University of Crete Computer Science Department

CS-335

Fall Semester 2010

CS-335

Lecture preview:

- Synchronization
 - Preamble
- Encodings
 - NRZ, NRZI, Manchester, 4/5B
- Baseband/Passband Transmission
 - Modulation, Carrier
- ADSL
- ATM

Ethernet Frame

- Preamble: 15x 0101
- Star-of-Frame: 1101
- End-of-Frame: CRC-32 (4bytes)
- Interframe gap: 12 bytes period

						A STATE OF THE STA		THE RESERVE OF THE PARTY OF THE
Preamble	Start-of-Frame-Delimiter	MAC destination	MAC source	802.1Q header (optional)	Ethertype/Length	Payload (Data and padding)	CRC-32	Interframe gap
15 nibbles of 0101	1 nibble of 1101	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets
64–1522 octets								
72–1530 octets								
84–1542 octets								

NRZ vs NRZI

• Non-Return-to-Zero

• Non-Return-to-Zero Inverted

Manchester Encoding (10BaseT)

4B5B Encoding (100BaseTX)

- These 5 bit words are pre-determined in a dictionary and they are chosen to ensure that there will be at least two transitions per block of bits
- NRZI
- MLT3

Name	4b	5b
0	0000	11110
1	0001	01001
2	0010	10100
3	0011	10101
4	0100	01010
5	0101	01011
6	0110	01110
7	0111	01111
8	1000	10010
9	1001	10011
A	1010	10110
В	1011	10111
С	1100	11010
D	1101	11011
E	1110	11100
F	1111	11101

MLT-3 Encoding

Time vs Frequency

Baseband vs Passband

Carrier Modulation

Amplitude Modulation

"digital" modulations

"digital" modulations

Filters

ADSL

• Layer 1(physical)

ADSL spectrum

ADSL spectrum

OFDM

OFDM/COFDM/DMT

- Orthogonal Frequency-Division Multiplexing (OFDM)
- Coded OFDM (COFDM)
- Discrete Multi-Tone modulation (DMT),
- ADSL spectrum per carrier: 4.3125 kHz

OFDM Tx & Rx

ADSL

- Layer 2 (Data Link):
- PPPoA
 - Point-to-Point Protocol over ATM
- PPPoE
 - Point-to-Point Protocol over Ethernet
- VC? = Virtual Circuit

MTA

ATM

- a streamlined packet transfer interface
- similarities to packet switching
 - transfers data in discrete chunks
 - supports multiple logical connections over a single physical interface
- ATM uses fixed sized packets called cells
- minimal error & flow control capabilities
- data rates of 25.6Mbps to 622.08Mbps

Key Features

Asynchronous

• Fixed Small Cell Size

Key Features

Connection Oriented

- No addressing: Labeling
 - Labels carry local significance → scalbility

Key Features

- Cells are switched rather than routed.
 - Switching cells based on small header info: fast

Same technology for LAN, WAN

Header & Cell Format

- GFC: only in User-Network Interface
- CLP=1 \rightarrow cell has low priority
- Payload Type: identifies user cell/data cell, congestion control

Cell Switching

Input Port	VPI/VCI	Output Port	VPI/VCI
1	25	2	34
1	30	1	49
2	25	2	27

Switching In a Network

Virtual Channels & Virtual Paths

- Remember the Cell label:
 - First 8(12) bits: Virtual Path Identifier
 - Last 16 bits: Virtual Circuit
 Identifier
 - Virtual Path: group of VCs treated similarly

Virtual Channels & Virtual Paths

- Remember the Cell label:
 - First 8(12) bits: Virtual Path Identifier
 - Last 16 bits: Virtual Circuit Identifier

 Virtual Path: group of VCs treated similarly

VC Connection

VC Connection

- Two types of Virtual Channels:
 - 1. Switched Virtual Channels (SVC): connection setup with signaling
 - 2. Permanent Virtual Channels (PVC): connection setup with management

VC Connection Uses

• between end users

- end to end user data
- control signals
- VPC provides overall capacity
 - VCC organization done by users

between end user and network

control signaling: Reserved VC's on each VP for maintenance

between network entities

- network traffic management
- routing

VC Connection

SVC Connection setup

Service Categories Attributes and QoS Guarantees

Service Category	Traffic Description	Guarantee	Feedback Control		
		Min Loss (CLR)	Delay/ Variance	Bandwidth	
CBR	PCR	✓	✓	✓	NO
rt-∨BR	PCR,SCR, MBS	✓	✓	✓	NO
nrt-VBR	PCR,SCR, MBS	✓	NO	✓	NO
ABR	PCR,MCR+ behavior	✓	NO	✓	✓
UBR	(PCR)	NO	NO	NO	NO

UBR	(PCR)	ио	NO	ИО	ио
NOW.	Depayor				