEE ALSO
section. Many other functions that may need are
there

1
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