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Πολυπλοκότητα

Τι είδαμε στην Διάλεξη 19

Πολυωνυμικός επαληθευτής.

Κλάση NP.

P vs NP.

Πολυωνυμική αναγωγή.
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Πολυπλοκότητα

NP-πλήρης

■ Αν το CLIQUE επιλύεται σε πολυωνυμικό χρόνο, τότε και το 3-SAT θα επιλύεται σε
πολυωνυμικό χρόνο.

■ Μια γλώσσα B είναι NP-πλήρης εάν ικανοποιεί τις εξής συνθήκες:

1 B ∈ NP.

2 Κάθε γλώσσα A ∈ NP ανάγεται σε πολυωνυμικό χρόνο στην B. [NP-hard]

■ Αν B είναι NP-πλήρης και B ∈ P, τότε P = NP.

■ [Cook-Levin] SAT ∈ NP-πλήρης.
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Πολυπλοκότητα

NP-πληρότητα

Θεώρημα. Αν B είναι NP-πλήρης, C ∈ NP, και B ≤P C , τότε και η C είναι NP-πλήρης.

Απόδειξη. C ∈ NP, άρα αρκεί να δείξουμε ότι κάθε A ∈ NP ανάγεται στην C σε
πολυωνυμικό χρόνο.

Εφόσον, η B είναι NP-πλήρης, κάθε A ∈ NP ανάγεται στην B σε πολυωνυμικό χρόνο, η
οποία με την σειρά της ανάγεται στην C σε πολυωνυμικό χρόνο.

Η σύνθεση αναγωγών πολυωνυμικού χρόνου δίνει αναγωγή πολυωνυμικού χρόνου. □

Διάλεξη 20 ΗΥ - 280 Θεωρία Υπολογισμού Χειμερινό εξάμηνο 2025 - 26 4 / 42



Πολυπλοκότητα

NP-πληρότητα

■ ΄Εστω η γλώσσα

INDSET = {⟨G , k⟩ | G γράφος και k το πλήθος κορυφών που δεν συνδέονται}

■ Θα δείξουμε ότι INDSET ≤P CLIQUE .

΄Εστω G ∈ INDSET . Κατασκευάζουμε νέο γράφο G ′
τ.ω. (u′, v ′) ∈ E ′ ⇐⇒ (u, v) ̸∈ E .

G

v1

v2

v3v4

v5

G΄

v1

v2

v3v4

v5

□
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Πολυπλοκότητα

Αναγωγή σε Πολυωνυμικό Χρόνο

Μερικά σχόλια

1 Αν ήδη γνωρίζουμε έναν αλγόριθμο για το A και B ≤P A, τότε μπορούμε να
χρησιμοποιήσουμε τη αναγωγή για να κατασκευάσουμε έναν αλγόριθμο για το B.
Αυτό είναι ένα ευρέως χρησιμοποιούμενο εργαλείο στον σχεδιασμό αλγορίθμων.

2 Αν έχουμε αποδείξει (ή έχουμε ενδείξεις) ότι δεν υπάρχει αλγόριθμος πολυωνυμικού

χρόνου για το B και B ≤P A, τότε η ύπαρξη αυτής της αναγωγής μας επιτρέπει να
συμπεράνουμε ότι δεν υπάρχει αλγόριθμος πολυωνυμικού χρόνου για το A.
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Πολυπλοκότητα

NP-πληρότητα

■ ΄Ενα πρόβλημα B λέμε ότι είναι NP-πλήρες αν

1 A ∈ NP

2 Για κάθε A ∈ NP, A ≤P B.

□ Αν B είναι NP-πλήρες και B ∈ P, τότε P = NP.

■ Αν για ένα πρόβλημα A βρούμε ότι είναι NP-πλήρες, τότε είναι ένδειξη ότι οι
υπολογισμοί για το A είναι δύσχρηστοι (intractable).

■ Για να δείξουμε ότι μια γλώσσα C είναι NP-πλήρης, αρκεί να δείξουμε ότι υπάρχει ≤P

σε κάποια άλλη NP-πλήρη γλώσσα.

■ Άρα, αν αποδείξουμε την NP-πληρότητα ενός προβλήματος τότε χρησιμοποιώντας
πολυωνυμική αναγωγή μπορούμε να προσδιορίσουμε την NP-πληρότητα και άλλων
προβλημάτων.
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Πολυπλοκότητα

NP-πληρότητα

Παράδειγμα. Θεωρήστε την γλώσσα

Μακρά Διαδρομή =

{
⟨G , a, b, k⟩ | το G περιέχει απλή διαδρομή μήκους

το λιγότερο k από το a στο b

}
Να δείξετε ότι το πρόβλημα Μακρά Διαδρομή ∈ NP-πλήρης.

