
ΗΥ-280 Θεωρία Υπολογισµού

Φροντιστήριο 11

12/12/2025

΄Ασκηση 1. ∆οθέντος µη-κατευθυνόµενου γράφου G, G = (V,E), λέµε το υποσύνολο
κορυφών V ′ ⊆ V κάλυµµα κορυφών αν κάθε ακµή (u, v) ∈ E είναι προσπίπτουσα σε
τουλάχιστον µια κορυφή του a ∈ V ′. ∆ίνεται η γλώσσα

Καλυµµα Κορυφων =

{
⟨G, k⟩ | G µη-κατευθυνόµενος γράφος µε κάλυµµα

κορυφών µεγέθους το πολύ k

}
.

Να δείξετε ότι Καλυµµα Κορυφων ∈ NP.

Λύση. Θα κατασκευάσουµε έναν πολυωνυµικό επαληθευτή V µε πιστοποιητικό
c.
V =“ Στην είσοδο ⟨G, k, c⟩:

1. Ελέγχει αν το c αποτελείται από κορυφές του G.
2. Ελέγχει αν το |c| ≤ k.
3. Αν 1. και 2. εντάξει, ελέγχει αν κάθε ακµή στο G είναι προσπίπτουσα στο c.
4. Αν ο έλεγχος είναι επιτυχής, αποδέχεται.
5. Αλλιώς, απορρίπτει.”

Στο ϐήµα 3. χρειαζόµαστε O(n2) χρόνο. Συνεπώς, το Καλυµµα Κορυφων επαληθεύε-
ται σε πολυωνυµικό χρόνο. ΄Αρα, Καλυµµα Κορυφων ∈ NP. □

Τώρα παρουσιάζουµε µια άλλη γλώσσα η οποία ϑα µας χρησιµεύσει στην επόµενη
άσκηση. ΄Εστω µη-κατευθυνόµενος γράφος G, G = (V,E), λέµε το υποσύνολο κο-
ϱυφών V̂ ⊆ V ανεξάρτητο σύνολο αν δεν έχει Ϲεύγη κορυφών οι οποίες να συνδέονται
µέσω ακµής στο G. Ορίζουµε την γλώσσα ως εξής,

Ανεξαρτητο Συνολο =

⟨G, k⟩ |
G µη-κατευθυνόµενος γράφος και k το
πλήθος των κορυφών που δεν συνδέονται
ανά δύο µέσω ακµής του G

 .1

1Στη ∆ιάλεξη 20 ονοµάσαµε αυτή τη γλώσσα INDSET .

1

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

΄Ασκηση 2. ΄Εστω ότι Ανεξαρτητο Συνολο ∈ NP-πλήρες. ∆ίνεται η γλώσσα

Καλυµµα Κορυφων =

{
⟨G, k⟩ | G µη-κατευθυνόµενος γράφος µε κάλυµµα

κορυφών µεγέθους το πολύ k

}
.

Να δείξετε ότι Καλυµµα Κορυφων ∈ NP-πλήρες.

Λύση. Η πρώτη συνθήκη για την συµµετοχή του Καλυµµα Κορυφων στην κλάση
των NP-πλήρων δίνεται από την ΄Ασκηση 1.

Σύµφωνα µε την εκφώνηση το Ανεξαρτητο Συνολο είναι NP-πλήρες πρόβληµα.
Θα το χρησιµοποιήσουµε για να αποδείξουµε ότι και το Καλυµµα Κορυφων είναι
επίσης NP-πλήρες πρόβληµα. ∆ηλαδή, ϑα κάνουµε αναγωγή από το πρόβληµα
Ανεξαρτητο Συνολο στο πρόβληµα Καλυµµα Κορυφων. Η αναγωγή αυτή ϑέλουµε να
είναι πολυωνυνιµκή, δηλαδή να υπάρχει µια πολυωνυµικού χρόνου2 υπολογίσιµη
συνάρτηση για την οποία να ισχύει Ανεξαρτητο Συνολο ≤P Καλυµµα Κορυφων. Κα-
τασκευάζουµε την πολυωνυµική αναγωγή,

Αναγωγή f :

