Lab 5

CS-335a
Fall 2012
Computer Science Department

Manolis Surligas
surligas@csd.uoc.gr




Summary
= Endianess - Network Byte Order
= Create UDP sockets

= Send and receive data from a UDP socket




Endianess and Network Byte Order

= A big-endian machine stores the most significant
byte

= A little-endian machine stores the least significant
byte first Register

Big endian

A|B|C|D| 32bit access

| Little endian
F——= Big endian

| C|D| 16bit access
~——— Little endian
F—= Big endian
1] B bit scceos

=—| Little andian

Memory
DliD B bit access
CiDICID 16 bit acoess
AIBICID|A|B|C | D |32 bit access

i 2 1 O 1 2 3
I Litithe &ndian B&g endian



Endianess and Network Byte Order

= Why do we care about Endianess?

= |nternet is an heterogenous network with different
types of machines

= The architecture of the host at the other side, is not
known

= A lazy programmer sais: 'Ok | am sure that the other
host is Little-endian, so | do not care about
endianness'

= WRONG! The standard network byte order is big
endian and many Socket API functions follow that

I convension



Endianess and Network Byte Order

= To convert 16 and 32 bits numbers from host byte
order (little or big endian) to network byte order you
can use:
+ htons()
+ htonl()

= For the inverse operation, you can use:
+ ntohs()
+ ntohls()

= Note that you have to care about endianess when
you send entities with size greater than one byte,
like shorts, integers etc

I = Sending characters for example is not a problem



Create UDP sockets - Server Side

= Since UDP iIs connection-less, it has a little bit
different procedure to create a UDP socket

= However, it follows the client-server approach like
TCP

= To create an IPv4 UDP socket takes the following
code:
if( (sockfd = socket(AF INET, SOCK _DGRAM, IPPROTO UDP)) == -1){
perror("udp socket");

ex1t (EXIT FAILURE);
¥

= |s almost the same with TCP but with different

I socket parameters



Create UDP sockets - Server Side

= At the server side, Is a good practice to bind the
socket with a specific port, in which the client will
send its UDP packets

= The procedure for bind is the same with TCP

struct sockaddr 1n sin;
memset(&sin, 0, sizeof(struct sockaddr_inj);
sin.sin_family = AF INET:
sin, 51n pnrt = htnns(..--}
B able network i1nterfaces A

s1n.s1in_ addr 5 addr = INADDH AMT

if( bind(sockfd, (struct sockaddr *)&sin, sizeof(struct sockaddr)) !'= 0){
perror("udp bind"};
exit (EXIT FAILURE):

}

1



Create UDP sockets - Server Side

= Now your server socket is ready to receive UDP
packets

= No need for listen()

= Accept() is useless since UDP is connectionless

1



Create UDP sockets - Client Side

At the client side, thinks are also very easy

After creating a UDP socket, just use connect() in
order to be able to send and receive UDP packets
from the socket

struct sockaddr_in sin;
memset(&sin, 0, sizeof(struct sockaddr in));
51n 51n famlly = AF_INET;
at server listens at #
sin.sin pnrt = htnns{....)
|___. carver I'l F

s1n.sin_addr.s addr = 1net_addr("192.168.1.10");

if(connect(sock, (struct sockaddr #)&sin, sizeof(struct sockaddr in)) == -1){
perror("tcp connect");
ex1t (EXIT _FAILURE);

}

1



Sending and receiving data with UDP

= Due to connectionless nature of UDP we can not use
the send(), recv() system calls

= Use the sendto(), read() instead

= Not that despite TCP in UDP only read() is a blocking
operation

= sendto() sends immediatly the UDP packet without
blocking

= Possible packets lost, due to the unreliable nature of
UDP, can not be recovered and is responsibility of
the programmer to take care this possibility

10



Sending and receiving data with UDP

= Due to connectionless nature of UDP we can not use
the send(), recv() system calls

= Use the sendto(), read() instead

= Not that despite TCP in UDP only read() is a blocking
operation

= sendto() sends immediatly the UDP packet without
blocking

= Possible packets lost, due to the unreliable nature of
UDP, can not be recovered and is responsibility of
the programmer to take care this possibility

11



Useful man pages

connect(3p)
bind(3p)
getaddrinfo(3p)
setsockopt(3p)
sendto(3p)
read(3p)
Inet_ntoa(3p)

* L 4 * L 4 * * *

= For every man page, take a look at the SEE ALSO
section. Many other functions that may need are
there

1

12



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