Λύση. Πρώτα δείχνουμε Μακρά Διαδρομή ∈ NP. Οι γλώσσες στην NP έχουν επαληθευτές
πολυωνυμικού χρόνου. Κατασκευάζουμε έναν επαληθευτή V ως εξής:

V =“ Στην είσοδο ⟨G , a, b, k, c⟩, με c μονοπάτι:
1. Ελέγχει αν c είναι μη-επεναλαμβανόμενη ακολουθία κορυφών του G .

2. Ελέγχει αν c τερματίζει στην b κορυφή του G .

3. Ελέγχει αν το μήκος της c μεγαλύτερο k .

4. Αν ικανοποιεί τα προηγούμενα βήματα, αποδέχεται. Αλλιώς, απορρίπτει.”

Ο επαληθευτής χρεάζεται O(|c |) επαναλήψεις στο βήμα 3. και από O(|V |) στα βήματα 1.
και 2.. Συνεπώς, Μακρά Διαδρομή ∈ NP. . . .
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Πολυπλοκότητα

NP-πληρότητα

Παράδειγμα. Θεωρήστε την γλώσσα

Μακρά Διαδρομή =

{
⟨G , a, b, k⟩ | το G περιέχει απλή διαδρομή μήκους

το λιγότερο k από το a στο b

}
Να δείξετε ότι το πρόβλημα Μακρά Διαδρομή ∈ NP-πλήρης.

Λύση. Πρώτα δείχνουμε Μακρά Διαδρομή ∈ NP. Οι γλώσσες στην NP έχουν επαληθευτές
πολυωνυμικού χρόνου. Κατασκευάζουμε έναν επαληθευτή V ως εξής:

V =“ Στην είσοδο ⟨G , a, b, k , c⟩, με c μονοπάτι:
1. Ελέγχει αν c είναι μη-επεναλαμβανόμενη ακολουθία κορυφών του G .

2. Ελέγχει αν c τερματίζει στην b κορυφή του G .

3. Ελέγχει αν το μήκος της c μεγαλύτερο k .

4. Αν ικανοποιεί τα προηγούμενα βήματα, αποδέχεται. Αλλιώς, απορρίπτει.”

Ο επαληθευτής χρεάζεται O(|c |) επαναλήψεις στο βήμα 3. και από O(|V |) στα βήματα 1.
και 2.. Συνεπώς, Μακρά Διαδρομή ∈ NP. . . .

Διάλεξη 20 ΗΥ - 280 Θεωρία Υπολογισμού Χειμερινό εξάμηνο 2025 - 26 8 / 42



Πολυπλοκότητα

NP-πληρότητα

. . .

΄Επειτα δείχνουμε HAMPATH ≤P Μακρά Διαδρομή.

΄Εστω στιγμιότυπο ⟨G , a, b⟩ του HAMPATH, όπου G = (V ,E ) είναι ένας γράφος που η
κορυφή εκκίνησης είναι η a και τερματισμού η b.

Η απεικόνιση παίρνει το ⟨G , a, b⟩, θέτει k = |V | − 1, τότε ⟨G , a, b, k⟩ ∈ Μακρά Διαδρομή, το
οποίο μπορεί να γίνει σε χρόνο O(|V |+ |E |). Θα πρέπει να δείξουμε ότι

⟨G , a, b⟩ ∈ HAMPATH ⇐⇒ ⟨G , a, b, k⟩ ∈ Μακρά Διαδρομή

. . .
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Πολυπλοκότητα

NP-πληρότητα

. . .
Αν το ⟨G , a, b⟩ ∈ HAMPATH, τότε το G έχει απλό μονοπάτι Hamilton από την a στην b.
Το οποίο συνεπάγεται ότι |V | − 1 = k . Άρα, ⟨G , a, b, k⟩ ∈ Μακρά Διαδρομή.

Αν ⟨G , a, b, k⟩ ∈ Μακρά Διαδρομή, τότε υπάρχει απλό μονοπάτι από την a στην b μήκους
k = |V | − 1.