Είσοδος: ⟨G, k⟩ [Στιγµιότυπο του Ανεξαρτητο Συνολο]
Περιγραφή: Κατασκευάζουµε το στιγµιότυπο ⟨G′, k′⟩ ως εξής

V ′ = V , E ′ = E, k′ = |V | − k.
΄Εξοδος: ⟨G′, k′⟩

∆οθέντος του ⟨G, k⟩ ∈ Ανεξαρτητο Συνολο η f κατασκευάζει ⟨G′, k′⟩ και ο χρόνος
που απαιτεί είναι O(|V ′|), ο οποίος είναι ο χρόνος που απαιτείται ώστε να καταµε-
τρήσει τον αριθµό των κορυφών. Εποµένως, η f χρειάζεται πολυωνυµικό χρόνο στο
µέγεθος της εισόδου.

Για να ολοκληρωθεί η αναγωγή ϑα πρέπει να δείξουµε ότι

⟨G, k⟩ ∈ Ανεξαρτητο Συνολο ⇐⇒ ⟨G′, k′⟩ ∈ Καλυµµα Κορυφων. (1)

∆ηλαδή ϑα αποδείξουµε ότι το G έχει ένα ανεξάρτητο σύνολο V µεγέθους k ανν το G′

έχει κάλυµµα κορυφών µεγέθους k′.
Θεωρούµε δύο σύνολο I και J τέτοια ώστε I∩J = ∅ και I∪J = V = V ′, δηλαδή τα

I και J διαµερίζουν τα σύνολα V και V ′ (όχι σε ίσα µέρη αναγκαστικά). Αν πάρουµε
µια οποιαδήποτε ακµή (u, v) τότε ισχύει µια από τις περιπτώσεις

2ή απλά πολυωνυµικά.

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

i) u, v ∈ I, ii) u ∈ I, v ∈ J , iii) u ∈ J, v ∈ I, iv) u, v ∈ J
[Απόδειξη ⇒ στην (1)] ΄Εστω ότι το σύνολο I είναι ένα ανεξάρτητο σύνολο στο G,

τότε αποκλείεται u, v ∈ I, περίπτωση i., εφόσον οι κορυφές που ανήκουν στο I δεν
είναι γειτονικές. Στις περιπτώσεις ii. και iii. η ακµή (u, v) έχει ακριβώς µια κορυφή
στο J , ενώ στην περίπτωση iv. η ακµή (u, v) έχει και τις δύο κορυφές στο J . ΄Αρα
το σύνολο J καλύπτει το G. Εποµένως, αν το σύνολο I είναι ένα ανεξάρτητο σύνολο
στο G, τότε σύνολο J είναι ένα κάλυµµα κορυφών στο G′, καθώς από την f έχουµε
G′ = G.

[Απόδειξη ⇐ στην (1)] ΄Εστω ότι το σύνολο J είναι ένα κάλυµµα κορυφών στο G′,
δηλαδή στο G. Αν το σύνολο I δεν είναι ένα ανεξάρτητο σύνολο στο G τότε υπάρχει
ακµή (w, r) µε w, r ∈ I. Καθώς I = V \ J , η ακµή (w, r) δεν ϑα έχει καµία κορυφή
στο J . Καταλήξαµε σε άτοπο καθώς υποθέσαµε ότι το σύνολο J είναι ένα κάλυµµα
κορυφών στο G. ΄Αρα, το σύνολο I είναι ένα ανεξάρτητο σύνολο στο G. □

΄Ασκηση 3. ΄Εστω η γλώσσα,

Double-SAT = {⟨ϕ⟩ | ϕ έχει το λιγότερο δύο ικανοποιήσιµες αναθέσεις}

Να δείξετε ότι Double-SAT ∈ NP-πλήρες.

Λύση. Θα αποδείξουµε τις δύο συνθήκες. Πρώτα δείχνουµε Double-SAT ∈ NP.
Κατασκευάζουµε έναν µη-ντετερµινιστικό διαγνώστη N για την Double-SAT ως εξής :

N =“ Στην είσοδο ⟨ϕ⟩:
1. Μη-ντετερµινιστικά ελέγχει αν δύο boolean αναθέσεις t1, t2 διαφέρουν.
2. Αν τόσο η t1 όσο και η t2 ικανοποιούν την ϕ, αποδέχεται.
3. Αλλιώς, απορρίπτει.”

