
GNU Radio Programming

GNU Radio Programming

TAs Winter 2021 : Michalis Raptakis , Eleftheria Plevridi
csdp1250@csd.uoc.gr, plevridi@csd.uoc.gr
Computer Science Department, University of Crete

This work is licensed under a Creative
Commons

Attribution-NonCommercial-ShareAlike 4.0
International License
cbea

https://gitlab.com/surligas/sdr-tutorial
https://gitlab.com/surligas/gr-tutorial

0

https://gitlab.com/surligas/sdr-tutorial
https://gitlab.com/surligas/gr-tutorial

Extending GNU Radio

• GNU Radio can be extended with additional functionality
with two ways:
1. In-tree development

2. Out-of-tree (OOT) modules

• In the class we will develop a custom OOT module

1

GNU Radio OOT-modules

• OOT modules are GNU Radio components that do not
belong to the GNU Radio source tree

Advantages:

• Easily maintained by individual developers

• Easy installation of multiple OOT modules

• Small and fast compilation units

• Seamless integration in the GRC

CGRAN (http://cgran.org) is a place with public available
GNU Radio OOT modules.

2

http://cgran.org

Writing the first OOT module

• In order to create an OOT module some files and folders
should be created

• The process is automated and the necessary files are
produced by the gr_modtool tool

• To create a new OOT module with the name ta_module
execute:

$ gr_modtool newmod ta_module

• This will create the module folder with name
gr-ta_module

3

OOT module structure

• Each OOT module consists from a set of folders

• Necessary are the folders:
- include: contains the public interfaces of the module
classes and blocks

- lib: contains the implementation files of the module
classes and blocks. Can also contain private module
classes

- grc: includes .yml files that are used from GRC to provide a
graphical representation of a block

- swig: contains necessary files for the construction of the
C++ to Python interface

- python: contains blocks written in Python and/or files for
the proper organization of the C++ to Python interface

4

GNU Radio block types

Depending the ratio between the items that a block consumes
and produces, all possible blocks fall under 4 categories:

• Synchronous blocks (1:1)

• Interpolation blocks (1:N)

• Decimation blocks (N:1)

• Basic Blocks (M:N)

5

Synchronous Blocks (1:1)

• Blocks that consume and produce equal amount of items
per port

• Easy to write, easy to understand

• In most cases, synchronous blocks are used

• If a synchronous block has zero inputs, is called Source

• If a synchronous block has zero outputs, is called Sink

• Developers should override the work() method

6

Interpolation Blocks (1:N)

• Similar with the synchronous blocks

• Fixed input-output ratio

• For every input item, N output items in each port are
produced

• Developers should specify input-output ratio at the block
constructor

• Developers should override the work() method

7

Decimation Blocks (N:1)

• Fixed input-output ratio

• For every N input item, 1 output item in each port is
produced

• Developers should specify input-output ratio at the block
constructor

• Developers should override the work() method

8

Basic Blocks (M:N)

• Arbitrary input-output ratio at any time instance of the
program

• Developers should specify both the number of items
consumed and produced manually

• Developers should override the general_work() method

• Great flexibility, hard to understand and develop

• All other block types are derived from the basic block

9

IO Signatures

Each GNU Radio block at the constructor should provide:

• The number of input ports

• The number of output ports

• The size of the item at the corresponding port

The above are also known as the IO signature of the block

10

IO Signatures

Example 0: Declare exactly 2 ports, with complex numbers as
items
gr::io_signature::make(2, 2, sizeof(gr_complex));

Example 1: Declare exactly 2 ports, the first with float items and
the second with items consisting form 64 complex numbers

gr::io_signature::make2(2, 2, sizeof(float),
64 * sizeof(gr_complex));

11

Items Processing

Until now, we saw how to create blocks. But:

• How items from input ports are processed?

• Who is responsible to feed the block with items?

• How the processed items are propagated at the output
ports?

GNU Radio scheduler is responsible to activate each block,
depending if the requirements of the input and output ports
are satisfied. This means if the previous blocks have produced
enough items and their is space to write the output items. If
this holds, GNU Radio scheduler automatically executes the
work() or general_work() method 12

The work() method

int
work(int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);

• noutput_items: The number of output items that this
invocation can produce. Due to the fixed rate of
input-output of synchronous, interpolation, decimation
blocks the number of available input items can be easily
retrieved

• input_items: Vector of input buffers, where each element
corresponds to an input port

• output_items: Vector of output buffers, where each
element corresponds to an output port

• Returns the number of items produced at each port

13

The general_work() method

int
general_work(int noutput_items,

gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);

• noutput_items: The number of output items that this
invocation can produce

• ninput_items: Vector with the available input items at the
corresponding input port

• Returns the number of items produced at each port
• Developers MUST call consume() or consume_each() to
inform the scheduler the number of consumed items per
port

14

Retrieve IO ports buffers

In order to retrieve the buffer of the corresponding port just
perform a proper typecast from the void * pointer:

int
work(int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
/* Get the inputs declared at the constructor io signature */
const float *in0 = (const float *) input_items[0];
const gr_complex *in1 = (const gr_complex *) input_items[1];

/* And the output port */
gr_complex *out = (gr_complex *) output_items[0];
...