Καθώς το G έχει πλήθος κορυφών k + 1 θα πρέπει το μονοπάτι να διατρέχει τις κορυφές
του G ακριβώς μια φορά. Άρα το απλό μονοπάτι είναι μονοπάτι Hamilton. Συνεπώς,
⟨G , a, b, k⟩ ∈ Μακρά Διαδρομή.

Εφόσον αποδείξαμε και τα δύο κριτήρια, Μακρά Διαδρομή ∈ NP-πλήρης. □
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Πολυπλοκότητα

NP-πληρότητα

■ Εάν ένα πρόβλημα είναι NP-πλήρες, τότε υπό την υπόθεση ότι P ̸= NP, δεν μπορεί να
υπάρχει ένας αποτελεσματικός αλγόριθμος για αυτό.

■ Κατά μία έννοια, τα NP-πλήρη προβλήματα είναι τα πιο δύσκολα προβλήματα στην
κλάση NP.

■ ΄Ολα τα γνωστά NP-πλήρη προβλήματα είναι εξαιρετικά δύσκολο να λυθούν.

■ ΄Ολοι οι γνωστοί αλγόριθμοι για NP-πλήρη προβλήματα εκτελούνται σε εκθετικό χρόνο
(στην ανάλυση χειρότερης περίπτωσης).

■ Οι περισσότεροι αλγόριθμοι για NP-πλήρη προβλήματα είναι μη-εφικτοί για είσοδο
εύλογου μεγέθους.
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Πολυπλοκότητα

NP-πληρότητα

■ Τα NP-πλήρη προβλήματα προσφέρουν μια πολλά υποσχόμενη προσέγγιση για την

επίλυση P
?
= NP.

■ Εάν οποιοδήποτε NP-πλήρες πρόβλημα βρίσκεται στο P, τότε P = NP.

■ Εάν οποιοδήποτε NP-πλήρες πρόβλημα δεν βρίσκεται στο P, τότε P ̸= NP.

■ Ωστόσο, δεν έχουμε δείξει ότι κάποια προβλήματα είναι NP-πλήρη εξαρχής! Πώς
ξέρουμε καν ότι υπάρχουν;
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Πολυπλοκότητα

Ικανοποιησιμότητα

■ ΄Ενας προτασιακός λογικός τύπος ϕ ονομάζεται ικανοποιήσιμος εάν υπάρχει κάποια
ανάθεση στις μεταβλητές του που τον κάνει να αξιολογηθεί ως αληθής.

■ Μια ανάθεση αληθούς και ψευδούς στις μεταβλητές του ϕ που τον κάνει να αξιολογηθεί
ως αληθής ονομάζεται ανάθεση ικανοποιησιμότητας.

Το Πρόβλημα Ικανοποιησιμότητας (SAT)

Δοθείσας ενός λογικού προτασιακού τύπου ϕ,

είναι ο ϕ ικανοποιήσιμος ;

■ Ορίζουμε την γλώσσα

SAT := {⟨φ⟩ | ο φ είναι ένας ικανοποιήσιμος λογικός τύπος}
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Πολυπλοκότητα

Θεώρημα Cook-Levin

■ ΄Ενας λογικός τύπος είναι ικανοποιήσιμος αν μπορούμε να εκχωρήσουμε τιμές στα
x1, . . . , xn έτσι ώστε να γίνει αληθής ο τύπος ϕ(x1, . . . , xn).

■ ΄Ενας λογικός τύπος ϕ βρίσκεται σε CNF αν ισχύει:

ϕ(x1, . . . , xn) =
m∧
i=1

ϕi

όπου κάθε ϕi είναι μία διάζευξη literals (μεταβλητή x ή το συμπλήρωμά της).

Θεώρημα. Το πρόβλημα SAT είναι NP-πλήρες.
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Πολυπλοκότητα

Απόδειξη – Οι Κύριες Ιδέες

■ SAT ∈ NP καθώς, δίνοντας μία ανάθεση τιμών στα x1, . . . , xn, μπορούμε να
επαληθεύσουμε αν ϕ(x1, . . . , xn) = 1 σε πολυωνυμικό χρόνο.

■ Τώρα πρέπει να δείξουμε ότι υπάρχει μία πολυωνυμική αναγωγή A ≤P SAT για κάθε
A ∈ NP.

■ A ∈ NP σημαίνει ότι υπάρχει μία μη-ντετερμινιστική ΤΜ N που τρέχει σε O(nk) χρόνο
και διαγιγνώσκει το A, για κάποιο k ∈ N.