΄Αρα, Double-SAT ∈ NP.
΄Επειτα δείχνουµε SAT ≤P Double-SAT. Η συνάρτηση f απεικονίζει το ⟨ϕ⟩ ∈

SAT , στο ⟨ϕ′⟩ ∈ Double-SAT, όπου ϕ′ = ϕ∧ (x1 ∨ x2), και x1, x2 νέες µεταβλητές οι
οποίες δεν υπάρχουν στον ϕ. Η αναγωγή γίνεται σε πολυωνυµικό χρόνο.

Αν ϕ µη-ικανοποιήσιµος, τότε ϕ′ επίσης µη-ικανοποιήσιµος. Αν ο ϕ έχει αναθέσεις
που τον καθιστούν ικανοποιήσιµο, τότε η ϕ′ έχει το λιγότερο 3 αναθέσεις που τον
ικανοποιούν ({x1 = Αληθές, x2 = Αληθές}, {x1 = Αληθές, x2 = Ψευδές}, {x1 =
Ψευδές, x2 = Αληθές}). Συνεπώς, SAT ≤P Double-SAT. Εφόσον αποδείξαµε και τα
δύο κριτήρια, Double-SAT ∈ NP-πλήρες. □

΄Ασκηση 4. ΄Εστω η γλώσσα

ALBA = {⟨M,w⟩ | M ντετερµινιστική LBA και w ∈ L(M)}

∆είξτε ότι ALBA ∈ PSPACE.

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

Λύση. ΄Εστω ντετερµινιστική LBA M (χρησιµοποιοπούµε επίσης τα EL και ER ως
αριστερά και δεξιά σηµάδια τερµατισµού αντίστοιχα) µπορεί να προσπελάσει το πολύ
|K| · |w| · |Γ||w| διαφορετικές υπολογιστικές ϕάσεις. Εποµένως για να διαγνώσουµε
αν η M τερµατίζει για w, προσοµοιώνουµε την M για w για |K| · |w| · |Γ||w| ϐήµατα.
Αν η προσοµοίωση αποδεχτεί, αποδεχόµαστε. Αλλιώς, απορρίπτουµε.

Για να ανιχνεύσουµε τον αριθµό των ϐηµάτων, χρησιµοποιούµε δυαδικό µετρητή
ο οποίος παίρνει το πολύ log |K|+log |w|+|w|·log |Γ| ϑέσεις. ΄Αρα, ALBA ∈ PSPACE.

Η ανίχνευση µπορεί αν γίνει ως εξής : Για κάθε (q, a) 7→ (q′, b,D) ∈ δ (όπου
q ∈ K, a, b ∈ Γ, D ∈ {R,L}):

• Αν a = EL, τότε b = EL και D = R, και

• Αν a = ER, τότε b = ER και D = L.

Επίσης, οι είσοδοι έχουν τη µορφή EL, w1, . . . , wn, ER µε wi /∈ {EL, ER} για όλα τα
i ∈ {1, . . . , n}. □

΄Ασκηση 5. Ονοµάζουµε ως σκάλα (ladder) µια ακολουθία από συµβολοσειρές s1, s2, . . . , sk,
όπου κάθε συµβολοσειρά διαφέρει από την προηγούµενη κατά ακριβώς έναν χαρα-
κτήρα. Για παράδειγµα, η παρακάτω είναι µια σκάλα από αγγλικές λέξεις, που ξεκι-
νάει µε την head και τελειώνει µε την free: head, hear, near, fear, bear, beer, deer,
deed, feed, feet, fret, free. ΄Εστω η γλώσσα

ΣκαλαDFA =

⟨M, s, t⟩ |
M είναι DFA και υπάρχουν συµβολοσειρές στο L(M)
που µπορούν να χρησιµοποιηθούν για τη δηµιουργία
σκάλας που ξεκινά από το s και καταλήγει στο t

 .

Να δείξετε ότι ΣκαλαDFA ∈ PSPACE.

