
Introduction to Software Defined Radios

Introduction to Software Defined Radios

Manolis Surligas
manolis@libre.space
Libre Space Foundation & Computer Science Department, University of Crete

mailto:manolis@libre.space


This work is licensed under a Creative
Commons

Attribution-NonCommercial-ShareAlike 4.0
International License

https://gitlab.com/surligas/sdr-tutorial
https://gitlab.com/surligas/gr-tutorial

0

https://gitlab.com/surligas/sdr-tutorial
https://gitlab.com/surligas/gr-tutorial


What is a Software Defined Radio?

According to ITU-R SM.2152, Software-defined Radio (SDR) is:

A radio transmitter and/or receiver employing a technology that
allows the RF operating parameters including, but not limited to,
frequency range, modulation type, or output power to be set or
altered by software, excluding changes to operating parameters
which occur during the normal pre-installed and predetermined
operation of a radio according to a system specification or
standard.”

1



Software Defined Radios

The key characteristics are:

• Multiple communication standards support

• Easy and economic upgrades

• More sophisticated RF devices : Cognitive Radios

• Easy and rapid development, testing and deployment of new
telecommunication standards

• Flexibility

2



Software Defined Radios

Depending on the application requirements software may run in
various execution environments

3



SDR: The hardware side

A typical SDR hardware architecture

4



SDR: The hardware side

A Superheterodyne transceiver

5



SDR: The hardware side

A Zero-IF front-end

6



SDR: The hardware side

Direct sampling receiver

7



SDR: The software side

Complete SDR Platforms:

• GNU Radio
• Matlab Simulink
• Pothos SDR

Libraries:

• Liquid-dsp
• VOLK
• itpp

8



SDR: The software side

• Software language can be arbitrary

• For realtime applications C/C++
• Often assisted by Single Instruction Multiple Data (SIMD)

• If the requirements are strict enough, FPGAs are used
• High throughput
• Low latency, low jitter
• Predictable timings

9



Introduction to GNU Radio



What is GNU Radio?

• GNU Radio is an open-source platform that provides signal
processing blocks to implement software radios

• Core written in C/C++, some Python bindings

• Provides a GUI called GNU Radio Companion (GRC) to
easily create software radio programs

• www.gnuradio.org

10

www.gnuradio.org


• It is highly recommended to install GNU Radio from the
provided packages of your distribution

• Ubuntu-Debian: apt-get install gnuradio gnuradio-dev
• Fedora: yum install gnuradio gnuradio-devel
• OpenSUSE: zypper in gnuradio gnuradio-devel
• Pre-build Win64 images are also available

More info at
https://wiki.gnuradio.org/index.php/InstallingGR

11

https://wiki.gnuradio.org/index.php/InstallingGR


The first GNU Radio application

• Lets write our first software radio application with GNU Radio

• Firstly, open GNU Radio Companion or GRC

12



The first GNU Radio application

• This is the working area of GNU Radio

• A program based on GNU Radio is a scenario with multiple
processing units connected each other. It is commonly called
Flowgraph

• Each processing unit is called Block

• Ready to use blocks can be found at the left side of GRC
window

• Ctrl+F function is supported!

13



The first GNU Radio application

• The option block contains several parameters related with the
flowagraph

• To reveal the properties of each block, double click on it

• The important to remember:
• ID: The name of the Python executable that is going to be

generated
• Generate Options: QT GUI in case our flowgraph has a GUI

element, NO GUI otherwise

14



The first GNU Radio application

• Now lets do some real work!

• Suppose we want to add two float signals into one and plot
them at the time domain each one and their sum

• The first signal A will be a cosine with frequency of 2 kHz and
the second signal B will be a sine of frequency 5 kHz

• Their maximum amplitude should be 1

• Search for a block called Signal Source

• Drag and drop it at the working area

15



The first GNU Radio application

• The result:

16



The first GNU Radio application

• Drag and drop or copy and paste (yeah Ctrl+C - Ctrl+V
works on blocks!) and the second Signal Source

• Lets set properly their parameters by double click on each one

17



The first GNU Radio application

• Is our flowgraph ready? NO!

• Each flowgraph should have at least one source block and at
least one sink

• Sources are blocks with only outputs. They only produce
items

• On the other hand, sinks have only inputs. They only
consume items

• We want to plot the time domain of the signals, so import a
QT Time Sink block

18



The first GNU Radio application

• Make the appropriate configuration at the time sink block

• Float inputs, 3 different inputs, proper labels e.t.c

19



The first GNU Radio application

• Now we want to connect the output of each signal to the
corresponding input of the time sink

• Piece of cake! Just click on the desired source and then at the
target sink port!

• A connection is created. Move wherever you want the blocks.
The connection follows!

• But wait! We want also the sum of Signal A and Signal B. No
problem! Bring in an Add block.

20



The first GNU Radio application

• After connecting the addition block you may end in a
situation depicted in the figure below

• Connections marked with read arrows are wrong and the
flowgraph can not be generated into an executable

21



The first GNU Radio application

• In GNU Radio two connected ports MUST have the same
size and type

• Each port’s data type is marked with a different color

• To see the color mapping go to Help ⇒ Types

22



The first GNU Radio application

• Just alter the data type of the addition block by changing its
properties

• Input/output data types can by altered also by selecting the
desired block and pressing the ↑↓keys

23



The first GNU Radio application: Throttling

• No we are ready to generate the executable of the flowgraph

• To do this, click the Generate button

• You may need to save the flowgraph file first

• Unfortunately, during the generation of the executable a
warning message appears

Warning: This flow graph may not have flow control: no audio or
RF hardware blocks found. Add a Misc⇒Throttle block to your
flow graph to avoid CPU congestion.

24



The first GNU Radio application: Throttling

• Lets explain this warning

• The flowgraph does not include any hardware device with a
specific rate of producing or consuming samples

• There is no way to slow down the flowgraph. It will execute in
maximum speed taking all the CPU resources

• With all the CPU resources saturated, the host computer
becomes unusable

• The solution is the use of a Throttle Block

Note!
When performing simulations, each flowgraph should have at
least one throttle block.

25



The first GNU Radio application: Throttling

• Throttle block will slow down each sample at the specified
sampling period

• How it works:
• Assume a sampling rate of 32 KSPS (Kilo-Samples per

Second)
• This means that the system should be able process 32000

samples each second
• If the CPU freely executed the flowgraph may produce more

samples per second
• Throttle block, slows down the processing of samples by

sleeping an amount of time after each sample
• In our case the sample duration is 1

32000 = 31.25 microseconds

26



The first GNU Radio application: Throttling

• Add the throttle block and generate the flowgraph again

• Execute the flowgraph either pressing the Execute button, or
running the generated python file form command line

• Show time!

27



The first GNU Radio application

Question 1
Almost every block takes as argument the sampling rate. Why?
How the sampling rate is chosen?

Question 2
If the sampling rate is increased, how the throttle block will
react? How about the CPU?

28



The first GNU Radio application: Interacting with user input

• Ok, that was a nice first example but a little boring

• Lets take as parameter the frequency of each signal

• To achieve that insert two QT GUI Range widgets

• Each one will specify the frequency of the corresponding
signal source

29



The first GNU Radio application: Interacting with user input

• ID is used as variable name

• At the desired block, place the ID of the corresponding GUI
widget at the parameter field

• As user changes from the graphical slider the frequency, the
new value is automatically passed to the corresponding block

30



The first GNU Radio application: Interacting with user input

31



The first GNU Radio application: Interacting with user input

Question
Which should be the stop frequency at the slider properties?

32


	Introduction to GNU Radio