■ Η N έχει K σύνολο καταστάσεων και Γ αλφάβητο ταινίας.

■ Θα κατασκευάσουμε έναν λογικό τύπο ϕ που είναι ικανοποιήσιμος αν και μόνο αν
κάποιο κλάδος του υπολογισμού της N αποδέχεται μία είσοδο w .
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Πολυπλοκότητα

Απόδειξη – Περιγραφή της αναγωγής

■ Ονομάζουμε μητρώο της N για κάποια συμβολοσειρά w οποιονδήποτε πίνακα nk × nk

του οποίου οι γραμμές περιέχουν τις διάφορες φάσεις του υπολογισμού της N για w .

■ Κάθε αποδεκτικό στοιχείο της N επί της w αντιστοιχεί σε κάποιον αποδεκτικό κλάδο
υπολογισμού της N επί της w . Άρα για να προσδιοριστεί αν η N αποδέχεται την w , αρκεί
να υπάρχει αποδεκτικό μητρώο.

π.χ.,

# q0 w1 w2 w3 . . . wn ⊔ . . . ⊔ #
# a q7 w2 . . . #

...
...

# #

I ) Κάθε φάση αρχίζει και τελειώνει με #. II ) Η 1η γραμμή περιέχει την εναρκτήρια φάση
του υπολογισμού. III ) Κάθε επόμενη φάση έπεται της προηγούμενης βάσει του πίνακα
μεταβάσεων της N.
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Πολυπλοκότητα

Απόδειξη – Περιγραφή της αναγωγής

■ Εάν οποιαδήποτε γραμμή του πίνακα περιέχει αποδεκτική φάση, λέμε ότι το μητρώο είναι
αποδεκτικό.

Αναγωγή. Για είσοδο w , η f επιστρέφει έναν τύπο ϕ. ΄Εστω C = {K} ∪ {Γ} ∪ {#}.

■ ∀i , j = 1, . . . , nk και ∀s ∈ C φτιάχνουμε την μεταβλητή xi,j,s .

■ Με τις xi,j,s θα αναπαραστήσουμε τα περιεχόμενα του μητρώου.

■ Το μητρώο έχει (nk)2 θέσεις, καθεμία εκ΄των οποίων περιέχει ένα σύμβολο από το C .

■ Εάν xi,j,s = 1, τότε η θέση i , j του μητρώου περιέχει το σύμβολο s.
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Στόχος. Κάθε ικανοποιήσιμη αποτίμηση στις μεταβλητές να αντιστοιχεί σε κάποιο

αποδεκτικό μητρώο της A για την w .

■ Θέτουμε ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc.

■ ΄Ενα καλώς ορισμένο μητρώο σημαίνει ότι σε κάθε θέση υπάρχει ακριβώς ένα στοιχείο.

■ Στην Προτασιακή Λογική αυτό μεταφράζεται στην φόρμουλα,

ϕij =

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C ,s ̸=t

(xi,j,s ∨ xi,j,t)

 .

Επομένως, θέτουμε

ϕcell =
∧

1≤i,j≤nk

ϕi,j .

Διάλεξη 20 ΗΥ - 280 Θεωρία Υπολογισμού Χειμερινό εξάμηνο 2025 - 26 18 / 42



Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

ϕcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C ,s ̸=t

(xi,j,s ∨ xi,j,t)

.
− Μια τουλάχιστον από τις μεταβλητές της κάθε θέσης είναι ενεργοποιημένη.

− Σε κάθε ζεύγος κορυφών για την κάθε θέση, τουλάχιστον μια είναι απενεργοποιημένη.

Άρα κάθε αποτίμηση η οποία καθιστά την ϕ αληθή ενεργοποιεί σε κάθε θέση μία και μόνο
μια από τις αντίστοιχες μεταβλητές.

■ Άρα κάθε τέτοια αποτίμηση ορίζει ένα σύμβολο σε κάθε θέση του μητρώου.
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Ο τύπος ϕstart εξασφαλίζει ότι η 1η γραμμή του μητρώου περιέχει την εναρκτήρια φάση της
N για είσοδο w ,

# q0 w1 w2 w3 . . . wn ⊔ . . . ⊔ #

ϕstart =x1,1,# ∧ x1,2,q0
∧ x1,3,w1 ∧ x1,4,w2 ∧ . . . ∧ x1,n+2,wn

∧ x1,n+3,⊔ ∧ x1,n+4,⊔ ∧ . . . ∧ x1,nk−1,⊔ ∧ x1,nk ,#
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Ο τύπος ϕacc εξασφαλίζει ότι το μητρώο περιέχει κάποια αποδεκτή φάση. Δηλαδή, το qacc
εμφανίζεται σε κάποια από τις θέσεις του μητρώου.