Λύση. Αρκεί να δείξουµε ότι ΣκαλαDFA ∈ NPSPACE.
΄Εστω Σ το αλφάβητο του αυτοµάτου M ϑα ξεκινήσουµε την επίλυση µε κάποιες

παρατηρήσεις. Αν |s| ≠ |t| τότε σαφώς δεν υπάρχει σκάλα, καθώς δεν διατηρείται το
µήκος της λέξης, άρα ϑα πρέπει η ΤΜ να απορρίψει.

Αν |s| = |t| = n, ϑεωρούµε τον γράφο G µε κορυφές όλες τις λέξεις µήκους
n, δηλαδή V = Σn). Ως ακµές στο G ϑεωρούµε όλα τα Ϲεύγη κορυφών u, v που
διαφέρουν σε ακριβώς ένα σύµβολο, δηλαδή

u ↔ v ⇐⇒ u και v διαφέρουν σε ακριβώς ένα σύµβολο και u, v ∈ L(M).

Τότε αν ⟨M, s, t⟩ ∈ ΣκαλαDFA, υπάρχει µονοπάτι από s σε t στον G. Ο γράφος G έχει
N = |Σ|n πλήθος κορυφών, δηλαδή εκθετικό ως προς n). Παρ΄ όλα αυτά µπορο-
ύµε να επαληθεύσουµε την ύπαρξη µονοπατιού µε µη-ντετερµινιστικό αλγόριθµο που
χρησιµοποιεί χώρο µόνο O(n).

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

Κατασκευάζουµε την µη-ντετερµινιστική µηχανή Turing N η οποία διαγιγνώσκει
την γλώσσα ΣκαλαDFA.

N =“ Στην είσοδο ⟨M, s, t⟩:
1. Ελέγχει το µήκος των s και t. Αν |s| ≠ |t| απορρίπτει.
2. Αλλιώς, ελέγχει αν s ∈ L(M). Αν ναι αποδέχεται, αλλιώς απορρίπτει.
3. Καλεί την µηχανή B σε είσοδο ⟨M, s, t⟩.
4. Αν αποδεχθεί η B, αποδέχεται.
5. Αλλιώς, απορρίπτει.”

Η ϐοηθητική µηχανή B έχει την εξής λειτουργία,

B =“ Στην είσοδο ⟨M, s, t⟩:
0. Θέτουµε w = s και c = 0.
1. Επαναλαµβάνει.
i. Μη-ντετερµινιστικά επιλέγει µία ϑέση i ∈ {1, . . . , n}
και ένα σύµβολο a ∈ Σ µε a ̸= w[i].
ii. Κατασκευάζει την νέα συµβολοσειρά w′ που είναι ίδια µε την w

σε όλες τις ϑέσεις εκτός της i, όπου w′[i] = a.
iii. Ελέγχει αν w′ ∈ L(M).
iv. Αν w′ ̸∈ L(M), απορρίπτει αυτή την επανάληψη.
v. Αν w′ ∈ L(M), τότε ενηµερώνει w := w′.
vi. Αν w = t, αποδέχεται.
vii. Αυξάνει τον µετρητή c := c+ 1.
viii. Αν c > |Σ|n τότε απορρίπτει.”

Το ϐήµα 1i. εξασφαλίζει ότι κάθε επανάληψη αλλάζει ακριβώς ένα σύµβολο, όπως
απαιτεί ο ορισµός της σκάλας. Στο ϐήµα 1ii., ο έλεγχος w′ ∈ L(M) γίνεται µε απλή
προσοµοίωση του DFA πάνω στο w′. Το DFA έχει σταθερό πλήθος καταστάσεων,
οπότε η προσοµοίωση χρειάζεται σταθερό επιπλέον χώρο για την κάθε κατάσταση. Η
B αποθηκεύει στην ταινία την w′ το οποίο απαιτεί χώρο O(n). ΄Επειτα, ο µετρητής c
χρειάζεται ⌈n log |Σ|⌉ = O(n) bits, δηλαδή χώρο O(n). Στο ϐήµα 1viii., το όριο |Σ|n
εξασφαλίζει τερµατισµό, εποµένως οποιοδήποτε απλό µονοπάτι έχει µήκος το πολύ
|Σ|n. Αν υπάρχει µονοπάτι από s σε t, υπάρχει επίσης και απλό µονοπάτι µήκους
το πολύ |Σ|n. Ο έλεγχος του µετρητή απορρίπτει αν ξεπεραστεί αυτό το όριο, άρα η
µηχανή δεν µπορεί να τρέχει επ΄ αόριστον.