}

15

Access input and output items

To access items inside a buffer use standard C memory access
methods
int
work(int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
/* Get the inputs declared at the constructor io signature */
const float *in0 = (const float *) input_items[0];
const gr_complex *in1 = (const gr_complex *) input_items[1];

/* And the output port */
gr_complex *out = (gr_complex *) output_items[0];

/* We want to propagate the complex items only if the
* the corresponding float input items is greater than 0.
* Otherwise the output should be 0
*/

memset(out, 0, noutput_items * sizeof(gr_complex));
for(int i = 0; i < noutput_items; i++){

if(in0[i] > 0){
out[i] = in1[i];

}
}
/* We processed all items */
return noutput_items;

}

16

Import block to GRC

• To graphically import a block at the GRC the
corresponding .yml file should be written

• The .yml file provides info about:
- Block name
- Parameter values
- Number and type of IO ports
- Public setter and getter methods

17

Build system

• GNU Radio and OOT modules use the CMake build system

• CMake is a tool that automatically produces Makefiles

• Keeps build files separately from the source code

• To build and install the OOT module:
- cd project_dir
- mkdir build (this is necessary only once)
- cd build (this is necessary only once)
- cmake .. (only if you change any of the CMakeLists.txt file)
- make
- make install
- make uninstall (if you want to uninstall)

• After that the new OOT module should be available at the
GRC 18

Creating a block from the beginning

• The following slides will guide you to create a new block
inside the gr-ta_module

• The block takes as argument a threshold and a complex
input. If the real or the imaginary part is greater than the
threshold or less than the -threshold it outputs the
threshold or the -threshold respectively. Otherwise the
number itself.

19

Creating a block from the beginning

• Go inside the directory of the OOT module of the class
(gr-ta_module)

• Create a block with name complex_clamp using the
gr_modtool tool

• gr_modtool add complex_clamp

• When asked choose sync block as the block type and cpp
for the implementation language

• Provide the a float parameter for the threshold

• For now, skip any QA related files

20

Creating a block from the beginning

• As this block does not provide any setter and getter, there
is no need to change the
include/ta_module/complex_clamp.h file

• In the lib/complex_clamp_impl.h make the appropriate
private fields declarations

21

Creating a block from the beginning

class complex_clamp_impl : public complex_clamp
{
/*
* Because work() is a method, after the end of its invocation all local variables
* are lost. So we use private class variables to keep the necessary state
*/
private:

const float d_threshold;

public:
complex_clamp_impl(const float threshold);
~complex_clamp_impl();

// Where all the action really happens
int
work(int noutput_items, gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);
};

22

Creating a block from the beginning

In the lib/complex_clamp_impl.cc define the IO signatures and
the constructor of the block

complex_clamp_impl::complex_clamp_impl(const float threshold)
: gr::sync_block("complex_clamp",

/* The block has exactly one complex input */
gr::io_signature::make(1, 1, sizeof(gr_complex)),
/* The block has exactly one complex output */
gr::io_signature::make(1, 1, sizeof(gr_complex))),
/* Initialize private members */
d_threshold(threshold)

{}

23

Creating a block from the beginning

In the lib/complex_clamp_impl.cc provide the implementation
of the work() method, where the real processing is performed
int
complex_clamp_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
int i;

/*Get the input items. NOTE: No modification is allowed on them*/
const gr_complex *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
...

}

24

Creating a block from the beginning

In the lib/complex_clamp_impl.cc provide the implementation
of the work() method, where the real processing is performed

for(i = 0; i < noutput_items; i++){
out[i] = in[i];
if(in[i].real() > d_threshold){

out[i].real(d_threshold);
}

if (in[i].imag() > d_threshold) {
out[i].imag(d_threshold);

}

if(in[i].real() < -d_threshold){
out[i].real(-d_threshold);

}

if (in[i].imag() < -d_threshold) {
out[i].imag(-d_threshold);

}
}
// Tell runtime system how many output items we produced.
return noutput_items;

}

25

Creating a block from the beginning

Now edit the .yml file for the GRC that gr_modtool created for
you
id: tutorial_complex_clamp
label: complex_clamp
category: '[ta_module]'

templates:
imports: import ta_module
make: ta_module.complex_clamp(${threshold})

Make one 'parameters' list entry for every Parameter you want settable from the GUI.
Sub-entries of dictionary:
* id (makes the value accessible as \$keyname, e.g. in the make entry)
* label
* dtype
parameters:
- id: threshold

label: Threshold
dtype: float

.

.

.

26

Creating a block from the beginning

id: ta_module_complex_clamp
label: complex_clamp
category: '[ta_module]'

• The id should be unique
• label is the the string with the block name, displayed at
GRC

• You can change the label of the block to something nicer.
Eg:

id: ta_module_complex_clamp
label: Complex Clamp
category: '[ta_module]'

27

Creating a block from the beginning

• At the parameters section add an entry for every
parameter of your block

• id is the unique identifier of the parameter
• label is the string with the parameter name that GRC will
display to the user

• dtype specifies the type of the variable. Can be complex,
float, short, char, int or raw

parameters:
- id: threshold

label: Threshold
dtype: float

28

Creating a block from the beginning

• Now we should specify the input and output ports of the
block

• domain can be either stream or message for message
passing ports

• dtype specifies the type of the port. Can be complex, float,
short, char or int

inputs:
- label: in

domain: stream
dtype: complex

outputs:
- label: out

domain: stream
dtype: complex

29

Creating a block from the beginning

• Now it is time to compile and install the module!
• Follow the build and install instructions located at the
README of the gr-tutorial module

• Close and open GRC or use the Reload button in order the
new changes to take effect

30

Creating a block from the beginning

31

Creating a block from the beginning

Use the examples/clamp.grc flowgraph to test the result!

32