Αυτό με την σειρά του επιβάλει την ενεργοποίηση κάποιας από τις αντίστοιχες μεταβλητές.

ϕacc =
∨

1≤i,j≤nk

xi,j,qacc
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Ο τύπος ϕmove εξασφαλίζει ότι η φάση που περιέχεται σε κάθε γραμμή του μητρώου έπεται

από τη φάση της προηγούμενης γραμμής, σύμφωνα με τους κανόνες της N.

Κάθε παράθυρο (2× 3 υποπίνακας) είναι έγκυρος,

a1 a2 a3
a4 a5 a6

΄Ενα παράθυρο είναι έγκυρο αν δεν παραβιάζει τη συνάρτηση μετάβασης της N.
π.χ., ΄Εστω ΤΜ N με μετάβαση δ(q1, b) = {(q2, c , L), (q2, a,R)} είναι έγκυρα τα

a q1 b
q2 a c

a q1 b
a a q2

a c q1
a c a

a b a
a b a

όχι όμως τα
a q1 b
q1 b b

,
a q1 b
q1 a a

,
b q1 b
q1 b q2

.
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Παρατήρηση. Κάθε γραμμή στο μητρώο είναι μια φάση που έπεται από την προηγούμενη

γραμμή σύμφωνα μα την N ανν κάθε παράθυρο είναι έγκυρο.

Απόδειξη. Για κάθε γραμμή i , η φάση την γραμμή i + 1 μπορεί να διαφέρει από την
γραμμή i το πολύ σε 3 διαδοχικές θέσεις.

Επομένως, ελέγχοντας όλα τα έγκυρα παράθυρα είναι το ίδιο με το να ελέγξουμε ότι το

μητρώο είναι έγκυρο σύμφωνα με το N. □

Παρατήρηση. Ο αριθμός των έγκυρων παραθύρων είναι πεπερασμένος (≤ |C |6).
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Πολυπλοκότητα

Απόδειξη – Κατασκευή ϕ

Άρα, η συνθήκη ότι κάθε γραμμή έπεται από την προηγούμενη σύμφωνα με το N
εκφράζεται ως εξής:

ϕmove =
∨

1≤i<nk ,1<j<nk

ϕwindow ,i,j ,

όπου

ϕwindow ,i,j =
∨

(a1,...,a6) έγκυρο

(xi,j−1,a1 ∧ xi,j,a2 ∧ xi,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j,a5 ∧ xi+1,j+1,a6).
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Πολυπλοκότητα

Απόδειξη – Σύνθεση

■ Δοθείσας μιας μη-ντετερμινιστικής ΤΜ N και εισόδου w δείξαμε ότι υπάρχει τύπος ϕ
που ορίζεται ως

ϕN,w = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc
ο οποίος είναι ικανοποιήσιμος όταν η N αποδέχεται την w .

■ Οι υπο-φόρμουλες που κωδικοποιούν τις 4 συνθήκες θα πρέπει να έχουν ένα αποδεκτικό
μητρώο για τον υπολογισμό της N στην w .

■ Μένει να δείξουμε ότι η αναγωγή είναι υπολογίσιμη σε πολυωνυμικό χρόνο.
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Πολυπλοκότητα

Απόδειξη – Πολυωνυμική αναγωγή

■ ΄Εστω ότι η N τρέχει σε O(nk) για είσοδο μεγέθους n, άρα το μητρώο έχει O(nk)
γραμμές και O(nk) στήλες.

■ Η ϕ που κατασκευάσαμε από την αναγωγή έχει O(n2k) literals, καθώς υπάρχει σταθερού
μεγέθους φόρμουλα για κάθε θέση του μητρώου.

■ Η ϕ μπορεί να κατασκευαστεί αποδοτικά από την περιγραφή της μη-ντετερμινιστικής ΤΜ
N.

■ Καταλήξαμε σε αναγωγή με πολυωνυμικό χρόνο στο μέγεθος της εισόδου.