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

Ορθότητα Αν υπάρχει σκάλα s = w1, . . . , wk = t µε κάθε wi ∈ L(M), τότε υ-
πάρχει και µία µη-ντετερµινιστική διαδροµή της N που επιλέγει διαδοχικά τα σωστά
w2, w3, . . . και τελικά αποδέχεται. Ο µετρητής δεν ξεπερνάει το |Σ|n επειδή µπορούµε
να αφαιρέσουµε κύκλους ώστε το µονοπάτι να έχει µήκος το πολύ |Σ|n.

Αν η N αποδεχτεί σε κάποια µη-ντετερµινιστική διαδροµή, τότε από τον τρόπο
λειτουργίας της προκύπτει µία ακολουθία συµβολοσειρών s = w1, w2, . . . , wℓ = t
όπου κάθε διπλανή συµβολοσειρά διαφέρει σε ένα σύµβολο και κάθε wi ∈ L(M),
εποµένως υπάρχει σκάλα.

Ας αναλύσουµε τον χώρο που χρησιµοποιεί η N σε µια τυπική µη-ντετερµινιστική
διαδροµή:

1. Αποθήκευση της τρέχουσας λέξης w, δηλαδή n σύµβολα και άρα =⇒ O(n)
χώρο.

2. Αποθήκευση της ϑέσης i και του νέου σύµβολου a, δηλαδή O(log n) + O(1) =
O(log n) ⊆ O(n).

3. Αποθήκευση του µετρητή c, δηλαδή ⌈log |Σ|n⌉ = O(n) bits.

4. Χώρος για την προσοµοίωση του DFA M , O(1) επιπλέον χώρος, το οποίο είναι
η κατάσταση του DFA.

Συνολικά ο χώρος είναι O(n), δηλαδή γραµµικός στο µήκος της συµβολοσειράς s.
Το µέγεθος της εισόδου ⟨M, s, t⟩ είναι |M | + n + n (περίπου), εποµένως O(n) είναι
πολυωνυµικό στο µέγεθος της εισόδου. ΄Αρα η µη-ντετερµινιστική µηχανή χρησι-
µοποιεί πολυωνυµικό χώρο. ΄Αρα, η γλώσσα ανήκει στην ΣκαλαDFA ∈ NPSPACE.
Τέλος, από το Θεώρηµα Savitch γνωρίζουµε ότι NPSPACE = PSPACE και άρα
καταλήγουµε στο Ϲητούµενο, ΣκαλαDFA ∈ PSPACE.

□

Σχόλιο. ΄Ενας τρόπος να αποδεικνύεται ότι ένα πρόβληµα A ∈ NP-πλήρης.

Για να αποδείξουµε ότι ένα πρόβληµα A ∈ NP-πλήρης, πρέπει να δείξουµε ότι
ανήκει στο NP και ότι είναι τουλάχιστον τόσο δύσκολο όσο κάθε άλλο πρόβληµα
στο NP. Το τελευταίο ϐήµα γίνεται συνήθως δείχνοντας ότι B ≤P A για κάποιο
πρόβληµα B που ήδη γνωρίζουµε ότι είναι NP-πλήρες. Αυτό περιγράφεται στα
παρακάτω ϐήµατα.