■ Συνεπώς, A ≤P SAT . Μπορούμε να κατασκευάσουμε έναν τύπο ϕN,w σε πολυωνυμικό

χρόνο, ο οποίο να είναι ικανοποιήσιμος ανν w ∈ A. □

■ Παρατηρείστε ότι δεν αλλάζει κάτι στην ανάλυση αν αντί για nk πάρουμε O(nk). [που
είναι και το ορθότερο]
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Πολυπλοκότητα

NP-πληρότητα

■ ΄Ενας προτασιακός τύπος είναι σε 3-CNF μορφή αν

Είναι σε κανονική διαζευκτική μορφή.

Κάθε όρος του έχει ακριβώς τρείς ατομικές προτάσεις (literals).

π.χ., (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z), (x1 ∨ x2 ∨ x3) ∧ (y1 ∨ ¬y2 ∨ y3) ∧ (¬z1 ∨ z2 ∨ z3), κτλ.

■ Ορίζουμε την γλώσσα 3-SAT

3− SAT := {⟨φ⟩ | ο φ είναι ένας ικανοποιήσιμος 3-CNF λογικός τύπος}
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Πολυπλοκότητα

NP-πληρότητα

Θεώρημα. 3-SAT ∈ NP-πλήρες.

Απόδειξη. Θα χρησιμοποιήσουμε την αναγωγή SAT ≤P 3-SAT . Αρχικά μερικές
παρατηρήσεις

■ Πώς διαφέρει το SAT από το 3-SAT ;

Στο SAT οι προτάσεις μπορεί να έχουν οποιοδήποτε μήκος: 1, 2, 3, . . . μεταβλητές.

Στο 3-SAT κάθε πρόταση πρέπει να έχει ακριβώς 3 διαφορετικά κυριολεκτικά.

■ Βασική ιδέα αναγωγής από SAT σε 3-SAT :

1 Επέκταση σύντομων προτάσεων ώστε να έχουν 3 κυριολεκτικά.

2 Διαχωρισμός εκτενών προτάσεων σε μικρότερες μικρότερες.

3 Επανάληψη της διαδικασίας μέχρι να επιτευχθεί 3-CNF.
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Δίνεται μια ϕ ∈ SAT , δημιουργούμε μια ϕ′ ∈ 3-SAT , ως εξής:

1 Η φόρμουλα ϕ είναι ικανοποιήσιμη αν και μόνο αν η φόρμουλα ϕ′ είναι ικανοποιήσιμη.

2 Η φόρμουλα ϕ′ μπορεί να κατασκευαστεί από την ϕ σε πολυωνυμικό χρόνο ως προς το
μέγεθος της ϕ.

Θα κάνουμε το εξής: Αν μια πρόταση της ϕ δεν έχει μήκος 3, την αντικαθιστούμε με
αρκετές προτάσεις μήκους ακριβώς 3.

Θα χρησιμοποιήσουμε το εξής αποτέλεσμα: ΄Εστω X ,Y λογικοί τύποι και z μεταβλητή.
X ∨ Y ικανοποιήσιμος τύπος ανν (X ∨ z) ∧ (Y ∨ z) είναι ικανοποιήσιμος τύπος.
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Πολυπλοκότητα

NP-πληρότητα

Περίπτωση 1: πρόταση με 2 literals c = ℓ1 ∨ ℓ2. ΄Εστω u μια νέα μεταβλητή. Η νέα
πρόταση είναι:

c ′ = (ℓ1 ∨ ℓ2 ∨ u) ∧ (ℓ1 ∨ ℓ2 ∨ u)

΄Εστω, ϕ = ψ ∧ c , τότε η ϕ′ = ψ ∧ c ′ είναι ικανοποιήσιμη αν και μόνο αν η ϕ είναι
ικανοποιήσιμη.
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια)

Περίπτωση 2: πρόταση με 1 literal c = ℓ. ΄Εστω u, v νέες μεταβλητές. Η νέα πρόταση είναι:

c ′ = (ℓ ∨ u ∨ v) ∧ (ℓ ∨ u ∨ v) ∧ (ℓ ∨ u ∨ v) ∧ (ℓ ∨ u ∨ v)

΄Εστω, ϕ = ψ ∧ c , τότε η ϕ′ = ψ ∧ c ′ είναι ικανοποιήσιμη αν και μόνο αν η ϕ είναι
ικανοποιήσιμη.