1. ∆είξτε ότι το A ∈ NP. Θέλουµε να αποδείξουµε ότι υπάρχει ένας αποδοτι-
κός επαληθευτής για το A. Με άλλα λόγια, υπάρχει επαληθευτής τέτοιος ώστε

Φροντιστήριο 11 ΗΥ-280 Θεωρία Υπολογισµού

για κάθε στοιχείο του A, υπάρχει ένα πιστοποιητικό που ο επαληθευτής ϑα
αποδεχθεί, και για κάθε µη-στοιχείο του A, δεν υπάρχει πιστοποιητικό που
ϑα αποδεχθεί ο επαληθευτής. Ο χρόνος εκτέλεσης του επαληθευτή (και κα-
τά συνέπεια το µέγεθος του πιστοποιητικού) πρέπει να είναι πολυωνυµικός.
Συνήθως, µια λύση στο δοθέν πρόβληµα αποτελεί ένα επαρκές πιστοποιητικό.
Αυτό το ϐήµα είναι σύντοµο, αλλά απαραίτητο.

2. Επιλέξτε ένα γνωστό πρόβληµα NP-πλήρες. ∆ηλώστε ποιο πρόβληµα B
ανάγεται στο A. Πρέπει να δείξετε ότι B ≤P A. Μπορείτε να χρησιµοποι-
ήσετε οποιοδήποτε πρόβληµα B έχουµε αποδείξει στις διαλέξεις ή στα ϕροντι-
στήρια ότι είναι NP-πλήρες. Με ϐάση τον ορισµό της NP-πληρότητας, αν το
A ∈ NP-πλήρες, τότε τεχνικά µπορείτε να χρησιµοποιήσετε οποιοδήποτε άλλο
NP-πλήρες πρόβληµα B για να το δείξετε. Ωστόσο, κάποια προβλήµατα είναι
πολύ πιο εύκολα στη χρήση από άλλα στην απόδειξή. Συχνά είναι χρήσιµο να
σκεφτείτε ποιο από τα προβλήµατα που γνωρίζετε ότι είναι NP-πλήρες ϑα ήταν
πιο ϕυσικό να χρησιµοποιήσετε για µια δοθείσα αναγωγή.

3. Κατασκευάστε έναν αλγόριθµο για να λύσετε το B δεδοµένου ότι υπάρχει

αλγόριθµος για το A. Πρέπει να δείξετε ότι οποιοδήποτε παράδειγµα του B
µπορεί να λυθεί χρησιµοποιώντας έναν πολυωνυµικό αριθµό πράξεων και έναν
πολυωνυµικό αριθµό κλήσεων σε έναν αλγόριθµο που µπορεί να λύσει το A.
Σηµείωση: Είναι πολύ εύκολο να µπερδευτείτε και να αποδείξετε ότι A ≤P B.
Προσοχή, αυτό δεν είναι αυτό που ϑέλετε να δείξετε (γνωρίζουµε ήδη ότι το
B ∈ NP-πλήρες). Συνήθως, ϑα δείξετε πώς να λύσετε το B κατασκευάζοντας
µία είσοδο για τον αλγόριθµο του A και ο αλγόριθµός σας ϑα δίνει συνήθως
την ίδια απάντηση µε αυτή που δίνει ο αλγόριθµος του A. (Ωστόσο, αυτό δεν
ισχύει πάντα.)

4. Αποδείξτε την ορθότητα του αλγορίθµου σας Αυτό απαιτεί να αποδείξετε µια
δήλωση αν και µόνο αν. Θέλετε να δείξετε ότι, δεδοµένου ενός στιγµιοτύπου του
A, ο αλγόριθµός σας επιστρέφει ΝΑΙ, και ϑέλετε να δείξετε ότι αν ο αλγόριθµός
σας επιστρέψει ΝΑΙ, τότε η δεδοµένη είσοδος είναι πράγµατι ένα ενός στιγ-
µιοτύπου του A. Είναι πάντα εύκολο να δηµιουργήσετε έναν αλγόριθµο που
ικανοποιεί µόνο µία από αυτές τις δύο συνθήκες. Θέλουµε να ικανοποιούνται
και οι δύο.

5. Πολυωνυµικός χρόνος και συµπέρασµα. Τέλος, πρώτα ϑα πρέπει να κατα-
λήξετε στο συµπέρασµα ότι ο αλγόριθµός σας τρέχει σε πολυωνυµικό χρόνο,
B ≤P A. Εφόσον το B ∈ NP-πλήρες και εφόσον έχει αποδειχθεί ότι το
A ∈ NP, το A ∈ NP-πλήρες.