Περίπτωση 3: πρόταση με |literal| = k > 3, π,.χ. c = ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk−1 ∨ ℓk . ΄Εστω u μια
νέα μεταβλητή. Η νέα πρόταση είναι:

c ′ = (ℓ1 ∨ ℓ2 ∨ ℓk−2 ∨ u) ∧ (ℓk−1 ∨ ℓk ∨ u)

Εξακολουθητικά έως ότι να μην υπάρχει πρόταση με |literal| = k > 3. [Θα χρειαστούμε
O(k)]

΄Εστω, ϕ = ψ ∧ c , τότε η ϕ′ = ψ ∧ c ′ είναι ικανοποιήσιμη αν και μόνο αν η ϕ είναι
ικανοποιήσιμη.
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Πολυπλοκότητα

NP-πληρότητα

π.χ., ΄Εστω ο τύπος ∈ SAT :

ϕ =(x1 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

∧ (x2 ∨ x3 ∨ x4 ∨ x1) ∧ (x1)

Ο ισοδύναμος τύπος ∈ 3-SAT είναι:

ϕ′ =(x1 ∨ x4 ∨ z) ∧ (x1 ∨ x4 ∨ z)

∧ (x1 ∨ x2 ∨ x3)

∧ (x2 ∨ x3 ∨ y1) ∧ (x4 ∨ x1 ∨ y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ v)

□
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Για κάθε πρόταση c της ϕ:

Αν η c δεν έχει ακριβώς 3 κυριολεκτικά, κατασκευάστε την c ′ όπως πριν.

Αλλιώς, c ′ = c .

Το ψ είναι η σύζευξη όλων των c ′ που κατασκευάστηκαν.

Επιστρέφουμε το ψ ως λύση του προβλήματος 3-SAT .

■ Ορθότητα: Η ϕ είναι ικανοποιήσιμη αν και μόνο αν η ψ είναι ικανοποιήσιμη. □

Διάλεξη 20 ΗΥ - 280 Θεωρία Υπολογισμού Χειμερινό εξάμηνο 2025 - 26 33 / 42



Πολυπλοκότητα

NP-πληρότητα

Χρήση Θεωρήματος Cook-Levine

■ Στην διαγνωσιμότητα, χρησιμοποιήσαμε το γεγονός ότι ATM δεν είναι διαγνώσιμη ως

σημείο εκκίνησης για την εύρεση άλλων μη-διαγνώσιμων γλωσσών. [Ιδέα: Ανάγουμε την

ATM σε κάποια άλλη γλώσσα]

■ ΄Οταν εξετάζουμε την NP-πληρότητα, θα χρησιμοποιήσουμε το γεγονός ότι
3− SAT ∈ NP-πλήρες ως σημείο εκκίνησης για την εύρεση άλλων NP-πλήρων γλωσσών.

Ιδέα: Ανάγουμε την 3− SAT σε κάποια άλλη γλώσσα.
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Πολυπλοκότητα

NP-πληρότητα

■ Για να αποδείξουμε ότι L ∈ NP-πλήρης, i) L ∈ NP και, ii) ανάγουμε κάποιο γνωστό
NP-πλήρες πρόβλημα στην L.

! Μην ανάγετε την L σε ένα γνωστό NP-πλήρες πρόβλημα.

P

NP

NP-πλήρη
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Πολυπλοκότητα

NP-πληρότητα

Μερικά παραδείγματα.

■ INDSET :=

{
⟨G , k⟩ | G μη-κατευθυνόμενος γράφος με ανεξάρτητο

σύνολο μεγέθους τουλάχιστον k

}
.

■ 3− COLOR :=

{
⟨G ⟩ | G μη-κατευθυνόμενος γράφος, υπάρχει

3− coloring των κορυφών του

}
.

■ HAMPATH :=

{
⟨G , s, t⟩ | ⟨G , s, t⟩ ∈ PATH και το μονοπάτι

περνάει από κάθε κορυφή του G

}
.
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Πολυπλοκότητα

NP-πληρότητα

■ HAMPATH :=

{
⟨G , s, t⟩ | ⟨G , s, t⟩ ∈ PATH και το μονοπάτι

περνάει από κάθε κορυφή του G

}
.

Θεώρημα. Το πρόβλημα HAMPTH είναι NP-πλήρες.

Απόδειξη. Θα δείξουμε ότι 3-SAT ≤p HAMPATH. Θα προσομοιώσουμε τις μεταβλητές και
τις προτάσεις με gadgets.

. . .

x1

πρόταση

φ = (x1 ∨ x2 ∨ x3) ∧ . . . ∧ (xk ∨ xl ∨ xm)

– μονοπάτια, x1 = Αληθής.

– μονοπάτια, x1 = Ψευδής.
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Άν η xi περιέχεται στην πρόταση cj τότε κατασκευάζουμε την εξής
παράκαμψη: Αν xi = Αληθής.

. . . . . .

cj

cj

xi
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Άν η xi περιέχεται στην πρόταση cj τότε κατασκευάζουμε την εξής
παράκαμψη: Αν xi = Ψευδής.

. . . . . .

cj

cj

xi
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) φ = (x1 ∨ x2 ∨ x3) ∧ . . . ∧ (xk ∨ xl ∨ xm). Υποθέτουμε ότι
c1 = x1 ∨ x2 ∨ x3, c2 = x1 ∨ x2 ∨ x5, κτλ. Κατασκευάζουμε το γράφημα G ως εξής:

. . .

x1
s

. . .

x2

...

. . .

xm

t

. . .

x1

. . .

x2

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x5

...

Διάλεξη 20 ΗΥ - 280 Θεωρία Υπολογισμού Χειμερινό εξάμηνο 2025 - 26 40 / 42



Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια)

Προσοχή. Στην προηγούμενη διαφάνεια, προφανώς, δεν θα συνδεθούν όλοι οι ρόμβοι με

όλους τους κόμβους των c όπου υπάρχουν μεταβλητές τους. [γιατί;]

Αν ο ϕ είναι ικανοποιήσιμος τύπος, τότε αρκεί ένα από τα literals των ci να έχει αποτίμηση
Αληθές.

Επομένως, αρκεί να χρησιμοποιήσουμε μια από τις παρακάμψεις [π.χ., στην προηγούμενη

διαφάνεια, στο αρκεί είτε η μπλε παράκαμψη είτε η κόκκινη για την c1.]
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Η φ είναι ικανοποιήσιμη ανν το γράφημα G έχει μονοπάτι Hamilton.

[Ευθύ] Για οποιαδήποτε αποτίμηση της που ικανοποιεί την φ, κατασκευάζουμε όλα τα μπλέ
και κόκκινα μονοπάτια στο G , ξεκινώντας από το s και καταλήγοντας στο t. Στην
συνέχεια προσπελαύνουμε τον γράφο ώστε να επισκεφθούμε τους κόμβους που

ανταποκρίνονται στην πρόταση ci .

[Αντίστροφο] Για οποιοδήποτε μονοπάτι Hamilton από το s στο t. Δείχνουμε ότι υπάρχουν
μπλέ και κόκκινα μονοπάτια τ.ω. μπορούμε να επισκεφθούμε τους κόμβους που

ανταποκρίνονται σε κάθε πρόταση. Αυτό κατασκευάζει μια αποτίμηση αλήθειας για την φ.
Επομένως η φ είναι ικανοποιήσιμη. □

■ Η αναγωγή f είναι υπολογίσιμη σε πολυωνυμικό χρόνο.

□ Η κατασκεύη που χρησιμοποιήσαμε για την απόδειξη δουλεύει και για μη-κατευθυνόμενο
γράφημα;
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Πολυπλοκότητα

NP-πληρότητα

Απόδειξη. (συνέχεια) Η φ είναι ικανοποιήσιμη ανν το γράφημα G έχει μονοπάτι Hamilton.

[Ευθύ] Για οποιαδήποτε αποτίμηση της που ικανοποιεί την φ, κατασκευάζουμε όλα τα μπλέ
και κόκκινα μονοπάτια στο G , ξεκινώντας από το s και καταλήγοντας στο t. Στην
συνέχεια προσπελαύνουμε τον γράφο ώστε να επισκεφθούμε τους κόμβους που

ανταποκρίνονται στην πρόταση ci .

[Αντίστροφο] Για οποιοδήποτε μονοπάτι Hamilton από το s στο t. Δείχνουμε ότι υπάρχουν
μπλέ και κόκκινα μονοπάτια τ.ω. μπορούμε να επισκεφθούμε τους κόμβους που

ανταποκρίνονται σε κάθε πρόταση. Αυτό κατασκευάζει μια αποτίμηση αλήθειας για την φ.
Επομένως η φ είναι ικανοποιήσιμη. □

■ Η αναγωγή f είναι υπολογίσιμη σε πολυωνυμικό χρόνο.

□ Η κατασκεύη που χρησιμοποιήσαμε για την απόδειξη δουλεύει και για μη-κατευθυνόμενο
γράφημα;
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